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A general method is described for calculating lattice deformation energies in covalent structures. The
formulas are presented explicitly for harmonic energies in diamond-type crystals. The theory differs in-
trinsically from linear screening theories because of the inclusion of bond-stretching terms. These are calcu-
lated using a dynamical covalent sum rule. The results show that bond stretching leads to large bond-bond
interaction energies that are similar to those in a nearest-neighbor classical shell model. The theory can be
used to infer the covalent screening function from lattice vibration spectra measured by inelastic neutron

scattering.

I. INTRODUCTION

N the preceding papers of this series™™ we have
developed the elements of a microscopic theory of
covalent bonding with special reference to crystalline
structures. At present the theory is axiomatic in char-
acter, but it is straightforward to calculate the total
energy of the system as a functional of the structural
parameters. Minimization of this energy with regard to
these parameters yields a self-consistent theory. Several
preliminary numerical estimates based on optical data
suggested that the self-consistent theory will differ
little from the @ posteriori one with parameters deter-
mined from macroscopic dielectric properties.

The purpose of the present paper is to carry the
axiomatic theory one step further and to present a
simple prescription for lattice deformation energies.
According to the usual theory of lattice dynamics
(based on the adiabatic approximation), nuclear motion
can be described in terms of an effective potential energy
function ®. This function describes the change in elec-
tronic energy induced by the displacements u(/) and
u(l’) of the atoms with equilibrium sites at r=R; and
Ry, respectively. If we know the lattice deformation
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energies, [9%®/du()ou(l’)]:u(l)u(l’), then the lattice
vibration frequencies can be obtained by a transforma-
tion to normal modes.

The method adopted in this paper follows closely the
procedure which has proved successful in metals.*—$
Briefly that method calculates lattice deformation en-
ergies using linear screening of the ion core potential
7;(r). Such screening can easily be described” in terms
of plane-wave screening of ion-core pseudopotential
form factors »;(¢). Our treatment reduces to the metallic
one when E,=0.

In Sec. IT we review the metallic theory.*"* In Sec.
III the modifications of the metallic theory required
when E;7#0 are presented. It turns out that these can
be described in terms of one additional axiom which
expresses the effect of bond stretching on E,. This is
described in Sec. IV, and the contribution of a normal
mode is derived in Sec. V. Electron-phonon interaction
is discussed in Sec. VI and the relation to linear re-
sponse theory is discussed in Sec. VII.
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II. METALLIC SCREENING

Let the ions be given the static displacement

w.()=% e (@U(q) exp[iq-RI+cc., (2.1)

where / labels atomic cells, # labels atoms in the unit
cell, and e is a unit polarization vector. The effective
potential &, for harmonic ion motion in metals consists
of three terms:

D=0+ PB4, " (2.2)

which respectively represent ®,¢: the ion-ion Coulomb
interaction, derived from expanding#;(r+u,(!)— Ri+r,)
to second order in u, () ; @7 : the Born-Mayer core-core
repulsive term, which is negligible for light metals and
semiconductors; and ®,”: the electronic energy arising
from linear screening of the perturbation obtained
from expanding 7; to first order in u,(!). There are
two contributions to ®.Z, from ion-electron and electron-
electron interactions, and these are to be determined
self-consistently.

The Coulomb interaction energy ®s¢ may be evalu-
ated by Ewald’s method.* In elemental lattices the
result is*

ArNe?

- Z l Up(q) ‘ 2+®2E ’
3Q 7

y
d,C=

(2.3)

where NV is the number of valence electrons per atom,
 is the volume of the unit cell, and all atomic sites are
assumed equivalent (as in the diamond crystal struc-
ture). The term ®,F denotes an Ewald sum.!?

The electronic energy deformation is derived from
the perturbation potential

Vi=— ZZ expliq- R JU.(@)3/ (r—Ri—r.), (2.4)

where
7 (r— Rl_‘rn);": vi;(r—Ri—1,).

