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acceptor pair spectra is resolvable even when one of the
impurities produces a deep (here nearly 1 eV or ~0.4
E,) bound state. It is likely that such structure may be
observable in other semiconductors. If so, the ionization
energies of deep centers may be accurately determined
from the low-temperature pair luminescence spectrum
alone.
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The electrical conductivity in a semiconductor surface channel or a thin film is written in terms of integrals
over a retarded current-current correlation function and evaluated using a Green’s-function formulation
of perturbation theory. The perturbation theory exhibits four new features. (1) The boundary conditions
at the surfaces of the channel are expressed in terms of a fluctuation potential rather than a Fuchs re-
flectivity parameter. (2) The quantization of the eigenvalues for motion normal to the channel is explicitly
incorporated into the theory. (3) The averaging procedure used to obtain the diagrammatic definition of
the propagators and correlation functions is extended to include the effects both of screening and of graded
interface impurity doping by permitting summation of multiple-scattering effects within planes of im-
purities parallel to the surface prior to the consideration of interference between these planes. (4) The
propagators and conductivity are evaluated at arbitrary temperatures, using the Matsubara formalism.
The conductivity is calculated explicitly in the quantum limit that the energy spacings AE between the
eigenvalues for motion normal to the surface satisfy AE>>ET for the occupied eigenstates. The approxi-
mations needed to reproduce the Boltzmann-equation analysis by Stern and Howard of the extreme quantum
limit are delineated. The effects of dispersion and quantized-state mixing are examined for a s-function
model of the fluctuation potential. They are found to be significant if a quantized eigenvalue is near the
Fermi energy or if the doping in the channel is highly nonuniform.

I. INTRODUCTION

HE theory of transport in thick films and semicon-
ductor surface channels is an old and venerable
topic, which is usually discussed within the framework
of solving the Boltzmann equation, using classical or
semiclassical carrier dynamics.’~* Although the possible
importance of quantization effects in narrow channels
or very thin films has been recognized for at least 10
years,? serious theoretical consideration of these effects
has been given only in the past year.~1° The origin of
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this delay lies in the fact that although a variety of ex-
periments have been interpreted as suggesting the
importance of surface-induced quantization effects,*=17
only recently have transport experiments'® on (100)
silicon surfaces convincingly demonstrated the existence
of the two-dimensional energy bands associated with a
narrow #-type inversion channel on p-type silicon.

The space-charge potential of an accumulation region
at a planar n-type semiconductor interface is illustrated
schematically in Fig. 1. Each quantized state for motion
normal to the interface leads to a two-dimensional con-
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tinuum associated with motion parallel to the interface.
In Fig. 1, we see the density of states pi(E+E;) associ-
ated with the two-dimensional energy bands with
minima which lie at the quantized-state eigenvalues
E=—E,. The density of states p(E) associated with the
three-dimensional continuum for E>0 is illustrated
also.

For the potential and Fermi level shown in the figure,
only the lowest quantized-state band is occupied at low
temperatures 7, i.e., as #7"— 0. The dynamics of the
space-charge potential are governed by Poisson’s equa-
tion and are discussed in Refs. 7, 9, and 10, and by
BenDaniel and Duke! and Howard,?* The quantum
limit is defined to be that region of the space-charge
parameters (high trapped charge and low temperature)
in which the energy-level spacing between occupied and
unoccupied states satisfies AE>>ET. Figure 1 constitutes
an illustration of a special case of this limit. Stern and
Howard®! (SH) have given a Boltzmann-equation
analysis of zero-temperature transport at Si and InAs
surfaces in the extreme quantum limit that only the
lowest two-dimensional band is occupied. They consider
the scattering to be due to charged impurities either in
the semiconductor or in the oxide of a field-effect junc-
tion. Such an analysis can give information only about
the lowest quantized-state band, and it has been sug-
gested that electromagnetic absorption®7 or tunneling®
can give information on higher-lying bands also.

