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Theoretical Developments and Experiments on the Multiple
Anomalous Transmission of X Rays
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The modes of propagation of x rays for a four-beam case in the germanium crystal are evaluated, and,
after the application of the proper boundary conditions, the ratios of the exit intensities are calculated.
On the assumption that pairs of beams within modes form standing waves, the anomalously transmitted
beams have been obtained. These results were subjected to experimental checks which seem to justify them.
In addition, the actual forms of the dispersion sheets were obtained for a three-beam case in germanium.
It was also shown that the symmetry points of the dispersion sheets play a dominant role in the anomalous
transmission.

I. INTRODUCTION

'HIS paper contains the results of the theoretical
and experimental investigations of the multiple

anomalous transmission of x rays which form a con-
tinuation and further development of the results ob-
tained previously. ' ~ In these developments, the
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' E. J. Saccocio and A. Zajac, Acta Cryst. 18, 478 (1965).
'E. J. Saccocio and A. Zajac, Phys. Rev. 139, A255 (1965).

The present paper is an extension of the results published in this
paper and in Ref. 1. In addition, reference should be made to
other related publications listed below (Refs. 3—6).

' E. Fues, Z. Physik 109, 236 (1938).
' K. Kambe, J. Phys. Soc. Japan 12, 13 (1957).
' G. Borrmann and, W. Hartwig, Z. Krist. 121, 401 (1965).
' G. Hildebrandt, Phys. Status Solidi 15, K131 (1966).
' After the completion of the work reported here, we learned

about the article of Joko and Fukuhara U. Phys. Soc. Japan 22,
597 (1967)g. These authors deal with several cases of simul-
taneous diffractions in germanium, viz. , 000, 111, 111;000, 202,
220; 000, 220, 400, 220; and 000, 220, 242, 044, 224, 202. Of these,
the second case is the same as that dealt with in Ref. 3, and the
third case is the same as the one reported here. A comparison of
the results contained in that paper and those reported here, as
well as in Ref. 3, is in order. All these papers deal with the evalua-
tion of the eigenvectors for the various cases of simultaneous
di6raction. The eigenvectors belonging to distinct eigenvalues
should, of course, be the same. In the work reported here, the only
distinct eigenvalues are xj. and x2. Our modes agree with those
obtained by Joko and Fukuhara. The apparent difference in sign
in mode 2 results from different choice of unit vectors. (Our Fig. 2
should be compared with the diagram drawn at the bottom left
of their Fig. 2.) The method of evaluating the eigenvectors corre-
sponding to the degenerate eigenvalues differs here from that of
Joko and Fukuhara. We have used a perturbation technique, and
they simply added an orthonormalizing relation. Ours is a much
more involved method, but perhaps appealing more to the physics
of the problem; theirs is a much simpler and mathematically more
elegant one. In the case of degenerate eigenvalues the eigenvectors
may not have the same form, but their sum should be the same.
In addition, any one eigenvector belonging to the degenerate
eigenvalue should be expressible as a linear combination of all.

other eigenvectors belonging to the degenerate eigenvalue. Under
these considerations the results presented here, as well as in
Ref. 3, are essentially the same as the corresponding cases treated
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problem of evaluating the modes of propagation of
electromagnetic waves in the crystal was of central
importance. Such an evaluation leads to the possibility
of a complete analysis of the multiple diGraction within
the framework of the dynamical theory of x-ray
diGraction.

This procedure was applied to a four-beam case in
germanium (three simultaneous distractions). All the
normal modes were evaluated, the anomalously trans-
mitted fields were calculated, and the results checked
experimentally. The anomalously transmitted beams
were obtained by determining the possible standing
waves out of the various component fields, with nodes
at the atomic planes. We did not include in our con-
siderations absorption; to this extent, therefore, our
experimental results would be expected to deviate
from the calculated intensities.

In determining theoretically the anomalously trans-
mitted fields, we 6rst asked ourselves which of the
eight modes are anomalously transmitted; this led to an
investigation of the coupling of the various beams within
any particular mode; it turns out that (within a mode)
6elds combine in pairs to produce anomalous
transmission.