The result is®®

Pl=5 2

q,p,p",n,n

(2.5)

Ur(—q)U* (q)

X en?(— q)en’p,(q): X (q) , (2.6)

where the tensor
). o (Q) = Z { X @ (q+ G1 q+ G/)

G,G’
- X, 9(G,G)} (2.7

is expressed in terms of the pseudopotential tensor

X, @(q+G, ¢+G)
={@re’/|q+G[*)[1- f(g+G) ]}
X{(q+G, ¢+G")—dc,6:} (a+G) (q+G")
Xvin(—q— @) vin (q+G"). (2.8)

B M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London, 1954); E. W. Kellerman, Phil.
Trans. Roy. Soc. (London) A238, 513 (1940).
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In practice, local-field corrections are neglected in metals
so that G=G" and

e(q+G, g+ G)=¢"(q+G)

is simply the plane-wave dielectric function in the
Hartree approximation. The factor f(q+G) in (28)
corrects the Hartree approximation to include roughly
the effects of exchange and correlation. Further small
modifications of (2.8) are needed® to correct for the
orthogonality hole.

(2.9)

III. DEFORMATION ENERGIES IN THE
PRESENCE OF COVALENT BONDS

In covalent crystals @, becomes

Dy=BC+ PR AP M+ B, 5 P,y (3.1

where the first two terms have the same interpretation
as in metals. The change in Madelung energy of the
lattice (denoted by Ej; in T) with charges

Lao=—4Z (3.2)

at the atomic sites and
2Zy=—[2]e|/|e(0)]] (3.3)

at the bonding sites is denoted by ®,M. Holding Z,
fixed, we can calculate this change by Ewald techniques.!?

Because ¢,(0) is a function of N, according to (3.3)
displacement of an atom must change Z;. In equilibrium
E, and Z are related, and this means that the screening
function €, (x; N,E,) is changed by lattice deformations.
The valence energy E, (see I) depends on E,; the
second-order correction to E, arising from changes in
E, is denoted by ®,5.

IV. CHANGE OF GAP PARAMETER
WITH BOND STRETCHING

The effect of bond stretching on €,(0) to first order,
i.e., the hydrostatic derivative

N[0e:,(0)/daN ]=¢,(0) (4.1)

has been measured.”® In principle €,’(0) can also be
calculated by the self-consistent methods of I. From
(3.3) and (4.1) we see that Z, changes when the bond
length 7 changes. We must also determine the change in
Z,. To this end we assume the validity of the following
relation

Zo(lm)= —Zc: Zy(1e),s (4.2)
which we call the covalent sum rule [the dynamical
generalization of (3.2)7]. In (4.2) the sum extends over
the covalent bonds ¢=¢(l,n) which are adjacent to the
atomic. site at R;+r, and 7. is the nearest-neighbor
separation along each of these bonds.

1D, I, Gibbs and G. J. Hill, Phil. Mag. 9, 367 (1964).
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We may now write

Zy(re) —1

= +d1(5‘rc)+d2% (67’,;)2 5 (43)
le] &(0)
where experimental values may be used for
a1=—{3¢,/(0)/7L.(0) I} (4.4)

The value of a; can be calculated self-consistently from
minimizing E,(N,E,), i.e., evaluating 9°E,/dNIE,. For
a simple trial calculation @, can be taken as an adjust-
able parameter.

It should be remarked that the approximation made
in assuming (4.2) is essentially one of neglecting the
effect of changes in bond-bond interactions on Zs. This
is similar in some respects to determining the bonding
sites from Oq(r) rather than O, (r), as discussed in Sec.
VIII of I. We saw in II that the error involved in this
approximation is small compared to the chemical shifts
in physical properties (e.g., from Si to Ge) associated
with changes in 2;(g).