Our primary objective in this paper is the formulation
of transport theory in narrow channels in such a way
that the Fuchs boundary condition®* does not enter
the calculation. Such a formulation is necessary in the
quantum limit because the concepts of specular and
diffuse reflection become ill-defined. The Green’s-
function formalism?!-?? is ideally suited to this task be-
cause we calculate the “free” propagator in the average
space-charge potential and treat the fluctuations of this
potential, due either to impurities or irregularities in
the surface, as a perturbation. Furthermore, the reduc-
tion of the Green’s-function analysis to that of the
Boltzmann equation is well known in three dimen-
sions.?!:2? By a parallel reduction we are able to recover
the starting equations used by SH®! and thereby
delineate the restrictions of, and corrections to, their
results. We find, for example, that for space-charge
channels in which either the impurity-density or im-
purity-potential form factor is nonuniform over the
width of the channel, the corrections to the Boltzmann-
equation analysis are considerably larger than in the
case of a uniform system. Similarly, the possibility of
moving the bottom of a localized-state band through the
Fermi level (e.g., by increasing the gate voltage in a
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PARABOLIC DENSITY OF STATES IN A NARROW
ACCUMULATION REGION

F16. 1. Schematic illustration of the space-charge potential near
the surface of a semi-infinite slab, 2>0, of an n-type semicon-
ductor. All energies are measured relative to the bottom of the
conduction band in the bulk. The Fermi energy is denoted by u.
Each localized state in the discrete spectrum, E <0, is associated
with a two-dimensional continuum due to motion parallel to the
surface. The density of states p;i(E) for these two-dimensional
bands, as well as the three-dimensional density of states p(E), is
shown.

field-effect junction) causes dispersive effects and mo-
bility reductions completely neglected in a Boltzmann-
equation analysis. Therefore the Green’s-function
method provides a description of qualitatively new fea-
tures of the transport process and is not merely a rederi-
vation of the appropriate Boltzmann equation, as tends
to be the case for uniform systems.??

In keeping with our objective, the body of this paper
is devoted to the comparatively “formal” topics of re-
lating the surface conductivity to the current-current
correlation function and evaluating the latter by use
of Green’s functions. Thus our work is complementary
in outlook as well as scope to that of SH. Their main goal
is the use of a simple, intuitive transport theory to cal-
culate semiquantitatively the effect of screening, and
hence gate voltage, on the charged-impurity-limited
mobility of carriers in a narrow inversion layer. Ours, on
the other hand, is the formulation and exploration of the
features of the transport theory itself. To this end we
utilize a simple §-function (“‘contact-potential”’) model
of the potential because it simplifies the calculations
considerably. A reasonably complete analysis of the
silicon data,? for example, requires both the careful con-
sideration of the form of the potential given by SH, as
well as the refinements of the transport theory discussed
herein. A more extensive investigation of the conse-
quences in InAs of the analytical results which we de-
rive will be presented elsewhere.?

The definition of the model Hamiltonian and the de-
rivation of the relation between the surface conductivity
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three dimensions. See, e.g., A. A. Abrikosov, Physics 2, 5, 61
(1965) ; S. D. Silverstein and C. B. Duke, Phys. Rev. Letters 18,
695 (1967) ; Phys. Rev. 161, 456 (1967); 161, 470 (1967).
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25 M. E. Alferieff and C. B. Duke, following paper, Phys. Rev.
168, 832 (1968).
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and the current-current correlation function are pre-
sented in Sec. II. Section III is devoted to the various
topics associated with defining and evaluating the
single-carrier propagator. These propagators are used
to evaluate the correlation functions and conductivity
in Sec. IV. All calculations are carried out for finite tem-
perature, using the Matsubara formalism.?2:23 The im-
purity averages are carried out in Sec. IIT C in two
different ways: in analogy to the procedure used in uni-
form systems,?2% and also in such a manner to incor-
porate all interference effects in planes of potential
fluctuations parallel to the planar interface prior to the
consideration of interference between the components
of the carrier wave function scattered from the various
planes. For convenience, an outline of the paper is given
below.