The importance of the surface of dispersion in the
dynamical theory of x-ray diffraction is well realized.
We have obtained and plotted the actual form of the
intersection of the dispersion surface with three coordi-
nate planes in a three-beam case in germanium.

For practical reasons, when applying the formalism
of the modes of propagation to multiple diBraction, it
is necessary to work with symmetry points of the dis-
persion surface. It is then, of course, important, to
have an additional argument that these points are of
primary importance in the anomalous transmission.
by Joko and Fukuhara. It has to be stressed that these authors
include in their treatment the problem of absorption explicitly,
and in this way they predict the anomalous transmission of
x rays. We arrive at the anomalous transmission by looking at the
fields which produce standing waves along the atomic planes;
we are not including absorption in our treatment.
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and is given by

g P f& 2riV, H—r (2 3)

FIG. 1. A photograph «Here pH designates a reciprocal-lattice vector. We
four anomalously t«»m&t«d
beams.

rIFFF =~f B v

0{ooo) H(220)

We furnish such an argument which then justifies the
procedure of evaluating the normal modes at the
symmetry points only, and, as already stated, such an
evaluation simplifies the entire problem considerably. '

where x& is dined by the relation

Jtsxa ——kas —ks (1—@0). (2.2)

pa z is the Fourier component of the polarizability

IL FOUR-FIELD SOLUTION

A. General Theory

In the general dynamical theory, one assumes wave
solutions to Maxwell's equations in the form of 81och
functions

esrv'vr V' E e
—2rlra r

II

where ka is the wave vector directed towards the
reciprocal lattice point II.' " This leads to a set of
vector equations that describe the permitted electric
fields in the crystal and which are of the form

xaEH+ p @H FEF 0, —— (2.1)
HgJ

i.e., ltva is proportional to the geometrical structure
factor.

The transverse electric-Geld vectors EB can be
expressed in terms of two components EII and E~
along the unit vectors a„and ~ in the plane transverse
to ka.

B. Participating Rejections

A four-beam case in germanium that exhibits strong
anomalous transmission is that of O(000), H(220),
P(220), and Q(400). Figure 1 is a reproduction of a
photograph of the four x-ray beams forming this
particular set of simultaneous anomalous transmission.
For the purpose of this photograph, the incident beam
was made divergent deliberately, so that one can clearly
see that each diGracted beam has a corresponding beam
diGracted in the incident direction.

The four points 0, H, P, and Q are situated at the
corners of a square in the reciprocal-lattice space. The
unit vectors 0 and ~ chosen at each wave vector are
shown in Fig. 2. They constitute the axes along which
the various electric-Geld vectors are resolved.

C. Field Equations

For this particular four-beam case, the fundamental
relations (2.1) written in the component form yield the
following set of eight homogeneous equations:

xOEO +rtFFFEH (rro ' rra)+rtFHEH (rr0 22H)+rtvqEQ (Iro ' rrq)+rIFQEQ (rro
' 22 q)

+~PEP'~&o. rrp)+ypEP (oo.mp) =0,
*oEo-+e-E-( o )+~-E ( o )+~,E ( o )+~,E.

+~PEP'(~o op)+epEP (~0 ~p) =0,
rlvFFEO (rra ' rr0)+AHEO (rra ' 220)+xHEH +QH QEQ (rra ' 0'q)

+~H—QEQ (rra'22Q)+r|FH PEP (rr—a &P)+rIFH'PEp (rra ~ 22P)=0,
@FFEO'(ela ~o)+4HEO (esa 220)+xaEB +pa QEQ'(era aq)

+la QEQ («'22Q)+4—H PEP'(22H rrp)+rt'r-a pEp (e2H 22P) =0,
(2.4)

O'QE0 (rrq'+0)+4 QEO (+Q'&0)+O'Q HEH (oq'rra)+pq a-EH (oq'22B)

+xqEQ'+4Q PEP (oq ~p)+eq P-EP (eq ~p)=0,
4QEO'(~q ~0)+4Q o ( Q 0)+4Q HEH (~q ~H)+4Q-HEH (~q ~B)