From the relations (3.3), (4.2) and

€:(0) =1+ (fw,/ E,)C, (4.5)
one can deduce E,(I,n) by relating it to Z,(I,n) and
thence to an effective Z(/,n) defined by (3.2). The
result is

E,(Im) T(l—a)l—e1(0)T V2
Eqo _[ 1—e1(0) ] (4.6)
(0)
a= ‘z; [ad7c+3a2(87.)%]. 4.7

4le|

We can simplify (4.6) materially by neglecting [¢;(0) ]2
compared to 1. This gives

E!I (l7n)

=1-3[1+ &7 (0)Je—§[1—2¢7(0) a2 (4.8)

g0

In the harmonic approximation only terms of order
(67.)? need be retained in (4.8), so that

a?= <:l((:l))2 (zc: a1d7e)?.

4.9)

The cross terms of the form §7.67. in (4.9) represent
the effect of bond-bond interactions. The expansion for
E,(I,n) is thus

E,(im)

=141 d7c+3b2 2 (67.)?

g0

+b3 Z 6T¢;5Tc' (1 _Bczz’) ) (4. 10)
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with

(0)
bi=— [14-e7(0)Jas (4.11)

8lel

&(0)
by=— [ao[1+¢,(0) ]

8lel

€ (0
+E%[1—'2€{—1 (0)](112] (412)
(4

by= — (:S;)z[l— 261(0) Jaz2.

(4.13)

V. BOND STRETCHING BY PHONONS

If the bond vector =. connects ions (/,#) and (I',n")
the bond stretching associated with the displacements
u, () and u, (') is determined from the identity

(Tt = | 2ot un (D) — uw () 2.

In the diamond lattice the four nearest neighbors of an
ion (I,n) consist of one neighbor (I,#") with bond vector
<. in the same unit cell, and three neighbors (7/,#’) in
adjacent unit cells with bond vectors x.. The three
lattice vectors connecting (7,n) with (I/,n) satisfy the
relation

(5.1)

(5.2)

with ¢’ ¢. Substitution of (2.1) in (5.1) yields [in a
form symmetrical between (n,n') and (c,¢’)] the
relation

Rzl'— Rz= Te— Tery

87c=|%c 07| /7, (5.3)
with
dv.=2 e.*(QU?(q) exp(—iq-=.)

X e (WU (@) explin3e), (5.4
where U?(q) and U?'(q) are real. Note that
(Oro)*=|% e”(QU?(@)|*+| X en”(@U" ()|

=23 e (q) en? (UP(U? (q) cosq- .. (5.5)

»p’

The first two terms on the rhs of (5.5) alter ®; in an
intra-atomic way similar to the terms that occur in a
linear screening theory [cf. Eq. (2.3)]. The third term,
proportional to U?(q)U?'(q), does not arise in the
linear theory.

By substituting (5.3)-(5.5) in (4.10) we can compute
®o4, &8, and P, by applying the chain rule to E,
E,, and E. For example the change in one-electron
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energies associated with bond stretching is given by
dE,
@24 = E”O;E‘—I:%bz Z (57';)2"!" bs Z 6T66Tc' (1‘— 6“')]
g c’¢’

P,
OE,

+E,,02< )bf(g ére)%.  (5.6)

Note that all the terms include bond-bond interactions.
We stress this point to show that the covalent sum rule
(4.2) does not eliminate such terms from the theory.
A classical shell model including only nearest-neighbor
forces also contains such terms, but they depend on
many parameters. The present theory contains only
one disposable parameter, @..

To conclude this section we remark that $5¢ contains
two kinds of terms. The induced quadrupole-quadrupole
interaction depends only on a;. On the other hand, the
induced quadrupole interacts with Z, and Z; to yield
terms which depend on both ¢, and a..

