92 B.

approximations that have been made. The crude value
for the quadrupole moment obtainable from the mea-
sured B supports the more precise atomic-beam result.

C. Core Polarization

Evidence for the core-polarization magnetic field at
the nucleus of 4d atoms or ions is much more sparse than
for the corresponding 3d transition series. For 4d ions
there exist two relevant measurements on the Mo®t+ion?’

BUDICK
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small. The contribution from the ds/, state is equal and
opposite to the contribution from the ds/; state and both
states enter Eq. (4) in roughly the same amounts.
Assuming a field of —350 000 G per unit spin, as sug-
gested above, we find that the net contribution is 10
Mc/sec. This is of the same order as the experimental
error. Moreover, relativistic corrections to the hfs
interaction constants as well as an admixture of con-
figurations containing unpaired s electrons are also

expected to be of this magnitude. Consequently, no
conclusion concerning core polarization can be drawn
from our experiments.

17 W. Low, Phys. Letters 244, 46 (1967).

18 J. A. Seitchik, A. C. Gossard, and V. Jaccarino, Phys. Rev.
136, A1119 (1964).

and the Pd metal.’® Both results lend support to the
hypothesis of a core-polarization field of roughly
—350 000 G per unit spin. As mentioned above, an in-
spection of Eq. (4) reveals that the core polarization of
the d electron in the 3P, level of the Pd atom is very
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A strategy is proposed to determine atomic wave functions by the configuration-interaction method
(CI). A large nonoptimized set of Slater-type orbitals (STO’s) is contracted into an orthogonal set of smaller
dimension whose elements are natural orbitals (NO’s) of a CI wave function which includes the Harlree-
Fock (HF) configuration and, out of all possible double excitations, only those such that the HF orbitals
are also NO’s. Conceptual and practical arguments which justify such a procedure are given. A non-
relativistic calculation of the ground state of Be is made with an STO basis used earlier by Watson, but in-
cluding s, p, and & orbitals only. The final 180-term CI expansion (1492 Slater determinants) gives an
energy E=—14.664193 atomic units (a.u.) (Be), which is about 0.00221 a.u. higher than a nonrelativistic
estimate for this state, and the pair energies e(ls,1s)=—0.040869 a.u., €(2s,25) = —0.045104 a.u., and
e(1s,2s) = —0.005240 a.u., are in excellent agreement with those found by Kelly by means of a many-body
perturbation calculation, and also by Byron and Joachain, who used a variation-perturabtion method.
Quantitative comparisons with all previous work on Be are made. Single excitations occur with large eigen-
vector components, but they become vanishingly small when NO’s of the final wave function are used
as the basis. The eigenvector components of quadruply excited configurations are closely related to those
arising from a separated-electron-pair wave function without the strong orthogonality condition. The
spd energy limit is estimated to be Espe= —14.66453 a.u. From considerations #o¢ involving relativistic
corrections, the “exact” nonrelativistic energy is estimated to be lower than E=—14.66639 a.u. by no
more than 0.0003 a.u. The ‘“exact” pair energies are estimated to be e(ls,1s) = —0.04261 a.u., €(2s,2s)
= —0.04550 a.u., and e(1s,2s) = —0.00530 a.u. Details on all aspects of the calculation are given. Further
work on several states of the first-row atoms is in progress.

I. INTRODUCTION

HE simplest and most general variaticnal method

in connection with numerical applications to the
stationary states of many-electron systems is the con-
figuration-interaction (CI) method.!'? When the CI

* This work was supported in part by the National Science
Foundation and by Research Grant No. NASA NSG-512 from
the National Aeronautics and Space Administration (University
of Florida), and in part by grants from the National Science
Foundation and the U. S. Air Force Office of Scientific Research
(Indiana University).

t Present address: Department of Chemistry, Indiana Univer-
sity, Bloomington, Ind. 47401.

1E. A. Hylleraas, Z. Physik 48, 469 (1928); S. F. Boys, Proc.
Roy. Soc. (London) A201, 125 (1950). See also E. A. Hylleraas,
Abhandlungen aus den Jahren 1926-37 (Oslo University Press,
Oslo, 1956).

expansion is truncated to only one term (configuration)
and the total electronic energy is minimized with respect
to some well-defined sort of variations of the spin
orbitals, we have a particular kind of Hartree-Fock
(HF) method.?* In conventional HF calculations, the
spin orbitals are understood to be symmetry adapted,
and the configuration is chosen to be a projected Slater
determinant of the required symmetry.5

2P. O. Léwdin, Phys. Rev. 97, 1474 (1955).

3P. O. Lowdin, Phys. Rev. 97, 1490 (1955).

4R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955);
R. K. Nesbet, Rev. Mod. Phys. 33, 28 (1961).

5C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951); 32, 179
(1960); C. C. J. Roothaan and P. Bagus, in Methods in Computa-
tional Plysics (Academic Press Inc., New York, 1963), Vol. 2,
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In the present series of nonrelativistic atomic cal-
culations we perform CI with projected Slater deter-
minants, including the conventional HF configuration.
We use a symmetry-adapted* one-electron orthonormal
basis whose radial part is expanded in terms of Slater-
type orbitals (STO’s). When a configuration is de-
generate with respect to the LS term under considera-
tion [e.g., the configuration (p)%(d)? is triply degenerate
with respect to 1S states], the full degenerate space is
taken into account, without giving any a priori pref-
erences to a particular coupling of the spin and orbital
angular momentums.

The method commonly used by other authors has
been to build up a wave function by successive addition
of appropriate configurations to an already determined
approximation, and sometimes by even optimizing the
STO parameters with respect to the total energy. As a
first step in the determination of CI wave functions, we
take the opposite stand: An STO basis is chosen a prior:
with the only requisite that approximate linear de-
pendencies be within the limits of accuracy imposed.
It is desirable, although not necessary, that a good HF
wave function be obtainable from such a basis.

Since the variational energy of the full CI expansion
depends on the STO basis alone, one of our tasks is to
devise a strategy to find an orbital basis leading to a
rapid convergence of the CI expansion. This is at-
tempted by taking the natural orbitals (NO’s)2: of a CI
wave function which includes the HF configuration and
all possible double excitations of it, such that the HF
orbitals remain NO’s. Conceptual and practical justifica-
tions for doing so are given in Sec. II.

The second step consists of carefully building up the
STO basis from the NO’s obtained in the first step;
this shall be considered in a forthcoming paper dealing
with more accurate calculations on the ground states
of the Be isoelectronic series. There is no practical mo-
tivation for not carrying out this second step right after
the first one, and, in fact, this is the course we are
following in further calculations. However, we are con-
sidering here only the first step in order to concentrate
on the question: What is the best one can do with a
given STO basis? The answer to this question (which is
not trivial when a full CI treatment is out of range)
should obviously precede any estimates on the actual
rate of convergence of CI expansions in a one-electron
basis.

We have two reasons for adopting this approach:
Firstly, it is of interest to know the relative importance
of spending large amounts of computing time in doing
a careful optimization of STO parameters; secondly,
large Hamiltonian matrices can be generated very
fast—a 185X 185 matrix for the ground state of carbon,
including 1800 Slater determinants, is computed in 24
sec on a CDC 6400 computer—and thus there should
be no real hindrance to an exhaustive search aiming at

6P, 0. Lowdin, Rev. Mod. Phys. 32, 328 (1960).
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determining which configurations contribute effectively
to the CI expansion.

The ground state of Be is computed with the same
STO basis employed previously by Watson,” except
that we consider s, p, and d orbitals only. The STO choice
is dictated in part because much work and thought has
been given to Watson’s wave function in the years since
its publication, and thus we have enough material to
make comparisons and draw evidence on the usefulness
of this method. In Sec. ITI we give a brief account of
the calculation. The results are presented in Sec. IV
and discussed in Sec. V.