+XqEQ +rtFQ E '(e2Q 0 )+yq E ( q. )
rlvpE0 (rrp rro)+O'PEO (rrp 220)+O'P HEH (rrP ' rra)+Qp HE—H (rrp ' 22H)-

+4P BEH'(rrp. rra)+4P -HEH (rrp 22H)=0, -
rlFPEO (e2P ' rro) +rjFPEO (22P ' 220) + tFP HEH (22P ' rra)+rlvp -HEa (esp '22H)—

+4'p QEQ'(22P rrq)+4P QEQ (22-P 22Q)+xpEP =0.-
8 Our evaluations concern the case v hen the incident x-ray beam is monochromatic and nondivergent.
9 For a brief summary of the methods used, see Ref. 2, and for a detailed exposition see Ref. 10."B.Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).
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The various scalar products of the unit vectors are given by

&p ~p —eII''JI —o'g'q=o'p &p —0

o'p'o'g=cÃp'o'JI= 1,
o'p'o'p=o'p o'Il=o'g'EFp=EJg o'~=0,
ep. ~q= eg ~p= ep ~II=e~- ~p= 0,

Np'%g= Xp %II= —Sln 8

N p xJI=xg ' %p = sin 0=72,

~p ~g= ~p ~~=cos28=7 )

mp ep ——&p. oII=~g ep=~g cr~=cos8=7»,

~p gp=~p o'g=+~. eq=mll eg=cos0=7».

(2 5)

The geometrical structure factors entering into the polarizabilities g are given by the following expressions:

F H
——Sf—(81),

F-o= —Sf(82),
F ~=+ Sf(8)1,

FH= —Sf(81),
FH o=+-Sf(81),

Sf(8—,),

Fo Sf—-—(82),

Fo H+ —Sf(81)f

Fq I =—Sf(81),
FP=+Sf(81),

FI H= —-Sf(82),

Fz o= —Sf(81).

(2.6)

By writing the parameter x in units of
~ pH ~, this latter value may be factored out of the homogeneous equations,

and the secular equation for the four-field case under consideration takes the form

—xp 0 0
0 —xp
0 7» —xII
71 72—1 0 0

—7 —7»
0 —7» —j.

-71 72

71
0

0 0
xIZ 71

xQ
0

0 0

7
71
72
0
xQ

71
72

0
71 72—1 0
0 =0
0
71 72—xp 0
0 —xp

(2.7)

This secular equation can now be solved for a par-
ticular set of wave points. For xp=xII=xp=xq=x, we

would obtain the values of x corresponding to the sym-

metry points of the dispersion surfaces. "
%hen the crystal is cut so that its surface is parallel

to the plane of 0, H, and Q, a unidirectional incident
beam will excite simultaneously the symmetry points
on all the dispersion surfaces. The eight roots of the
secular Eq. (2.7) are

&1 Y42 27241

&2= —V42+2Va41~

X2,4= —@2, (2 S)

*, =-:L(l+v)e.+(V '(l-v)'+f64 '~ ')'"j,
&7,2= 2H&+V)A —(42'(& —V)'+ W 1'V1')'"3

of the roots indicates that there are only six independent
equations.

One of the ways in which the perturbation can be
achieved is to rotate the crystal about the reciprocal-
lattice vector Q; in this case the points H and E will

leave the Ewald sphere, one in the outward direction
and the other in the inward direction, by an amount
which depends on the angle of rotation. From this
rotation a small change in the magnitudes and direc-
tions of the wave vectors kH and k~ will result; thus

xlI and xp will change slightly while xp and xq will

D. Modes of Pxoyagation

The modes of propagation for the unique roots of the
secular equation are determined by substitution of the
respective root into the set of homogeneous equations

(2.4), and solving for the ratios of the various field

components. For the degenerate roots, a perturbation
technique must be employed because the multiplicity

~' In Sec. IV @re justify this procedure.