II. Surface conductivity in a narrow channel

A. Linear response in an inhomogeneous system
B. Nonlocal, frequency-dependent surface conductivity

III. Evaluation of the single-particle propagator

A. The free-particle propagator

B. Matrix elements of the fluctuation potential
C. Averages over a random fluctuation potential
D. Diagram evaluation: a simple example

IV. Evaluation of the local surface conductivity

A. Formal specification of the conductivity
B. The independent-band limit
C. Synopsis and discussion

II. SURFACE CONDUCTIVITY IN A
NARROW CHANNEL

A. Linear Response in Inhomogeneous Systems

In this section, we review the coordinate-representa-
tion formulas describing the linear current response to
an external electromagnetic field. In the following sec-
tion, the general results are reduced to formulas for the
nonlocal, frequency-dependent conductivity parallel to
the surface in a narrow space-charge channel at a semi-
conductor (or semimetal) interface.

The linear current response to an external local vec-
tor potential A(x,?) is given by??

62
Jo(x)=——4,(x)
mcC
1
+- /dy4 PﬂﬂR(x7y)A#(y)7 (213')
c
* dow
Py (xy)= [ —e i@ wPp, R(xyw), (2.1b)
o 2T

in which the superscript R denotes retarded commuta-
tors, = (x,&,), —e denotes the magnitude of the charge
of a carrier (ultimately taken to be a Bloch electron),
m. denotes its effective mass, ¢ is the speed of light, and
7 is the number of carriers per unit volume. The tensor
polarization P,,% is calculated, using the Matsubara
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formalism?2.23;

P (X,y,0) = Pu(X, ¥, iwn — w+148) (2.22)
B
Prulxysion) = / dr P, (x,y,1), (2.2b)
0
wa=2mn/B, (2.2¢)
P”#(X7Y)T) = (Tfl:jlv(xaT) .71M<Y70):|>
= —(e2%2/4m2) lim lim (Vg— Vy),
x'>xy/ oy
X (Vy’_ Vy)M<TT[¢a(X7T>¢B<Y7O)
Xs(y ,00a(x,7)]), (2.2d)

in which 8= (kT")~! is the reciprocal temperature, 7', is
the 7-ordering operator,?? ( ) denotes thermal average
over the grand-canonical ensemble, and y(x,7) are the
Matsubara field operators?? for (Bloch) carriers.

In this paper, we consider only the scattering of
carriers from random potential fluctuations due to im-
purities or inhomogeneities in the semiconductor inter-
face. Electron-phonon? and electron-electron?” interac-
tions can be included in the formalism in the usual way.
Using the effective-mass approximation® for the Bloch
carriers, the Hamiltonian associated with a given spheri-
cal single-carrier ellipsoid is

H=HO+HI) (233')

Ho= / dn xza(x>[—fjw+ve(x> e, 2an

M
Hi— / FeFuOLE - RIWa®). (239

The use of the effective-mass approximation indicates
that the y.(x) are to be identified with the envelope
functions of the Bloch carriers. The extension of the
analysis to include more than one ellipsoid is straight-
forward.”™ 10 The use of the # subscripts on the v,(x— R,)
denotes the fact that near a surface the form of the im-
purity potential depends explicitly on the distance of
the impurity from the (planar) interface due to both
screening effects and inhomogeneities in the interface.
The external (“band-bending”) potential is denoted by
V(x) and is the cause of the space-charge channels at
semiconductor interfaces. The normal to the interface
is taken in the z direction, so that a uniform magnetic
field H oriented at an angle 8 to the surface normal can

2 See, e.g., G. D. Mahan and C. B. Duke, Phys. Rev. 149, 705
(1966). More extensive references are given in this paper.

277, S. Langer, Phys. Rev. 125 1003 (1961); O. Betheder-
Matibet and P. Nozieres, Ann. Phys. (N. ¥.) 37, 17 (1966).

28 W, Kohn, Solid State Phys. 5, 258 (1957).
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be inserted in (2.3b) by the substitutions®10
V — V—ieA/#c,
A=H(0, x cosf—3z sind, 0).

(2.4a)
(2.4b)

The static electric field normal to the surface and static
magnetic field are taken to determine the one-electron
eigenfunctions in the absence of impurities via their in-
clusion in H,. Schematically denoting these eigenfunc-
tions by ¢.(x):

Hops(x) = E04(x). (2.5)

We define the noninteracting-particle representation for
the field operators and single-particle propagators in
the usual fashion?2:

Y(x,7) =2 ¢:(X)cs(7) ,
G(s',s,'r) = (Tr[cs'a(T)ésa(O)]> .