II. ORBITAL BASIS

Among the general studies aiming at improving
the rate of convergence of the many-electron CI ex-
pansion,?89 the concept of natural orbitals plays an
important role. Multiconfiguration self-consistent-field
(SCF) theories® are currently being applied to many
molecular and atomic systems, but since no real effort
seems to be made to obtain good atomic wave functions
by these methods, nothing can be said at present about
their practical convenience in atomic calculations.!®

Natural orbitals have been offered as a panacea to
speed up the convergence of the exact CI expansion.?:®:11
In the case of approximate wave functions, the (approxi-
mate) NO’s are supposed to simplify the approximate
CI expansion. Applications to two-electron systems
speak eloquently of the success of NO analyses!?13; all
these have been done with approximate NO’s. The
equations to derive the exact NO’s require the know-
ledge of the exact second-order density matrix.? Ap-
proximate solutions, however, can be obtained for

7R. E. Watson, Phys. Rev. 119, 170 (1960).

8 (a) A. P. Yutsis, Zh. Eksperim. i Teor. Fiz. 23, 129 (1952)
(English translation on request from Photo Duplication Service,
Publication Board Project, Library of Congress, Washington,
D.C. 20025); J. C. Slater, Phys. Rev. 91, 528 (1953); R. McWeeny,
Proc. Roy. Soc. (London) A232, 114 (1955); T. L. Gilbert, J.
Chem. Phys. 43, S248 (1965); G. Das and A. Wahl, ibid. 44, 87
(1966); A. Veillard, Theoret. Chim. Acta 4, 22 (1966); E. Clementi
and A. Veillard, 4bid. 7, 133 (1967); J. Hinze and C. C. J. Roothaan,
Laboratory of Molecular Structure and Spectra Report, Depart-
ment of Physics, University of Chicago (unpublished); W. H.
Adams, Phys. Rev. 156, 109 (1967); see also Ref. 2. (b) P.O.
Lowdin, J. Math. Phys. 3, 1171 (1962), and references therein.

9 W. Kutzelnigg, Theoret. Chim. Acta 1, 327 (1963); W.
Kutzelnigg, J. Chem. Phys. 40, 3640 (1964).

10 For applications to two- and four-electron atoms see A. P.
Yutsis ef al., Opt. i Spektroskopiya 12, 157 (1962) [ English transl.:
Opt. Spectry. (USSR) 12, 83 (1962)]. Impressive results are
claimed for Be. However, the fact that the HF energy reported
by these authors is 0.0040 a.u. lower than the correct value, leads
one to suspect that at least the same errors are involved in the
final energies. This probably has to do with innaccuracies in the
numerical integrations.

1P, Q. Léwdin, J. Phys. Chem. 61, 55 (1957).

12H. Shull and P. O. Lowdin, J. Chem. Phys. 30, 617 (1959).

BE. R. Davidson and L. L. Jones, J. Chem. Phys. 37, 2966
(1962); S. Hagstrom and H. Shull, Rev. Mod. Phys. 35, 624
(1963), to name a few. For accurate NO’s in the He isoelectronic
series see Ref. 43.
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two-electron systems.!* Atomic and molecular cal-
culations on systems with more than two electrons, in
which approximate NO’s are used in different ways in
the determination of the wave functions, have recently
been carried out.!’16 In what follows we apply NO
ideas to the determination of a Be ground-state wave
function.

Let us now return to the two-electron problem:
Lowdin and Shull consider the mean quadratic devia-
tion between a CI expansion of a two-electron wave
function and a truncation of the same function,'” and
prove that this quantity is a minimum for the case of
the natural expansion, when the latter, ordered ac-
cording to decreasing occupation numbers, is truncated
to any given order.’® As these authors point out, the
preceding situation results as a consequence of dia-
gonalizing a quadratic form. We shall use this fact in the
following context: A four-electron separated-electron-
pair wave function Q,

Q= A(K(1,2L(3,4)}, )

has been shown to be a very good approximation to the
ground state of Be.'®2 We assume then, that an
essentially correct K(1,2) function which is presumably
localized in the K shell can be obtained by letting the
L-shell wave function be (2s)2 i.e., a doubly occupied
2s orbital. The function K(1,2) is expanded in CI form
and its NO’s are called K-skell NO’s. The truncated
natural expansion of K(1,2) has optimum properties: a
minimum mean quadratic deviation with respect to the
original K(1,2), or what is equivalent, maximum over-
lap with it. In this way, a large basis can be effectively
reduced. Let us note here that we are not looking for a
basis to represent K(1,2) in an optimum way, but rather
for a good basis in which to expand that localized portion
of the total wave function, the “physical” K shell, in the
general framework of an unrestricted CI calculation.

Since all the basis orbitals are orthogonal, the NO’s
of K(1,2) are identical with those of Q),

QE = A{K(1,2)(25)2},

except for the addition of two 2s spin orbitals with
occupation number (o0.n.) equal to 1.

14 C. E. Reid and Y. Ohrn, Rev. Mod. Phys. 35, 445 (1963);
W. Kutzelnigg, Theoret. Chim. Acta 1, 343 (1963). The work of
E. R. Davidson [J. Chem. Phys. 39, 875 (1963)] deserves special
mention. See also R. Ahlrichs, W. Kutzelnigg, and W. A. Bingel,
Theoret. Chim. Acta 5, 289 (1966).

15 C. F. Bender and E. R. Davidson, J. Phys. Chem. 70, 2675
(1966); C. Edmiston and M. Krauss, J Chem. Phys. 45 1833
(1966); C. F. Bender and E. R. Davidson, zbid. 47, 360 (1967)

16 C. F. Bunge, dissertation, Unlver51ty of F lorlda 1966
(unpublished); [also as Report No. 95, Quantum Theory
Project, University of Florida ? npublished)].

7P, O. Léwdin and H. Shull, Phys. Rév. 101, 1730 (1956).

18 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963) see in
particular p. 672.

19T. L. Allen and H. Shull, J. Phys. Chem. 66, 2281 (1962);
W. Kutzelnigg, Theoret. Chim. Acta 3, 241 (1965); R. McWeeny
and B. T. Sutcliffe, Proc. Roy. Soc. (London) A273 103 (1963);
D. W. Smith and S. J. Fogel, J. Chem. Phys. 43, S91 (1965).
(192065 J. Miller and K. Ruedenberg, J. Chem. Phys. 43, S88
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The L-shell NO’s can be found in a similar way, in
which case K(1,2) is represented by (1s)% The K-shell
NO’s are not exactly orthogonal to their L-shell counter-
part. Orbitals obtained in exactly the same way have
been used in molecular calculations by Bender, David-
son, Edmiston, and Krauss.!®

In order to avoid the nonorthogonality problem, the
function Q& is considered:

QEL) = (18)2(25)2“‘/1 {[ > lS(xsz)kw](zs)z}

’L< J
+A{ (15)2[.?' W)l 1y, (2)
i<

and it is found that its NO’s resemble either K-shell
NO’s or L-shell NO’s!; we shall call them KL-shell
NO’s. In addition, we now impose constraints upon
Eq. (2) to the effect that the HF orbitals remain
NO’s?; thus all single excitations in the four-electron
CI expansion are omitted when calculating the K L-shell
NO’s. In this way, we obtain an orthogonal set which
includes the HF orbitals intact.

The resemblance between the KL-shell NO’s and
either the K- or L-shell NQO’s, seems to be greater when
the former ones include the HF orbitals, as is the case
in the present calculation. Moreover, this is not a re-
striction; in fact we have carried out similar calcula-
tions using the “‘ground” NO’s of a very accurate CI
wave function instead of the HF orbitals, and the con-
vergence of the CI expansion is found to be as good as
the one in the present work. However, since we work
with HF orbitals, our calculated pair energies are com-
parable with those found by other methods (Table VI).