H

FIG. 2. Geometry of the four-beam case. Point A is the sym-
metry point, and 0, B, I' and Q are the reciprocal-lattice points.
The two upper views are sections of the square pyramid normal to
its base.
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and higher are neglected). The resulting modes of
propagation are shown in Fig. 3. The held components
in the various modes are given by the following
rela tions:

H Mode No. 1: EoI =EHI'= EQj'= EpI'= 0,

(4

Mode No. 2: Eo2 EH2 EQ2 EP2

E02 EH2 EQ2 EP2

Mode No. 3: Eo~"——EH3' ——EH3 =EP3'
=EP3 =EQ3

Eo3'= EQ3",

Mode No. 4: Eo4~= Eo4 =EH4 =EQ4'

0
EP4 EH 4

(5

(3

(5)

(e)

Mode No. 5:

Mode No. 6:

Mode No. 7:

E
E05

o

EH6

Eo6"=

Eov"=
Eov' =
EH7

o' —0

EQ5
—~"=—(7 e )-'[h —I)e
y((7 I)sy 2+].{&P 2@ s)r/s7+05

EQ6'= EH6 =EI 6

EP6 )

—&os = —(4Vr4i) '[(V—&)A

+((7—&)'4 s'+ &671'4 1')'"7&He'

o E o 0

EQ7
—&» = —(4Vi4r) '[(7—&)4s

((y 1)sy22+16y lsd s)l/27+07~

8)
Mode No. 8: E08-

(J—

E

EQ8 EH8 EPS

EP8 )

—~. = —(4'7 ~')-'I (r- I)~
—((y—1)skss+16yls4rs)1/s7gH8~ ~

FIQ. 3. The modes of propagation. (a) The arrows (I) and (2)
represent the amplitude vectors associated with the eigenvalues

2++j. p@Q and x= —2p2p& —&@2, respectively. From point
A, the symmetry point, wave vectors are drawn to the reciprocal
lattice points, forming a pyramid with a square base. The 6eld
vectors are shown in projection. The 6gure to the upper right is
a section of the pyramid cut normal to the base. (b) The degenerate
modes (3) and (4) associated with the eigenvalue g= —ps. (c)
The degenerate modes (3) and (6) associated with the eigenvalue
xq s. (d) The degenerate modes (7) and (8) associated with the
eigenvalue x7, 8.

remain unchanged, i.e., we can write

&=&o= xq, xa ——@+8, *a——x—5.

These values are substituted into the homogeneous
equations which are then solved for the various field
ratios, using a erst-order approximation (i.e., terms 8 FIG. 4. Intermediate orientation of input polarization.
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TABLE I. Distribution of x-ray intensity. Incident beam polarized along 00. Unity input Eo,&» =1.

Mode

0
0

0.500
0

0.213
0

0.287
0

0
0

0.250
0

0.045
0

0.082
0

0
0
0
0

0.248
0—0.248
0

0
0
0
0

0.062
0

0.062
0

0
0

0.500
0—0.213
0—0.287
0

0
0

0.250
0

0.045
0

0.082
0

0
0
0
0—0.248
0

0.248
0

+P2

0
0
0
0

0.062
0

0.062
0

12

0
0

0.500
0

0.213
0

0.287
0

TABLE II. Distribution of x-ray intensity. Incident beam polarized along mo. Unity input Ep„&'& =1.

Mode

0.250
0.250

0
0
0

0.286
0

0.213

~02

0.062
0.062

0
0
0

0.082
0

0.045

0.250—0.250
0
0
0—0.248
0

0.248

0.062
0.062

0
0
0

0.062
0

0.062

0.250
0.250
0
0
0—0.287
0—0.213

0.062
0.062

0
0
0

0.082
0

0.045

0.250—0.250
0
0
0

0.248
0—0.248

I'fp2

0.062
0.062

0
0
0

0.062
0

0.062

0.250
0.250

0
0
0

0.287
0

0.213

a=l a=1

For the diffracted beam they take the form

E. Boundary Conditions

It is now necessary to evaluate the distribution of
the incident intensity among the eight modes of propa-
gation. We note that each of the four appreciable beams
in the crystal is composed of eight waves originating
from the eight active wave points on the surfaces of
dispersion. In applying the boundary conditions, the
small differences in the directions and the magnitudes
of these constituent wave vectors are neglected. The
electric-field amplitudes from each mode, belonging to
the same beam, are superimposed. In Fig. 4 each beam
(ko, kH, etc.) is perpendicular to the plane of the paper,
and the field vectors comprising each beam are shown
with their true relative orientation.