A convenient form for the tensor polarization is the
energy-representation expression

(2.6a)
(2.6b)

e*n?

2 Wa(s1,84; X)

M2 s134

PT)IJ’(X;Y;'L.‘*’") =

XW‘u(Sg,Ss,y)P(Sl,Sg,Ss,S;;; iwﬂ) ) (2'73’)

Wv(Si,Sj’X) = [d’s ;(X) V&sj(x)
- qgsj(x) Vo, i(x)]v ) (2-7b)
P(31;32as3;s4§ )= (Tr[‘781a<7')cszﬁ(0)

X&538(0)8s4a(m)]).  (2.7¢)

The longitudinal linear response is given in terms of
diagrams by calculating directly the scalar polarization
P(iw,) from the diagram shown in Fig. 2. In this case
the many-body aspects of the calculation are incorpor-
ated entirely in the evaluation of P(iw,). A similar re-
duction of the consideration of many-body effects occurs
also for transverse polarizations in the case of interband
transitions near a symmetry point.?? As noted in the
Introduction, we shall primarily be concerned with cal-
culating the static surface conductivity. Both in this
case and in the analysis of the reflection and absorption
of electromagnetic radiation at and near the surface,
the distinction® between transverse and longitudinal re-
sponse can be neglected because® if q is the wave vector
and w is the frequency of the electromagnetic field, then
(q-v)~(v)w/cKw for electrons with average velocity
(v). In this paper, we confine our attention to the calcu-
lation of the intraband contributions to the surface con-
ductivity in the q — 0 limit.

2 G. D. Mahan, Phys. Rev. 153, 882 (1967).

% D. Pines and P. Nozieres, Theory of Quantum Liquids, I (W.
A. Benjamin, Inc., New York, 1966), pp. 176-195, 251-260.

31 See, e.g, J. M. Ziman, Principles of the Theory of Solids (Cam-
bridge University Press, Cambridge, England, 1964), pp. 237-249.
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Fi6. 2. Schematic diagram for the calculation of the scalar
polarization function P (s1,52,53,54,5wn). The irreducible vertex part
is shown shaded.

B. Nonlocal, Frequency-Dependent
Surface Conductivity

In this subsection, we give formulas for the conduc-
tivity when the perturbing electric field, to which the
linear response is calculated, lies parallel to the semicon-
ductor interface. This is the configuration for the usual
static-surface-conductivity measurements!*-1416-18 for
both surface-barrier-electroreflectance®?=3* and some
transverse-electroreflectance®® experiments, and for
measurements of surface effects on the microwave im-
pedance.’®:36 It is not the configuration for Harrick’s
measurements of the surface absorption at infrared and
higher frequencies.”-*” Certain transitions between quan-
tized-state bands are not excited unless the a-c field has
a component normal to the surface.” Therefore an
analysis of absorption and reflectivity measurements
requires specification of the orientation of the polariza-
tion vector of the ac field relative to the surface.

The special case of Egs. (2.7) relevant for the calcu-
lation of the static surface conductivity occurs when (a)
the electric-field vector E lies parallel to the surface and
(b) the spatial variation of the electric field normal to
the surface is neglected over distances of the order of the
thickness ({~ag) of the space-charge channel. In the
surface, the eigenfunctions of Hy assume the form

¢+(X)=X¢(z) exp(iqu-g)/4, (2.8a)
2 2!

ES=%h2(q”’l _|_q”'2 )—I—E—l—p , (2.8b)
My M

in which p is the chemical potential, 4 is the area of the
planar interface, and g is a vector in the (xy) plane of the
interface. For convenience, we suppress the parallel
subscript and use q to denote wave vectors parallel to
the semiconductor interface. Equations (2.8) suggest the

82 B, O. Seraphin and N. Bottka, Phys. Rev. 139, A560 (1966);
B. O. Seraphin, ¢bid. 140, A1716 (1965); B. O. Seraphin and N.
Bottka, ibid. 145, 628 (1966).