The K- and L-shell NO’s are important in order to
know how many orbitals of a given symmetry type are
energetically effective for describing a given shell
(smaller energy contributions with decreasing o.n.’s).

On the other hand, the KL-shell NO’s are used as a
basis for an unrestricted CI calculation. Their o.n.’s
provide a criterion for the classification of the orbitals.
Thus, 1s will now be called s; because it occurs with the
largest o.n. among the s-symmetry NO’s of the K L-shell
CI wave function. Analogously, s4 refers to the K L-shell
NO with the fourth largest o.n. of s symmetry, and so
on. The o.n.’s of these NO’s do not give a relative in-

Tasre I. STO parameters.

Value
of 5: 1 2 3 4 5 6 7 8 9
Value

of j: O 0 1 1 2 2 3 3

Zj 60 1.0 6.0 1.0 60 10 60 10 60
Zjs 9.0 1.5 90 1.5 90 15 9.0

Zis 120 20 120 20 120

21 In Ref. 16 these constraints were not imposed, with the con-
sequence that the KL shell NO’s had to be reorthonormalized to
the HF orbitals. In the few trials in which a departure from the
HF orbitals was allowed, the rate of convergence was about the
same as when the HF orbitals were conserved.



168 ELECTRONIC WAVE FUNCTIONS 95
TasiE II. Orbital expansion coefficients in terms of STO basis.
s-type orbitals
7 S1 S2 S3 Sa S5 S S7
1 0.484847048  —0.081129323 0.236378724 — 0.851510600 0.265873679  — 1.664939862 1.747779195
2 0.217606868  —0.147345521  —0.023812423 1.463671983  —13.785058233 8.345092690 — 7.846111097
3 0.264166060  —0.051149614 0.167902301  — 0.685884011 0.344405362  — 1.322541330 — 0.884531760
4  —0.268301860 1.332911822  —2.906858860  — 4.155520278 19.479361764 — 8.963389965 21.059262690
5 0.168224986  —0.041063909  —0.013116037 1.445011855 5.662577867 6.664641564  — 4.337304547
6 0.167584376  —0.386780254 3.543805952 3.499072719  —11.287118625 2.486636455  —22.934860600
7 0.045127695  —0.007522402 —0.086177264 — 0.217448010 — 4.044845351 — 9.770113013 12.217441615
8  —0.045287495 0.224825231  —0.597044312 — 0.735281328 1.832170487 0.929981389 9.551494834
9 0.066882692  —0.027648005 0.170930863 0.272415025 2.913346819 1.996914822  — 7.890760494
p-type orbitals
j 2 P2 2 ba Ps bs b44
1 0.002277605 0.136828110  —0.038576770 0.446091524 0.772159722  — 1.158594603  — 8.047062883
5 0.429793323 0.289757091  —2.297429706 — 1.630546141 3.711662087 9.027008344 — 5.030483716
3 —0.008093853 0.496375468  —0.064288357 1.093397758 2.043059686  — 1.562780864 25.023119574
4 0.003407640  —0.484820859 6.516898324 3.221044478  — 5.988190796  —13.135420198 6.885709737
5 0.018387890  —0.015723759  —0.025078480 — 0.466722842 — 6.118314509 7467695431  —30.069575113
6 0.639694745 0.061136712  —4.653924469 — 1.709415789 2.804971927 5851017849  — 2.951912363
7 —0.017083311 0.395753639 0.268955253  — 0.793415524 2.983994709  — 7.299083802 14.311612643
d-type orbitals
7 d, d2 ds ds
1 0.023051110 0.227546159  —0.163580523 5.623365897
2 —0.642843178 0.114330993 0.011583282 0.564588369
3 —0.069167477 —0.155445203 —2.845782094 —10.450285207
4 1.574948229  —0.118129593  —0.028951140 — 0.500672470
5 0.087376028 0.949263475 2.905383969 5.354361470

dication of the energy effects of their corresponding
NO’s in a CT expansion. For example, the orbital d; is
largely an L-shell NO, but it is energetically poor when
compared with ds, a predominantly K-shell NO. The
energy contributions of ds are three times as large as
those of d;,%? while the o.n. of dy is five times that of ds.2

More about KL-skell NO’s is said in Sec. 11T C. We
mention here two practical advantages: Firstly, it is
found in practice that when the approximate linear de-
pendencies are not serious, the NO’s resemble canonical
orbitals.?* As a consequence, one- and two-electron
integrals can be computed with a nearly optimum ac-
curacy. Secondly, the Hamiltonian matrix in NO basis
usually occurs with a more dominant diagonal, and as
a result of this, iterative methods for obtaining eigen-
values and eigenvectors®® converge much faster. In
similar calculations on the carbon atom, speed improve-
ments by a factor of 6 have been observed.2

III. CALCULATION

The computer programs, which are general for any
LS state of any atom, were written in FORTRAN IV on

22 A fact already known; see J. Linderberg and H. Shull, J.
Mol. Spectry. 5, 1 (1960).

23 All this can be suspected just by looking at Watson’s wave
function (Ref. 7).

24 These are orbitals for which the sum of the squared modulus
of their expansion coefficients in terms of a nonorthogonal basis is
a minimum,; see, e.g., P. O. Lowdin, J. Appl. Phys. 33, 251 (1962).

% See, in particular, R. K. Nesbet, J. Chem. Phys. 43, 311
(1965). A computer program has been written in FORTRAN IV by
H. H. Michels and P. Elliot and may be obtained as QCPE 93 from
Quantum Chemistry Program Exchange, Chemistry Department,
Indiana University, Bloomington, Indiana.

26 A, Bunge (unpublished calculations on the C atom).

the basis of programs earlier developed by the present
author.'® The actual calculations were performed on a
32K, CDC 6400 computer at Florida State University.?

A. One-Electron Basis
The set of spin orbitals ®;imm, is defined by

DPiim ms T Ril(") ! erﬂz(e; ‘\0) £ms(0's) )

where {Yi,,} consists of normalized spherical har-
monics in the Dirac phase convention?® and {&,(cs)}
are the usual spin functions «, 8 with eigenvalues
ms=-%. The set of functions {R;} is expanded in
terms of normalized STO’s S;; with j=1,---,J(]):

J (1)

R;= Z Sjlajlz',
7

Sj1=Njpritbe=Zity
Np=[@QZ)Lrenita /(2+2n;4-2) 1],

and we have further the orthonormalization condition

/ Ru(r)Rj(r)ridr=5;.
0

The STO parameters are given in Table I, the ex-
pansion coefficients a;;; in Table TI. All one-electron
integrals are computed in 2 sec for a 7s, 7p, 4d basis;
this includes a Schmidt orthonormalization of the
orbital basis. It takes 35 sec to compute all two-electron

27 A double precision arithmetic (25 figures) recomputation was
carried out on a 64K CDC 3600/3400 computer at Indiana
University.

B Vip*=(—1)"Yi _m.
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TasLE III. Nondegenerate configurations.

Subclass General element

(SwSz | Sws2)
2120505z | SwSy)
3120(sp®| sp°)
6120 (spu® | sp=")
61120 (sup® | 5:9°)
31120(pp* | p1p0)

12120(pupu? | pu':Y)
5120 (sd?| sd9)

10120 (sd., | sd0)

101720 (54,d°| 5,d°)

151 120(3?0 l Pod())

_O 000NN WN e

—

radial integrals over 9s, 7p, 5d STO basis. These are
computed once and for all. It takes another 60 sec to
make the transformation to an orthogonal set of 7s,
7p, and 4d orbitals.