Unpolarized incident radiation can be considered to
consist of two components linearly polarized at right
angles to each other and unrelated in phase. These two
polarization directions are shown as x and y in Fig. 4.

If we assume that the incident x-ray beam is linearly
polarized along x, then the boundary conditions take
the form

8 8

P Eo (a)=Eo (4) P Eo (a) —P

Itp. x component:

y component:

kQ. x component:

y component:

P= Er t +EJ I +Er I +Er v,
P= Er 4'+Er I'+Ers';
p= EQs'+EQI'+EQv',

EQt +EQ2 +EQs +EQI ~4

Using the relations among the field components
within each mode of propagation, it is then possible to
obtain the desired distribution of the incident intensity.
This procedure is repeated for the incident beam
polarized along the y direction. The results for each
case are shown in Tables I and II, where the inputs
Eo &'& and E»&'~ have been taken as unity.

THEORETICAL

EXETER

IMENTA L

F. Standing-Wave Modes and the Exit Intensities

The only modes of propagation that can contribute
to the anomalous transmission of x rays are those that
can form a standing-wave field in the crystal. A four-
field case would seem to indicate that only modes 3 and
4 can satisfy the standing-wave criteria. Tables I and
II show that mode 4 receives no energy from the

8

P E„(a)=P
8

(a) p
3.00

where rs=H, P, and Q. The application of these con-
ditions yields the following set of equations:

ko: x component: 1=Eos'+Eos +Eov',
y comPonent: P=Eor +Eos +Eos +Eos,

kH. x component: p=EH1 +EHI +EHI +EHv
y component: p=EH4'+EHs'+EHs';

2 ~ 00

1~ 00

0,00
POLARIZATION ANGLE

135
I

157
I

180 202 225'

Fro. 5. Variation of the ratio Ir/IH with polarization angle.
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0/I H

TAsLE III. Relative beam intensities.

10.00—

9.00

8.00—

7.00—

5.00—
4.00—

2,00—
1.00

Polarization
angle

135
157'
180'
202'
225'

Unpolarized beam

0
4.2

13.9
22.5
29.5
14.8

6.2
5.3
3.75
2.95
0
3.1

Ip

6.2
5.3
3.75
2.95
0
3.1

0

13.9
22.5
29.5
14.8

135
I

157
I

180
I

202
l

225'

POLARIZATION ANGLE

Fro. 6. Variation of the ratio Io/Irr with polarization angle.

incident beam and therefore only mode 3 would seem
to produce the anomalous transmission. Since mode 3
consists of an Ep and an E@6eld, we might be inclined
to predict that (for an incident monochromatic and
nondivergent x-ray beam) only two beams would leave
the crystal. A series of experiments which we have
performed convinced us that this prediction is not
correct.

We have reexamined the modes of propagation under
the assumption that the coupling among the various
beams within a mode is not strong enough to prevent
a pair of the consituent beams from producing the
necessary standing-wave field while the remaining
beams would be absorbed. "This coupled-pair concept
treats the phenomenon of simultaneous anomalous
transmission as a kind of superposition of two-6eld
events. The appbcation of this concept to our four-6eld
case yields four additional standing waves. In mode 5
(Fig. 3), the two Acids Eos and Eos are collinear and
equal in magnitude, and will therefore form a standing
wave; similarly, the following pairs will form standing
waves: EII6 and EI 6 in mode 6, E07 and Eq7 in mode 7,
and E~s and EI8 in mode 8. Of these, the standing
waves from modes 7 and 8 have the antinodal planes
coincident with the atomic planes in the crystal, and
therefore they will be absorbed anomalously.