VI. ELECTRON-PHONON INTERACTIONS

The bare electron-phonon interaction ¥, in metals,
Eq. (2.4), can be regarded as a special case of the
covalent theory with E;,=0. If we fix E,, the same
perturbation potential is obtained for E,;o>%£0. Then the
formulas (2.6)—(2.8) still hold for ®.Z, but in (2.9) we
must use

e q+G, ¢+ G)=¢(q+G). (6.1)

This simple result for electron-phonon interaction en-
ergies illustrates the advantages of our @ posteriori
model. All the characteristic covalent effects are de-
scribed by the difference between (6.1) and (2.9), as
well as the bond stretching terms discussed in the pre-
ceding sections.

VII. RELATION TO LINEAR RESPONSE THEORY

In the evaluation of (2.8) in metals it is customary?® to
neglect the umklapp terms (G~ G') in e (q+ G, g+ G’).
It has sometimes been suggested that if these terms were
included in the theory, an accurate treatment of the
lattice-vibration spectra of covalent crystals could be
obtained. It is argued that an infinitesimal displacement
of the ion cores is equivalent to application of an ex-
ternal potential, and that the response to this weak
potential can be obtained in the linear approximation,
using the dielectric function of the static lattice. Apart
from off-energy shell corrections to the pseudopotential
form factors, such a theory, it is argued, should be exact.

The viewpoint taken here is rather different. We
find that in addition to the terms in ®, depending on
€, 1(q+ G, g+ G), there are a number of new and un-
expected terms. These arise because the deformation of
the lattice changes the screening function e,(x,N,E,)
through changes in E,. These changes in turn alter the
self-energy of the occupied valence states. Such changes
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are absent in the linear screening theory which calcu-
lates @, only to order |%;|% It is not clear how such
interactions could be extracted from the umklapp terms,
and at present it appears that the applicability of linear
response theory to covalent crystals remains to be
established.

VIII. CONCLUSIONS

In this paper we have shown that the a posteriors
model of covalent bonding proposed in the preceding
papers of this series can be extended to give a complete
and internally consistent model for the lattice vibra-
tions of covalent crystals. Previously models of lattice
vibrations of both ionic and covalent crystals have
utilized a classical approach based on a multipole ex-
pansion of the electrostatic energy of polarizable non-
overlapping ions.!* A number of authors (Darwin,'s
Nozieres and Pines,' Cochran,'” Leigh and Szigetil®)
have suggested that the valence electrons in covalent
crystals are not acted on by the Lorentz local field;
because they are nonlocalized and interpenetrating
they “see” only the macroscopic field. Thus Cochran
anticipated'” that a radical revision of the shell-model
theory would be required to describe covalent crystals.

We believe that the present model represents a
realization of these suggestions. Because the bonding
charges are not situated at atomic sites, the irrelevance
to this model of the Lorentz field is manifest. The
theory reduces to the metallic one in the limit E,— 0,
but it contains qualitatively new terms. These are
found to be self-energy effects associated with bond-
stretching. It is hoped that numerical calculations based
on the formalism presented here will yield dispersion
curves which can be compared with those measured by
neutron scattering. If the electron-phonon harmonic
energy ®.” is not too small compared to the remaining
terms in (3.1), such a comparison should enable us to
explore €,(x,N,E,;) and compare the results with Penn’s
expression!® e,(x,N,E,). Such a comparison has already
been made® using the semiclassical shell model. For the
reasons mentioned at the end of Sec. V, we believe that
the present theory is likely to be more accurate and
more informative.

After completion of this paper an interesting paper

14V, S. Mashkevich and K. B. Tolpygo, Zh. Eksperim. i Teor.
1(T 1135%2:,] 520 (1957) [English transl.: Soviet Phys.—JETP 5, 435

16 C. G. Darwin, Proc. Roy. Soc. (London) 146A, 17 (1934).
This paper contains an amusing discussion of the extent to which
local field corrections are influenced by the model chosen.

16 P, Nozieres and D. Pines, Phys. Rev. 109, 762 (1958). These
authors show that when %w,>E,, only the macroscopic field acts
on the electrons. According to (4.5), this is equivalent to €(0) >2,
which is true for all covalent crystals.