3 K. L. Shaklee, F. H. Pollak, and M. Cardona, Phys. Rev.
Letters 15, 883 (1965); M. Cardona, F. H. Pollak, and K. L.
Shaklee, bid. 16, 644 (1966); Phys. Letters 23, 37 (1966).

% J. Feinlieb, Phys. Rev. Letters 16, 1200 (1966).

3V, Rehn and D. S. Keyser, Phys. Rev. Letters 18, 848 (1967).

36 J. F. Koch and C. C. Kuo, Phys. Rev. 143, 470 (1966).

37 N. J. Harrick, Phys. Rev. 125, 1165 (1962).
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Fourier decomposition of the vector potential

A (x,0) =4 ,(q,3,w)et rgiot, (2.92)

Requirement (b) of homogeneity of E normal to the sur-
face gives
(2.9b)

for the vector potential. Taking the Fourier transform
of Eq. (2.1a) with respect to p and ¢, we obtain

Au(gq,5,0) — A ,(q,w)

. n(z)e? 1,
3o(@50) = ———Au(qz0)+— [ d
me2e CJ—wn
X PR, (q,5,7; 0)4,(0,70), (2.10a)
e (p—p")
Pou(q,3,5; i) . (2.10b)

Pou(x,x jiwn) =3
q A

The notation 7(z) is used for the carrier density in Eq.
(2.10a). In narrow space-charge channels at tempera-
ture T, this density is given by?710.38

(2j+1) e
= ;KT%:FO(—S/KT)]XE(Z)H; (2.11a)

n(z)

2w
Fo(x)=In[1+exp(x)],

in which j is the spin of the band associated with the
mobile carriers. We have assumed that only the discrete
spectrum in the narrow channel is occupied. A more gen-
eral relation is given in Egs. (2.6) and (2.7) of Ref. 38.
The total surface current, which is the measured quan-
tity in surface-transport experiments,! is obtained by
integrating Eq. (2.10a) over z. For the case of an electric
field independent of z in the surface channel we obtain

Jv(q,w) = [-‘ (Aﬂcez/WLgC) 61}[1.

(2.11b)

° +PE,(qw)]4,(qw), (2.12a)
AncE/ n(z)dz, (2.12b)
PRvF(q,w)=/ dz/ dz’ P®,,(q,5,7 ). (2.12¢)

The surface conductivity is defined in terms of the total
current to be

(2.13)

in analogy with the definition of the bulk conduc-
tivity.12422 In writing Eqgs. (2.12) and (2.13), we have
ignored the bulk contribution to the current, so that
Ac,, is the change in conductance due to the presence of
the surface channel, and Az, is the associated change in
carrier concentration.?

Since nonlocal effects due to a nonzero photon wave
vector q are small,3! we neglect them by considering only

Aav,,(q,co) =—u! ImPRvu(q)w) )

38 Alan J. Bennett and C. B. Duke, Phys. Rev. 160, 541 (1967).
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q=01n Egs. (2.9)-(2.13). The approximation of an elec-
tric field independent of z [Eq. (2.9b)] rules out con-
sideration of an anomalous skin effect’!:3® due to car-
riers trapped in the space-charge region. However, in the
case of localized charge at semiconductor interfaces, the
maximum value!'® An,~10' cm~2 implies that the sur-
face charge leads to skin depths of the order of the thick-
ness of the space-charge region only for frequencies in the
optical region for which bulk interband absorption is
usually the determining factor of the penetration depth.
Therefore Eq. (2.9b) is a good approximation in the
spectral regions of interest, and Eq. (2.13) is a direct
measure of the surface impedance.??%!