B. CI Expansion

The total wave function ¥ is expanded as

V= Z @K(P)aKp’

K,p

where

¥4 2K
B @=0(I4S)[ L Drubra®]I= 3. Dracra®. (3)
a=1 a;

=]

In Eq. (3), O(L%S?) is a product of a spin-angular-
momentum projection operator times an orbital-
angular-momentum projector,? and it is taken to be
idempotent. In the Slater determinant Dg,., the o’s
label the possible determinants in configuration K [a
configuration is defined by the ordered set of all (z,)
numbers which participate in a given determinant].
Some configurations allow for only one linearly in-
dependent projected function corresponding to a given
set of L, L,, S, S, values. Such configurations are called
nondegenerate. When more than one linearly independ-
ent function can be obtained, these functions are called
degenerate and are labeled by the superscript p. The
successive elements of the degenerate set are obtained
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by Schmidt orthogonalization of O(L2S2)Dg, to the
previous elements.
The matrix elements Hg;®9 are given by

Hyg;?d= <¢K(p)]H’ q ;@)

p "y

=2 X bxacss?(Dxa| H|Dys),
a=1 B=q

and the “turnover” rule is applied in such a way that

the number of matrix elements between Slater deter-

minants is kept to a minimum.

The types of configurations which occur in the final
wave function are displayed in Tables III and IV. In
the normalized Slater determinant (i.'js°|k,%.%), the
letters 4, 4, k, ! stand for the / quantum number, the
superscripts stand for the quantum number ;, and the
subscripts for the quantum number 4. In these tables
the later are included to distinguish between groups of
equivalent electrons. Regarding phase conventions, it
is understood that among orbitals of the same symmetry
z>y>x>w. Finally, the orbitals to the left of the bar
are associated with « spin ,those to the right with 8 spin.

C. KL-Shell CI

Since the set of STO’s employed has very serious
linear dependencies, it is necessary to carry out 25
figures in the arithmetic operations. The occurrence of
approximate linear dependencies can be diagonosed in
several ways, but a fruitful one is as follows: A linear
transformation upon the basis of symmetry orbitals
must leave the energy of a KL-shell CI invariant be-
cause this wave function is invariant under the same
transformation. If the energy changes after such trans-
formations, one must reduce the size of the STO basis,
or modify it. Some times this is not necessary and a
reduction in the size of the orbital basis alone is sufficient
to keep the errors within the desired bounds.

D. Choice of Configurations

All possible types of configurations are examined. An
eigenvector criterion is imperative for the selection of
configurations if, in addition to obtaining a good energy,

TasLE IV. Degenerate configurations.

Subclass First element

Second element

Third element

12 B)120(5wSy | 5252)
13 30(swps"| syp2%)
14 (15/2)120(po°p21 | pu®psl)

15 (15)1720 (pu"py | pu’psl) B
16 (15)1120 (50| 540)
17 (105/11)1/20(p0d0| podo) b

OL— (swSy | 5282) +2(swsz | sys:2) ] ®
(3)120[ — (swp2® [%Pao)’f‘g(swﬁzolswﬁzo)] -
(9/10)120[ (pu'ps* | pu°ps) +4(Pu'pa"| pu'pzt) ]

(9/5)1200 (Pt | puP2)) +4(Pup° ] pup:1) ]
(5)120[ — (sul®| 58:°) +2(s50ds® | 54d5") ] _
(60/11)1120[ — (p°d° | p°d%) +11/6(pld* | p1dY)]

(6/10)200 — (pu"ps* | pupsl)
- 4(?101?:0 | Pwopzl) +5 (?woﬁwl I lepxo)]

2 This function is equal to —A[ (sw|sy) 4 (sy|5w) I[(sz|s2) 4 (5:|52) ; e.g., it corresponds to an antisymmetrized product of two 1S two-electron functions.
b Triply degenerate configuration; only two elements occur in the final wave function.

2% P. O. Lowdin, Rev. Mod. Phys. 36, 966 (1964).
30 P. O. Léwdin, Rev. Mod. Phys. 34, 520 (1962).
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TaBLE V. Comparison of angular energy limits.
5 sp spd spdf spdfg E(total)

WatsonP —14.5865 —14.6534 —14.6566 —14.65724 —14.65740

Weiss® —14.59110 —14.65722 —14.66039 —14.66090

MR4 —14.6612 —14.66179

Bunge® —14.59073 —14.65923 —14.66213

This calc. —14.59202 —14.66080 —14.66419

Nonrelativistic estimate —14.66453f —14.66570t —14.66598¢ —14.66639¢
—14.66743=
—14.667306"
—14.666917:

& All energies in this paper are in a.u. (Be).

b Reference 7.

¢ Reference 33.

d Reference 34.

e Reference 16.

£ Iépg‘e,r bounds estimated in this work, deduced from Tables XV and XV
g

b Reference 37.

Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev. 128, 2675 (1962)

i Reference 38, based on an uncertain experimental value for the total energy of the Be ground state; see Refs. 7 and 37.

one is interested in a good wave function. The magni-
tude of the eigenvector components which may be
neglected without affecting the energy decreases with
increasing nuclear charge Z, within the family of con-
figurations which contribute to the expansion of a given
pair of electrons. Also, the eigenvector components for
configurations which correlate outer electrons are
larger than those that correlate electrons closer to the
nucleus, when the energy contributions are the same.

The search for energy limits of classes is also con-
sidered. A class is defined by the number of orbitals of
each I value which occur in a given configuration. Thus,
the subclasses (5)2(p)? swso(P)? (5)2puwpz, and (SuSopyp.)
belong to the same class (2s,2p). Class energy limits
are useful because they are invariant under a non-

singular linear transformation of the basis of symmetry
orbitals.

In addition, partial energies (p.e.)®":*? and second-
order perturbation-theory (SOPT) estimates of energy
contributions are computed every time. Partial energy
contributions are found to be very useful when instead
of the HF configuration, a selected CI wave function is
used as zeroth-order approximation. The selected CI
wave function is taken to include those configurations
with higher eigenvector components. The final wave
function reported here was obtained after examining
about 1000 configurations and keeping those functions
with eigenvector components larger (in absolute value)
than 0.0009, and corresponding partial energy contribu-
tions larger than 0.0001 a.u. This is done by the CDC

TasLE VI. Comparison of pair energies and total correlation energy.

e(1s,15) €(25,25) e(1s,2s) Ecorr
Kelly® —0.04212 —0.04488 —0.004966 —0.09197
BJ® —0.04247 —0.04482 —0.00524 —0.09253
This calc. —0.040869 —0.045104 —0.005240 —0.091612
“Exact”’¢d —0.04261 —0.04550 —0.00530 —0.09341
Nesbete (—0.041827) (—0.045351) (—0.005864) (—0.092050)
SBf (—0.04235) (—0.04450) oo e
This calc.2 (—0.040926) (—0.045669)
“Exact”h (—0.04267) (0.04607) e e
TSt ((—0.04395)) ((—0.04392)) ((—0.00648)) ((—0.09435))
GTL ((—0.042083)) ((—0.044381)) e cee

® Reference 35; HF orbitals taken from V. V. Kibartas andA. P. Yutsis [Zh. Eksperim, i Teor. Fiz. 25, 264 (1953)] which report Enr = —14.578 a.u.
a certainly inaccurate value, probably due to round-off errors in the numerical integrations. See also V. V, Kibartas, V. I. Kavetskis, and A. P
Yutsis, Zh. Eksperim. i Teor. "Fiz. 29 623 (1955)] [English transl. : Soviet Phys.—JETP 2, 476 (1956)].

b Reference 39; Enr = —14.57302

© With respect to an Egr = —14. 572986

d This work, Table XVI.

o Reference 38.

f Reference 40.