The coupled-beam concept predicts that there are
four beams leaving the crystal and that each beam is
polarized. The intensities for an unpolarized incident
beam, as well as for an incident beam selectively
polarized along 6ve different directions, are summarized
in Table III.'

to obtain the precise four-beam simultaneous diGrac-
tion, it is necessary 6rst to obtain one of the diGrac-
tions, and then rotate the crystal about an axis per-
pendicular to the primary diGracting planes. As the
crystal is rotated, the primary diGraction will be
maintained and other reciprocal lattice points will be
brought onto the Ewald sphere. The simultaneous
event will be signaled by a sharp increase of the beam
diGracted in the forward direction. '3

The intensities of each beam were measured by a
scintillation counter. The divergence of the incident
beam was approximately 0.8 min of arc. The incident
beam was polarized by using the anomalously trans-
mitted beam from another perfect germanium crystal. "
The measurements were made for each of the five
polarizations listed in Table III. The results of this
series of extensive experiments are shown in Figs.
5—7. In these 6gures we have plotted the ratios of the
various beam intensities versus the polarization angles.
Since we did not include absorption, we cannot expect
complete agreement. We may conclude, however, that
the behavior of these ratios follows the trend of our
theoretical predictions.

III. SURFACE OF DISPERSION

The surfaces of dispersion are of central importance
in the dynamical theory of x-ray diGraction. Up to
now, with very few exceptions, such surfaces have been
obtained for the case of single diffraction only. We have
undertaken the determination of the dispersion surfaces

8.00
I /IH

7.00

G. Experiments

A series of experiments was carried out to examine
the behavior of the intensities. The germanium crystals
were in the form of circular plates 2 cm in diam and 0.5
mm thick. The incident radiation was a monochromatic
x-ray beam from a copper target (X= 1.54 A). In order

"Ke have also investigated the possibility of obtaining stand-
ing waves formed by superposition of three or more beams. The
results of our analysis were that, at least in the case under con-
sideration, no standing waves resulting from the superposition of
more than two Gelds can be produced.

1.00— ICAL

ENTA L ~

135 157 180 202 225

POLAR I 2 AT I ON AMG LE

Fro. 7. Variation of the ratio Io/Irr with polarization angle.

"The procedure to be employed in this case, in particular the
amount of crystal rotation, can be evaluated from the expressions
developed by Cole et a/. , Acta Cryst. 15, 138 (1962).

"H. Cole, J. Appl. Phys. 32, 1942 (1961).
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3

Fzc. 8. Intersection of the dispersion surface and zy plane.

for a case of the simultaneous di6raction of x rays. The
case which we considered was the symmetrical three-
beam case O(000), H(220), and P(202) in germanium.
The dispersion equation for this case is given by

xo
0
1
0

78
0

0 1
—xo 0

0 —xII
-0

74 78
0

0

74
72

78

73
74

Xg
0

72
0
72
0

=0

where the symbols have the same meaning as the corre-
sponding symbols in Sec. II.

Since the three quantities xo, xlI, and xp are measured
along the vectors kp, krr, and k& emanating from an
active wave point on the surface of dispersion, they

I'IG. 9. Intersection of the dispersion surface and the xz plane.

can be considered as segments lying along the axes of
an oblique coordinate system. As the position of the
active wave point varies over the dispersion surface,
the relative orientation of these three reference axes
will vary also. However, considering the scale employed
and realizing that the dispersion surfaces are effectively
at a very great distance from the reciprocal-lattice
points, the orientation of the axes can be considered as
constant.

If the determinant of the last equation is evaluated
and the resulting equation transformed to the Cartesian
form, the following dispersion equation is obtained:

(x'V'+2Vbrx'y+br'x'y') (x'bs'+y'83'+s'b4'+28383xy+28354xs+28384ys) x'(xV+br—y) (xbs+ybs

+s54) (V2 +V3 +V4') —x(x'V'+2Vbrxy+br'y') (xbs+y&3+sb4) (Vs'+V3'+V4 )—x (xV+bty) (x'~3

+y'833+s'84'+253bsxy+28354xs+28384ys) (1+V')+2x(xV+8&y) (xbs+y83+s54) (VV2 +Vs VV4 )
+xsV3+ (x2V2+ 2Vb lxy+ $12y2)V3+ (x2$23+ysb 32+srb42+ 2 ash sxy +2(3)4xs+ 2b 354ys)V2

+2x(xV+bty) (2V4'Vs'+V')+x(xbs+ybs+s&4) (V'V3'+Vs'+V4')+ (xV+5ry) (xbs+y53

+s'4)(V V3 +V2 +V4 )—2x(V'+V') —2 (xV+bry)(V'+Vs) —2(xbs+ybs+sb4)(VV 3 +V'Vs —VV4')+4(V' —»'V4') =o '

This is the equation of the dispersion sheets for the
case under consideration.