III. EVALUATION OF THE SINGLE-PARTICLE
PROPAGATOR

A. Free-Particle Propagator

The coordinate representation of the free-particle
propagator is defined in terms of the eigenfunctions [ Eq.
(2.5)] of Ho. We consider only the case characterized by
the absence of static magnetic fields normal to the sur-
face, so that these eigenfunctions are given by Eq. (2.8).
The coordinate representation of the free-particle propa-
gator is given by

Gl )= e XD (3.10)
i A iw,—E(qQ)—¢

wo=(2n+1)r/B, (3.1b)

E(q)=3%[q:*/m+-g2?/m.], (3.1¢)

L— (7/2mc)(d?/dz*)+V o(3)— E]X:(2)=0, (3.1d)

E=t+u. (3.1e)

The eigenvalue spectrum of Eq. (3.1d) is continuous for
E>0 and discrete for E<0. A special case is illustrated
in_Fig. 1 for an accumulation region near the interface
at =0 of_a semi-infinite semiconductor. In this paper,
we confine our attention to calculating the low-tempera-
ture conductivity in the quantum limit that the occupa-
tion of the continuum states can be ignored and that
AE;=AESET. Using the quantum numbers s=(q,£) to
define the expansion (2.6a) of the field operator, and
taking the carriers to be electrons, we find from (3.1a)
that the energy representation of the free-electron
propagator (2.6b) is given by

Go(q’)sl; q,f; in) = Bq’.qas’,EGO(qJE)iwq) ) (32&)
GO(Q;S:mq) = (iwg— E(q)—£)71. (3.2b)

We adopt the normalization
/ R () Xe()ds= 50 ¢ (3.3)

3% G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948).
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for the eigenfunctions of Eq. (3.1d) in the discrete spec-
trum. For convenience, Eq. (3.1d) for X is solved subject
to the model boundary condition

X(0)=0. (3.4)

The exact boundary condition depends on the nature of
the surface.” The solution of Eq. (3.1d) involves the
specification of V.(z) as a self-consistent solution to
Poisson’s equation for the particular bulk sample and
boundary conditions under consideration. A simple ex-
ample of such a calculation is given in Ref. 7 for an ac-
cumulated surface. An evaluation of V.(2) for n-type
inversion layers on p-type silicon has been given by
Howard.20

The Fermi energy in each of the quantized-state
bands (E=—E;) is given by

Epi=Eitu=—¢. (3.5)

Therefore at zero temperature a (discrete) band index
£>0 corresponds to unoccupied bands and £<0 to oc-
cupied bands. The presence of impurities (or phonons,
magnons) causes transitions both within and between
the various two-dimensional quantized-state bands (for
motion normal to the surface) associated with a local
minimum in a given three-dimensional energy band.

B. Matrix Elements of the Fluctuation Potential

For convenience in writing the impurity potential and
performing sums, we assume that the surface of the
crystal is oriented so that the position R, of an impurity
can be decomposed uniquely according to

Rn=R][+R]_’ (3.63)
Rii'n=0, (3.6b)
RL'9=O. (3.6C)

Therefore R, is the coordinate of the impurity parallel
to the surface (whose normal is denoted by n), and R, is
its coordinate normal to that surface.

The conventional theories?2%%" of bulk impurity
scattering consider impurity potentials of the form

V(x)=Y »(x—R.,), (3.7a)

v(x—R,) =3 v(k)ek &—Rn) (3.7b)

All of the impurity atoms are characterized by the same
spherically symmetric form factor v(k). Equations (3.7)
are inadequate to describe scattering from impurities
near a surface for two reasons. First, the symmetry of
the surface indicates a cylindrically symmetric rather
than spherically symmetric form factor. Second, both
the screening of charged impurities and the presence of
additional potential fluctuations near the interface at
z=0 cause the form factors themselves to be functions
of R,. We simulate “surface scattering” by use of the
dependence of the form factor (and, if necessary, the
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“impurity” density per unit area) on R,. Therefore we
use the more general potential

V(x)=2% v(Ri; x—R.), (3.8a)

o(Ry, x—R,) =3 o(R.,q,k)e RIDei*ED | (3.8b)
q,k

For a spherically symmetric potential,
»(Ry,q,k)=v(Ry, (¢>+%%'7?).