& Calculated with orbital basis employed in this work.
k Corrections taken from Table XV1I,

i Reference 36; Enr = —14.572347.

i Reference 37; EgF = —14.572956.

31 A partial energy (p.e.); contribution is defined by (Ref. 32) (p.e. ),—c,H,o/vo, where the ¢’s are eigenvector components, the
subscript zero being associated with any zeroth-order function. If the ¢’s are variational coefficients, the energy of the zeroth-order
wave function plus the sum of the p.e.s equals the total energy. Pair energies result from addition of p.e’s over a given type of
pair excited conﬁguratlons

32 See Boys’s paper, Ref. 1.
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3400/3600 computer in 75 min, of which 55 min are
spent in getting eigenvalues and eigenvectors, 13 min
in constructing Hamiltonian matrices, 1 min building
up a magnetic tape with all determinants, projection
coefficients, and Gaunt coefficients, and 6 min are spent
in the handling of magnetic tapes; integrals are given as
input. All excluded configurations with significant p.e.’s
are considered in the expansion of the final wave func-
tion. In this case we took into account most of the
functions with p.e.’s greater than 0.000002 a.u.

TaBLE VII. Effect of (s1)2 excitations.

Partial Eigenvector
Configuration® Eigenvectorb energies® Bettd
(p2)? —0.028518606 —20299¢ —0.0285
(s4)2 —0.016776555 — 7868° —0.0167
$3S4 +0.013873568 — 3937¢ +0.0141
b1 —0.008497118 — 1093 —0.0084
(s3)2 —0.006472686 —  623° —0.0069
(d2)? —0.006377440 — 2647 —0.0063
(p)? —0.005114480 — 1949¢ —0.0051
Ppsps -+0.001933950 —  125f +0.0018
5556 —0.001850151 — 274 —0.0018
(s5)2 —0.001830927 — 177 —0.0018
(ds)? —0.001749529 — 435 —0.0018
P1ps +0.001663548 - 8 +0.0016
(p5)* —0.001514453 - 254 —0.0014
(s6)? —0.001363750 — 174 —0.0013
$aS5 —0.001171144 - 69 —0.0012
(1)* —0.001074516 - 13 —0.0016
5355 —0.000921051 - 22 —0.0009
y2v23 —0.000778436 — 8 —0.0006
5356 —0.000640354 - 20 —0.0008
(s7)? —0.000599537 - 25 —0.00059
(pe)* —0.000561004 — 43 —0.00054
(p3)? —0.000535401 — 7 —0.00047
b1ps —0.000469536 + 5 —0.00046
S6S7 -+0.000461944 - 38 -+0.00047
(dy)? —0.000461803 - 82 —0.00046
Dsps -+0.000359381 — 48 -+0.00042
bsps —0.000358717 + 10 —0.00037
(p7)? —0.000327412 - 52 —0.00032
Dopa —0.000326783 - 6 —0.00038
dods —0.000269289 + 4 —0.00031
did: —0.000256070 — 2 —0.00030
paps —0.000208527 — 14 —0.00031
$557 —0.000199317 + 10 —0.00017
dads —0.000119923 + 14 —0.00012
5456 —0.000115479 - 5 —0.00014
pedr —0.000110332 - 12 —0.00011
paps +0.000090040 - 2 +0.00016
Db —0.000046812 + 4 —0.00005

a Only the excited orbitals are shown, e.g., the configuration (s2)2(p2)?
is denoted simply by (p2?).

b The eigenvector component of the HF configuration is co(Be)
= -40.953115148. The eigenvector is normalized in the sense (®o|¥)=1,
where ®o is a selected CI wave function (see Sec. I1I D and footnote e below)
which is normalized to 1, and ¥ is our total wave function.

¢ In units of 1076 a.u. (Be).

d Eigenvector components multiplied times [¢(Be)/co(Be**)]2 where
c¢(Be)? is the sum of all squared coefficients of configurations which are not
(s1)2 excitations.

e Partial energies defined by ®o =®nr.

f Partial energies defined by a selected CI wave function ®o which is
made up of all configurations marked above, and others similarly indicated
in the following tables. The same applies to all configurations below. The
energy corresponding to & is E = —14.658278 a.u.
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IV. RESULTS

The energy results obtained with a 180-term wave
function (WF1), consisting of 1492 Slater determinants,
are tabulated in Table V and compared with previous
variational calculations.?-16:33:3¢ It should be emphasized
that our calculated energies are a byproduct of a cal-
culation with a fixed STO set (first step in the deter-
mination of CI wave functions, Sec. I). When the NO’s
of WF1 are employed as a basis, we obtain a different
representation of WF1, which we shall call WF2. The
latter consists of 179 terms and gives the same energy
as WI1. When the terms with partial energies smaller
than 0.000020 a.u. are discarded, we obtain a 91-term
expansion with an energy E=—14.66372 a.u. in the
case of WF1, and an 85-term expansion with an energy
E=—14.66381 a.u. in the case of WF2. The above
results, together with a comparison of WF1 and WE?2
which we have omitted here, show that the KL-shell
NO’s provide an orbital basis as reliable as a good NO
basis.

The last row in Table V exhibits the estimates for
the spd and higher angular energy limits, as deduced
in Sec. V.

The energy breakdown into different kinds of pair
energies is displayed in Table VI and compared with
previous calculations.®*=4 Our pair energies are defined
relative to the HF function we employed, namely,
Watson’s.

Kelly applies many-body perturbation theory (in-
finite-order perturbation theory) and uses an spd basis.?
Byron and Joachain (BJ), instead, apply Rayleigh-
Schrodinger perturbation theory through second order
in the wave function (fifth order in the energy), in-
cluding enough higher / orbitals to ensure convergence
within reasonable limits.?® Both kinds of perturbation
theory and the CI method must give the same pair
energies when carried out far enough in accuracy, if
the same zeroth-order approximation is employed, e.g.,
Hartree-Fock.

On the other hand, Nesbet’s pair energies,® as well as
Szasz and Byrne’s (SB),% are both defined in terms of a
complete doubly excited (and singly excited) CI with
respect to an HF basis, and thus they do not add up to
the total correlation energy. In order to be able to make
comparisons with their results, we have calculated the

38 A. W. Weiss, Phys. Rev. 122, 1826 (1961).

3¢ K. J. Miller and K. Ruedenberg, reports, Institute for Atomic
Research, Department of Chemistry, ITowa State University
(unpublished); see also J. Chem. Phys. (to be published).

% H. P. Kelly, Phys. Rev. 131, 684 (1963); 136, B896 (1964).
Kelly uses a.u. and not a.u.(Be). For applications to open shell
systems see H. P. Kelly [4bid. 144, 39 (1966)] and an article in
Perturbation Theory and its A pplications, edited by C. H. Wilcox
(John Wiley & Sons, Inc., New York, 1966).

36 D. F. Tuan and O. Sinanoglu, J. Chem. Phys. 41, 2677 (1964).

37 M. Geller, H. S. Taylor, and H. B. Levine, J. Chem. Phys. 43,
1727 (1965).

38 R. K. Nesbet, Phys. Rev. 155, 51 (1967).

39 F. W. Byron and C. J. Joachain, Phys. Rev. 157, 7 (1967).

40 1,. Szasz and J. Byrne, Phys. Rev. 158, 34 (1967).
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TasLE VIII. Effect of (s2)? excitations. TasLe IX. Effect of (s152) excitations.