To obtain some idea of the actual form of the dis-
persion surface, we considered the intersections of the
surface with the three coordinate planes" "

Th, e plots of the equations which represent these
intersections are shown in Figs. 8—10. From these
three curves it is possible to construct the general shape
and the coniguration of the surfaces of dispersion for
the case under consideration. Figure 11 is a simpli6ed
representation of these surfaces. It can be seen that
the surfaces of dispersion for this case of simultaneous
diffraction axe somewhat similar in shape to the surfaces
for the case of the single diffraction in that in both cases

~~A computer was used to evaluate the coefBcients of the
necessary equations; for details see Ref. 16.

'6 Andrew Dalisa, Ph. D. thesis, Adelphi University, 1967
(unpublished).

there are pairs of closely spaced sheets, each with a
general hyperboloidal curvature. '~

Iv. DOMINANT WAVE POINTS ON THE
SURFACE OF DISPERSION

The modes of propagation of the electromagnetic
waves which have been discussed here in Sec. II' have
been determined for a restricted set of wave points
only, viz. , for the symmetry points of the dispersion
surface. Ke will now give an argument which indicates
"The separability of the dispersion equation into a product of

lower-order determinants is a problem of considerable interest.
We have investigated this problem to some extent, and found
that any coplanar case of simultaneous anomalous transmission
will possess a factorable dispersion equation. However, we are
convinced that the noncoplanar cases, such as O(000), H(220),
E(202), are indications that the dispersion equation cannot be
factored. t,'See A. Dalisa, Ref. 16.)

"See also Ref. 3.
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that these symmetry points actually play a dominant
role in the anomalous transmission. The discussion of
this problem that is presented below concerns one of the
three-6eld cases.

The three fundamental equations for the three-Geld
case O(000), H(220), and E(202) are

xoEo O'AH ~o(~0'EK)+4pEo ~0(~o'EH)
xKEK—=4KEo &K(&K—Eo)+4K PEP 'K(&K—EP),
xpEp QpEo 'p(~p'Eo)+4p H~FI —'p(~p'EK) ~

Introducing three unit vectors bo, bK,. and bP along the
field comPonents Eo, EK, and Ep, resPectively, and
scalar multiplying the above three equations by the
respective unit vectors, yields the following results:

xoEo=kK—EK cos(bo, EH)+QKEP cos("o,EP),
—xKEK ——&HEo cos(bH, Eo)—pHEP cos(bK, EP),-*.E.=~-E.-.(b.,E.)-~-E-- (b-,E-),

where use has been made of the following relations
among the polarizabilities:

FIG. 11.Three-beam dispersion surfaces. This is a representation
of the three dimensional dispersion surfaces for the three-beam
case O(000), P(220), and P(202). Each of the sheets shown above
is actually accompanied by a closely spaced additional sheet.

4K=4 —K, 4P=4 —P, O'H P4P H)l-—When EH is parallel to Eo,

~H/~0 (O'H+xo)//(4H+xH) )
4K=4P, 4K= 4H P. —-

The above set of equations will be solved for the case
when certain of the 6eld vectors are parallel; this is the
first condition that a standing-wave field be formed.

when EK is parallel to Ep,

~K/~P = (4K+xP)/(4K—+xK);
and when Eo is parallel to EP we obtain

~o/~p= (eK+xp)/(4K+xo).

In addition to the requirement that the respective Geld
vectors be parallel in order for the anomalous trans-
mission to occur, the above ratios have to be equal to
unity. We see that this can only occur when

$0—S+—XQ ~

This restriction is exactly the same under which the
analysis of the anomalous transmission has been carried
out for a three beam case' and the same type of con-
dition (xo=xK ——xp ——xo) was used in the analysis of
the four-6eld case in Sec. II above.
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