17 W, Cochran, Rept. Progr. Phys. 26, 1 (1963); W. Cochran
and R. A. Cowley, Handbuch der Physik (Springer-Verlag,
Heidelberg, 1967), XXV 2a, p. 99.

18 R. S. Leigh and B. Szigeti, Phys. Rev. Letters 19, 566 (1967).

19 D, R. Penn, Phys. Rev. 128, 2093 (1962).

2 W. Cochran and J. C. Phillips, Phys. Rev. 134, 1402 (1964).
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on the lattice dynamics of white Sn appeared.?! There it
is shown that conventional linear screening theory leads
to w?(q)<O0 for transverse acoustic modes and ¢ near
Brillouin zone faces. This instability arises from neglect
of terms associated with electronic energy gaps near
Brillouin zone faces, and it is corrected by adding short-
range bond-stretching forces parametrically. The present
paper provides the first microscopic explanation of the
origin of these forces in terms of dielectric screening
theory.
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APPENDIX: EFFECTS OF BOND BENDING

In general one might expect that the bonding charge
Z, would depend both on the bond length 7, and on
changes in -7 associated with changes in ¢pr. We
show here that in the elastic limit a consistent micro-
scopic model is obtained with Z; a function of 7 only.
This provides formal justification for the expression for
®,5 given in Eq. (3.4).

Our discussion is based on the photoelastic constants
pijrr which provide the connection between the strain
tensor ex; and the change in the dielectric tensor Ae;;.
The experimental values for these constants in diamond
and Si satisfy®® a relation first derived for the ordinary
elastic constants by Keating.?® Keating’s model in-
volves two parameters, @ and 8. The hydrostatic photo-
elastic constant, p11+2p1s, is proportional to 3a—48,

21 . G. Brovman and Y. Kagan, Zh. Eksperim. i Teor. Fiz. 52,
557 (1967) [English transl.: Soviet Phys.—JETP 25, 365 (1967)].

22 J, C. Phillips, Phys. Letters, 25A, 727 (1967).

2 P, N. Keating, Phys. Rev. 145, 637 (1966).
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while a— 38 describes the effects of pure bond bending
depending on changes in ¢z only.

To utilize the photoelastic constants, we note that
changes in bond charge must be described by changes in
a scalar. The appropriate scalar is

(A1)

From cubic symmetry we see tha € is unchanged by a
shear strain e,,. Inspection of the diamond structure
shows that of the four bonds attached to each atom,
two are stretched by e, and two shortened by the
same amount. Thus the dynamical sum rule (4.2) is
satisfied if we interpret Z, as

Z.(m)=2/¢. (A2)

On the other hand, e, changes € only in proportion to
pu+2p1, i.€., in proportion to 3a—pB. Because of linear-
ity, (A2) will be consistent with (4.2) for any combina-
tion of strains. Only e, gives information about changes
in Z, so that the photoelastic constants (because of
linearity) can be used once. Bond stretching is the domi-
nant effect (because it changes the long-range forces)
so that (4.1), (4.2), and (A2) should describe the most
important changes in Zj.

The third-order photoelastic constants (which should
be measurable by an extension?? of present techniques)
should be dominated by anharmonic bond stretching,
the parameter a, in Eq. (4.3). Keating has shown?! that
anharmonic bond stretching makes the dominant con-
tribution to the third-order elastic constants.

The last question concerns the completeness of our
microscopic model. What is there in our model corre-
sponding to changes in charge distribution produced by
bond bending? The answer, of course, is that such
changes alter

¢=% Tre.

(A3)

In the uniaxial case €; is connected directly with the
quadrupole moments Q, , discussed in Sec. ITI of Ref.
3. In the linear limit ¢;;/ and & determine Q;; completely.

24 P N. Keating, Phys. Rev. 149, 674 (1966).

€540 = €45 €6¢,~.