Configuration® Eigenvector® Partial energies® Degenerate Partial

(p)? —0.293305851 —40042b Configuration®* elementb Eigenvector® energies®

(53)* —0.039637156 — 2325b

(dy)? —0.016585658 — 1415> pip2 1 +0.009298958 —909¢°

(93)? —0.006282298 — 241 b 2723 2 -+0.007739571 —671°

S35 —0.005469578 + om fli’)g 2 —0.005832916 —407°

s;i —0.002150560 - 30 (502 —0.005526769 —665°

(59)? —0.002128813 —_ 20 D194 1 —0.004910654 —176°

R ’ 5354 1 -+0.004260245 —2094
$4S5 +0.002116239 + 14 Pibs 1 1.0.004135154 — 73

pips —0.002066309 - 7 Pas 2 +0.004050267 —194
Papa —0.001348507 - 39 paps 2 —0.003969880 —384
$356 -+-0.000878347 + 6 $354 2 —0.003910590 —168
5556 +-0.000804758 + 2 (s3)? —0.003689154 — 90
5456 —0.000612760 — 6 b1ps 1 +0.003497654 —348
Paps —0.000509901 _ 8 P3pa 1 —0.003012166 —150
Pops +-0.000472331 + 2 D2be 2 -+0.002410539 — 27
b 40.000115128 + 3 Pips 2 -+0.002208640 - 17
3Fs ‘ ($2)? —0.002189112 —179
- b3ps 1 +0.002185303 — 13
> g:z gggzggtzsel?n’[:l?:tlx?e\glli. beps 1 —0.002031486 —173
¢ See footnote f in Table VII. (p3)? —+0.001955324 — 27
Daps 2 —0.001882188 —101
latter pair energies also. For the two kinds of pair P1ps 2 +-0.001874173 - 77
energies described so far, we have estimated the Prs :12 +0.00}é;i8§67 + ‘;2
“exact” values, as shown in Sec. V. Paps 2 +8'88123é2\15g N Z
i # and Geller, Taylor, and oo o H

Tuan and Sinanoglu (TS)* and Geller, Taylor, an 5355 1 —0.001220236 + 15
Levine (GTL),* use interparticle coordinates in an Dsps 1 +-0.001088356 - 2
application of Sinanoglu’s many-electron theory.*! (@y* +0.001008313 - 6
Sinanoglu’s theory assumes that the sum of the pair 1?31’)32 1 i’gggéggggﬁ ~ ‘11;
energies adds' up to the total cor.relation energy (plus dlfh 1 40000765830 — 12
a small remainder) when HF orbitals are used for the 5455 1 -+0.000751988 - 2
ground configuration. It is not clear whether Sinanoglu’s (s5) —0.000741167 — 18
pair energies approach ours when the ‘‘small remainder” 455 2 +0.000664368 - 12
tends to zero Psps 2 -+0.000634820 — 19
. . 254 1 -+0.000633190 + 14

Tabl.es VII through XIV display t.he 180-term CI s;: 2 +0.000518236 — 13
expansion. The K- and L-shell excitations can be 535 2 +0.000495501 + 7
accounted for by much shorter expansions than the ones Daps 1 —0.000487776 - 23
shown in Tables VII and VIII, but the extra configura- ‘;2‘;3 g i’ggggggigg; _T_ 22
ti'ons have been included here because they have 'large (;G)Z —0.000351517 — 1
eigenvector components and may therefore contribute dids 2 —0.000343864 - 3
to quantities other than the energy. psbs 2 —0.000328715 + 4
The intershell correlation expansion shown in ‘:3153 % igggggégggg n ;

. . . . 6 .

Table IX is the largest one agd it may be' smphﬁgd also. (ds)? —0.000253805 — 13
Tables X and XI show the single excitations; their total 555 1 —0.000233872 - 7
energy effect, computed by eliminating them from the (p5)? -0.000229345 + 8
secular equation, amounts to —0.00058 a.u. When the dads g "_’gggggg‘g? - g
NO’s of the final wave function are used as a basis, both 3(257;2 —0.000132081 — 1
energy contr.ibutions and e.igenvector components be- babs 1 -40.000093989 - 2
come vanishingly small, pointing out that the NO’s of dads 2 +0.000084212 - 3
the Be ground state are closely related to the correspond- bebr. 2 —0.000080242 - 2
ing Brueckner orbitals.® 832 :83888;2%8 _ g
T Fiple excitations are shown in Tables XII and XIII. Sa%6 2 —0.000069208 + 1
Their total energy effect amounts to —0.00025 a.u. dids 1 +0.000046353 - 2
The quadruple excitations, exhibited in Table XIV, (pe)? —0.000045181 -1

seem to be similar to those arising from a separated-

41 See, e.g., O. Sinanoglu, Adv. Chem. Phys. 6, 315 (1964), and
references therein. A considerable amount of literature on the
subject is currently being published.

a See footnotes in Table VII,
b Classification is given in Table IV.
¢ See footnote e in Table VII.
d See footnote f in Table VII,
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TaBLE X. Effect of (s1) excitations. TasrLe XII. Effect of s1(s2)? excitations.
Configuration® Eigenvector® Partial energies® Degenerate Partial
- 10.000435429 —» Configuration®* element® Eigenvector® energies®
Ssp1p2 1 +0.002533166 —64b
* See footnotes in Table VIL Sap1p2 1 —0.001313788 —-31
See footnote f in Table VII. sspipa 1 4-0.000889808 -5
electron-pair wave function,*? like the one shown in (po)?dy +0.000878217 —4
Eq. (1), but without the strong orthogonality condition Ssprps 1 —0.000832788 —4
We Lo & 4 : ssprpa 1 —0.000364376 -3
€ have ss(p)? +0.000350146 -2
(p1)%de —0.000280244 -3

K(1,2)= (s1)*+[a1(p2) 2+ aa(s6) - as(sss4)+ as(prp2)
+as(ss)?+as(d2)?+ar(pa)®+- - - 1/co, (4)

L(3,4)= co(59)2+b1(p1) *+b2(s3) 2+ b3(dr) 4-ba(ps) - - -,

with ¢0=0.953115148; the a; and &; coefficients are
those of Tables VII and VIII, respectively. The third
column of Table XIV shows this relationship. The total
energy effect of quadruple excitations is —0.00352 a.u.
The first-order density matrix, as well as a plot of the
electronic density, have not been included,! awaiting a
better wave function. The electronic density decreases
more sharply than the HF one at distances over 5.00
a.u.; the agreement with the HF density is 99.99 at
the K-shell maximum, 101.59 at the L-shell maximum,
909, at 4.00 a.u., and 809, at 7.00 a.u. The second-order
density matrix is being calculated and analyzed at the
University of Florida by Smith and Olympia.

V. DISCUSSION

A. Analysis of Energy Results

In Table XV we compare the angular energy limits
for Bet™ obtained in Ref. 43 with those calculated from
our present orbital basis, with and without orbital s,.
It is seen that in Be'™, f and g orbitals alone give an
energy contribution of —0.00108 a.u.; higher orbitals
improve the energy by another —0.00032 a.u. We
assume that the effects of the L shell on e(1s,1s) [which
come largely from the (2s5)? “sea”, through an exclusion
principle mechanism, see Tables VI and XV, and those
produced by quadruple excitations, etc., have been
accounted for in our calculated wave function, in

Tasie XI. Effect of (s2) excitations.

Configuration® Eigenvector® Partial energies®
3 —0.039402746 op
4 —0.010472965 op
S5 -+0.009705274 op
S6 —0.004905873 op
S7 —0.001421291 —44e

2 See footnotes in Table IX.

b See footnote f in Table VII.
which case, the errors we already have in Be'™ are
those we expect to find in e(1s,1s). In support of the
above assumption we notice that:

(i) The energy effect of the s, orbital is —0.001640
a.u. (Table XV).

(ii) e(1s,1s) increases 0.001643 a.u. when going
from Bet to a K-shell CI Be wave function (Table VI),
which shows that 99.89, of this energy difference is due
to the exclusion principle.

(ill) When increasing the orbital basis to 9s orbitals,
the exclusion effects are found to be —0.0000008 a.u.
The breakdown of the angular energy contributions to
€(1s,1s) is given in Table XVT.

We have not carried out a similar analysis for the L
shell. Since (i) our orbital basis is generously distributed
around the L-shell region, (ii) €(2s,2s) converges very
fast in the present calculation, and (iii) our L-shell
CI is slightly better than Nesbet’s®® (Table VI), we
think that the error in our spd limit for e(2s,2s) must be
not greater than 0.0002 a.u. Ahlrichs and Kutzelnigg*
have estimated the energy contributions of f and g
orbitals to the L-shell correlation energy as —0.0003
and —0.0001 a.u., respectively.

TaBre XIII. Effect of (s1)2%s; excitations.

Configuration® Eigenvector® Partial energies®
sa(p)? -4-0.002205050 —81b
s3(p1)? —0.001581543 —28
s3(p2)? 4-0.001146214 —30
(53)2s4 —0.000805817 —12
s3(sa)? 40.000746339 —14
ss(p1)? —0.000355494 + 2
sa(p2)? -+0.000339073 -3
s5(p2)? —0.000298742 — 2
s3(d2)? 4-0.000260163 — 4
s3(pa)? 4-0.000243913 — 4

2 See footnotes in Table VII.
b See footnote e in Table VII.
¢ See footnote f in Table VII.

42V. A. Fock, Dokl. Akad. Nauk SSSR, 73, 735 (1950); A. C.
Hurley, J. Lennard-Jones, and J. A. Pople, Proc. Roy. Soc.
(London) A220, 446 (1953), and references from Ref. 20. See also
E. Kapuy, Theoret. Chim. Acta 6, 281 (1966).

4 C. F. Bunge, paper II of this series, on He isoelectronic series
(unpublished).

a See footnotes in Table VII.
b See footnote f in Table VII.

44 R. Ahlrichs and W. Kutzelnigg, calculations contributed to
the Density Matrix Conference, Queen’s University, Kingston,
Ontario 1967 (unpublished).

45 These authors report partial energy contributions, which for
high / orbitals are lower than the actual energy contributions,
when using a single determinant as zeroth-order function (see
Sec. V B).
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TasiE XIV. Effect of quadruple excitations.

Degenerate Partial
Configuration element Eigenvector aibj/cord energies
(p1)2(p2)? 1 —0.008100156 —0.00877 0
(s92(pn)2 +0.005188415 +0.00517 0c
s3se(p1)? —0.004387180 —0.00427 0
(p1)2(p2)? 2 —0.002788241 P —180d
(p1)2(p2)?2 3 +0.002304868 s —119
(s3)2(pn)2? +0.002235701 +0.00199 — 55
(p1)3p2 —0.002089968 —0.00261 — 66
(p1)2(d2)? 1 +0.001541815 +0.00196 —136
(p1)2(pe)? 1 —0.001485312 —0.00157 —136
(s3)2(p2)? ~+0.001165107 +0.00118 — 33
(p1)2(d2)? 2 —0.001165085 v - 76
(p1)* 40.000586788 -+0.00033 - 3
(s5)2(p1)? +0.000577759 +0.00055 - 18
$656(p1)2 40.000568549 +-0.00055 — 26
(01)2(pe)? 2 —0.000520967 ) - 17
(01)%psps 1 ~+0.000500326 +0.00059 - 12
(p1)2(ps)? 1 —0.000481737 —0.00046 - 23
(p1)2(p4)? 3 +0.000428465 Y — 11
(s)2(p1)? +0.000421847 +0.00042 — 17
(p2)2(d1)? 1 +0.000408023 +0.00050 - 4
(p1)2(d3)? 1 +0.000407066 +0.00054= — 26
(s3)2p1p2 4-0.000379823 +0.00035 - 2
sass(p1)? +0.000347134 +0.00036 - 6
(p1)3p4 +0.000344052 +4-0.00051 - 3
s3s5(p1)? +0.000325242 +0.00028 - 2
(s4)2(d1)? +0.000320739 +0.00029 - 3
(p2)2(d1)? 2 —0.000308877 .8 - 2
(p1)2(ds)? 2 —0.000307497 — 15
(s9)2(d2)? +0.000258591 ~+0.00026 - 4
(p1)2(pe)? 1 —0.000235096 —0.000172 - 5
(s3)2(p4)? +0.000229011 +0.00021 - 3
s356(p1)? +0.000201621 +0.00020 - 2
(s1)2(p1)? +0.000185323 +0.00018 - 2
(p1)2(ps)? 2 —0.000167933 ... - 3
ses1(p1)? —0.000142831 —0.00010 — 4
(p1)2(das)? 1 +0.000108959 +0.00010 -5
(01)2(p7)? 1 —0.000096088 —0.00009 - 4
(p1)2(d4)? 2 —0.000082133 coaa _ 3
$557(p1)2 40.000062347 +0.00006 + 1
(p1)2p2ps 2 —0.000036087 s -1

& Phases are adjusted according to Tables 111 and IV. Since the K and L
functions given by Eq. (4) are not normalized, the fourth column should be
interpreted accordingly. When degenerate configurations occur, the various
(ﬁouplings should have been considered, but this has not been attempted

ere,

b Compare with O. Sinanoglu, J. Chem. Phys. 36, 706 (1962).

¢ See footnote e in Table VII.

d See footnote f in Table VII.

Regarding €(1s,2s), our calculated value is within the
5% of error of Kelly’s estimate, and it is probably
correct (in an spd approximation) to within a few units
in the fifth decimal. From B]J’s calculation, it seems
reasonable to estimate the corresponding energy con-
tributions of f and higher orbitals to be less than
—0.0001 a.u.*

From the previous considerations we get E=
—14.66453 a.u. as a very likely upper bound to the spd
energy limit, and E=—14.66639 a.u. is probably an
upper bound to the exact nonrelativistic energy with
an error not greater than 0.0003 a.u.

The energy estimates made in this section should
serve to guide more accurate calculations, by regulating
the emphasis to be spent on the exploration of each
“portion” of a Be ground-state wave function. Also,
we find a disagreement of 0.0009 a.u. with the previous

48 See Sec. V B.
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estimate of the nonrelativistic energy (see Table V).In
part, this may be due to using an HF wave function in
the computation of the relativistic corrections.

B. Comparison with Recent Works

As pointed out in Sec. IV, it is difficult to compare
our results, in a direct way, with those obtained by the
application of Sinanoglu’s theory. Sinanoglu assumes
that single and triple excitations make negligible energy
contributions when the HF orbitals are included in the
one-electron basis. However, we get corresponding
energy contributions of —0.00083 a.u. (about 19 of the
correlation energy). Energy contributions of —0.000006
a.u. are found when instead of HF orbitals, the NO’s
of the final wave function are employed. Thus, we may
conclude that in order to expect “small remainders”
in accurate numerical applications of Sinanoglu’s
theory (i.e., where 0.001 a.u. are important), these
should be carried out with a NO basis. For atomic states
which are not ‘“closed shell,” the NO’s themselves may
not be symmetry adapted and thus our conjecture may
turn out to be impractical.

The energy results of Byron and Joachain® are con-
sistent with ours, if we assume that the errors (of the
order of 0.001 a.u.) involved in their approximation to
the third-order energy E3; would have also lowered their
value for ¢(1s,1s). Their first-order correction ¢y to the
wave function, and their second-order correction e,
do not include single and triple excitations; we have
seen that these, which affect both €(1s,1s) and €(2s,2s),
lower the energy by about —0.00083 a.u. In this way
we can rationalize the discrepancy of 0.00014 a.u.
between B]’s value and our ‘“‘exact” estimate [sixth-
and further-order energies seem to make negligible
contributions to €(1s,1s); also, BJ’s results on He, sug-
gest that their radial expansions for each of the angular
terms are the appropriate ones]. The error in €(2s,2s),
due to the slow convergence of the Rayleigh-Schrédinger
(RS) perturbation theory for pairs of ‘““outer’ electrons,
may well be smaller than —0.002 a.u. as pointed out by
BJ, and it may also be subject to the same analysis
as in the case of €(1s,1s).

It is of interest to interpret the angular energy con-
tributions to the individual pair energies in a RS
perturbation framework. In a CI framework, we know
that the right way of estimating this effect is to perform
two CI calculations with and without a given set of
angular contributions, and to take the difference be-
tween both energies; instead, the breakdown into
p-e.’s?! when employing an HF function as zeroth-order
approximation, always gives underestimates for /=0
contributions, and overestimates for higher I values.
The above considerations are probably valid also in the
case of RS perturbation expansions, as may be seen
by comparing the energy breakdown for E., E;, Es,
and Es in terms of / contributions® with our values in
Tables V and XVTI. In this case, it is safe to assume that
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TasLE XV. Angular energy limits for Be*t™*.
s sp spd spaf spdfg E(total)
Weiss® —13.62678 —13.65096 —13.65393 —13.65463 —13.65481
Present orbital basis —13.626709 —13.650908 —13.653825
Same with s» excluded —13.652185
Reference 43 (calc.) —13.626855 —13.651104 —13.654145
“Exact” (Ref. 43) —13.626858 —13.651116 —13.654169 —13.65497° —13.65525b —13.65557¢
Egnp! —13.611256

& Reference 33.

b Upper bounds, estimated from rates of convergence of NO expansion (Ref. 43).

¢ C, L. Pekeris, Phys. Rev. 112, 1649 (1958).

4 E, Clementi, Tables of Atomic Functions (San Jose Research Laboratory, IBM Corporation, San Jose, Calif.)

the ‘“real” energy contributions to e(1s,2s) coming
from f and higher orbitals are less than —0.0001 a.u.

Since the obtaining of the first-order correction ¢; can
be related to the minimization of Eq, it is of interest to
see how this step affects E; and the rate of convergence
of the energy in the RS expansion. Byron and Joachain
include in ¢; only doubly excited configurations,
and they get, through third order in the energy,
E=—14.6585 a.u. By doing a CI (HF4-double excita-
tions), we get E= —14.6602 a.u., and consequently an
(upper) limiting value of —14.6624 a.u. (see Table X VI).
Thus, a difference of —0.0039 a.u. results largely as a
consequence of determining the expansion coefficients
by a variational procedure rather than by RS perturba-
tion theory, and in a smaller amount from the errors
in E3.

Nesbet’s method has been clearly described?®®; in
Table VI we compare his particular pair energies with
the ones obtained in this work. The intershell pair
energies arising in this case require the consideration of
wave functions which are mixtures of singlet and triplet
states, and thus we have not calculated them. Since we
have included all significant configurations,*” and in
view of the estimated values for the ‘“real” (1s,2s), it is
likely that Nesbet’s estimation of the correlation energy
is not more than 0.0002 a.u. lower than the value he

TasLE XVI. Estimates of total and pair energies.

e(1s,15) €(25,25) €(1s,25) E (total)

spd limit —0.040869 —0.045104 —0.005240 —14.66419
(this calc.)

Corrections for —0.00034= — 0.00034
spd limit

Corrections for —0.00108> —0.00040¢ —0.00006d — 0.00154
f and g orbitals

Corrections for —0.00032b ? — 0.00032
higher orbitals

Final estimates —0.04261¢  —0.04550° —0.00530¢ —14.66639f

8 Obtained by subtracting an ‘‘exact’’ from a calculated spd -energy limit
(Table XV).

b See Table XV.

¢ See Refs. 44 and 45.

d See Refs. 39 and 46.

© Not necessarily upper bounds; probably with appreciable errors in the
fifth decimal.

f Probably an upper bound with an error not greater than 0.0003 a.u.

4 Upon revision of our results, we have noticed that the con-
figuration (s3)%(s4)2, which should occur with eigenvector com-
ponent 4-0.0060 and partial energy —0.000012 a.u., was inadvert-
ently left out from the final configuration search.

would have obtained by computing E=(PH®)/(d®),
which is well within his estimated margin of accuracy.

Szasz and Byrne claim to have obtained energy
limits for K- and L-shell CI (single excitations in-
cluded). However, Nesbet’s results and ours (Table VI)
show that this is not the case; moreover, they report an
energy E=—14.6565 a.u. for the corresponding ‘‘com-
bination” CI: [(HF4(1s)? excitations-+(2s)? excita-
tions+single excitations]. We get instead an energy
E=—14.65604 a.u. and a limiting value of —14.6582
a.u. (in an NO basis, the “combination” CI gives an
energy of —14.6564 a.u.; no limiting value is given in
this case). For the moment, we reserve our opinion on
SB’s discouraging result.*

C. Conclusions

In this paper we have developed a strategy which
permits us to carry out conventional CI calculations
accurate both in the energy and in the wave function.
We have also shown, for the case of the ground state
of Be, how the energy errors can be estimated within a
CI {framework without much effort; the estimated pair
energies in Table XVI have probably an error of less
than five units in the last figure. The importance of con-
sidering the full space of degenerate configurations
shall not become evident before calculations for the
3P, 1D, and 1S states of carbon are reported.?®

The only shortcoming of the K L-shell NO basis seems
to be its inadequacy to yield a fast convergent expansion
for the intershell excitations (1s2s). To date, it is un-
known how well a Hylleraas-type expansion can do in
this case.

In further calculations, when searching for an orbital
basis, we depart from the HF basis (but not from the HF
space) and allow instead all possible double excitations
to be included. The NO’s of this pair CI are then taken
as the basis for an unrestricted CI. A few double ex-
citations are excluded by the requirements that (i) the
“ground” NO’s must expand the HF space, and (ii)
the NO’s must be symmetry adapted (e.g., no mixture
of s and d orbitals is permitted). Except for 1S states,
we shall not be dealing with NO’s but with orthonormal

48 Szasz and Byrne’s calculation is being repeated and extended
here at Indiana University, by J. S. Sims, using analytic integra-
tion techniques.
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symmetry-adapted orbitals, whose radial parts are
those of some natural spin orbitals with given m; and
ms quantum numbers; these questions will be elaborated
elsewhere.?

We shall conclude by attempting to give an optimistic
view for the future of conventional CI calculations of
high accuracy. The very fact that 1492 Slater deter-
minants were employed in this calculation may be for
many a first class argument to maintain that this type
of approach is not very convenient. In addition, the
number of Slater determinants cannot be considerably
reduced by a better choice of the STO basis, as can be
demonstrated by expressing the final wave function in
a NO basis (WF2, Sec. IV). We must then notice that:

(1) The number that counts is the number of con-
figurations, which is 180; of these only 91 are instru-
mental in lowering the energy within 0.0005 a.u. of the
final result; however, some of the remaining configura-
tions may affect properties other than the energy.

(if) CI is a general method for any symmetry and
for excited states.

(iif) CI is “‘exact”, as far as numerical errors are
kept within bounds.

We cannot discuss objectively whether this approach
requires more or less effort than others; computational
times are reported in Secs. I and III. The organization
of the work is simple, which is probably true of other
methods as well. The discussion in this section should
suffice to persuade that at the present time, the cal-
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culation of highly accurate atomic wave functions is
not a ‘“‘one-man, one-method show,” but requires the
bringing together of many methods, each with its
particular advantages and limitations,

Certainly, we are going to see in the future a good -
amount of work along the lines presented here. We are
currently working on several states of first-row atoms
up to Ne.
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