The matrix elements of the impurity potential [Egs.
(3.8)] between the one-electron eigenstates (2.8) are

(Qir,€1] V] 656
— % R o(Ruyd)|8), (310)

3.9)

(Ei1|o(R1,A9) [ &)
EZ e—ilev(Rl,Aj:k)M(k;‘EJ%l;Ef) ’ (310b)
k

M (ki) = / (@)X @), (3.100)

Aj=¢q;11—q;- (3.10d)

The effective potential of an impurity at R,=R,+Ry
is the summand of Eq. (3.10a). The dependence of the
form factor on R, has the consequence that R, no longer
occurs solely in’the phase factor exp(—ikR,). Therefore
averages over R, no longer give conservation laws on &,
as is the case for bulk impurity scattering. The off-
diagonal components £j15%E of (£i1]|d(Ry,A7) | &)
cause the mixing of eigenstates in different two-dimen-
sional quantized-state bands by the impurity potential.
In the case that more than one £;<0, these transitions
also can conserve energy, as shown in Fig. 3, and hence
give important contributions to the resistivity.

C. Averages Over a Random Fluctuation Potential

In this subsection, we derive a diagrammatic prescrip-
tion for constructing the one-electron propagator after
averaging over a random distribution of impurity po-
tentials. These results are well known for the bulk-
impurity-scattering problem.?=%:27 Therefore it is con-
venient to proceed by analogy, first summarizing the
known consequences of the averaging for the bulk
problem, and then introducing the new features of the
surface analysis. Prior to the averaging process, the nth-
order term for the one-electron propagator is given in
both the bulk- and surface-scattering problems by

G (qun; Qoyko; 1wg)= 2 II Gol@ié:; 1wq)
q1e ¢ +gn-1 =0
Ereecbn

n—1
X IT {Qiyv,Eep1| V] asn€s).  (3.11)

=0
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viz)

&

Fi16. 3. Schematic illustration of the space-charge potential and
the E(q) eigenvalue spectrum for a case in which two quantized-
state bands are occupied at zero temperature. Transitions rrom
(1) to (4) and from (2) to (3) are energy-conserving intraband
transitions at the Fermi surface, arising from the diagonal com-
ponents of (£;|¢(R1,A;) | £). Transitions from (1) to (2) and from
(4) to (3) are energy-conserving interband transitions at the Fermi
surface, arising from the off-diagonal components of (£;41]¢ (Ri,A;)
X | &) given by Egs. (3.10) and (3.14) in the text.

In the case of bulk impurity scattering, the impurity
potentials give rise in the nth-order diagram to the sum

n—1
Sm=73% ]I exp[—i(q;1—a)-R;].  (3.12)

{Rj} 7=0

The diagonal terms in Eq. (3.12) (for which R;=R,- - -
=R,) give ¢bqyq,, With c=N;/Q, N;being the number of
impurity atoms and @ the volume of the bulk crystal.
The terms with only two R; nonequal give terms 0(c?),
and similarily for more complicated cluster terms. We
recall that this procedure leads to the prescription?!22
for an nth-order diagram of order ¢™, m<#. For the
electron propagator (after averaging):

(1) Draw dots representing the m-independent R;
values in Eq. (3.12).

(2) Connect these dots via # dashed interaction lines
[associated with v(g;;1—qs:)] to (#+1)-electron propa-
gator lines [associated with Go(qs,iw,)] in all possible
ways, subject to the conditions (a) of momentum con-
servation at each electron-interaction vertex and (b)
that the total momentum transfer associated with the
interaction lines emanating from a single dot be zero.

(3) Integrate over all (n—m)-independent internal
¢: variables and multiply by ¢™.

The concept of a proper self-energy is then introduced
in the bulk calculation by observing that the contribu-
tion of each “irreducible’” segment to the #th-order term
in the propagator is independent of all the others. An
irreducible segment is defined to be a subportion of a
diagram which cannot be split into two disconnected
parts by breaking a single propagator line. We use the
independence of the contributions of these segments

DUKE 168

from each other to write the propagator as

G(q,iwp)= 2 G™(q,iw,)

n=0
=G (qaiwp) I: 1-G, (qyiw P)E (q;iw P) ]_1 )

in which 2(q,iw,) is the proper self-energy. This seli-
energy is calculated according to the rules (1)-(3), ex-
cept that the two external propagator lines are removed
from the nth-order diagram, and the subsidiary condi-
tion on rule (2) is added that one draws only those dia-
grams which cannot be divided into two topologically
disconnected pieces by breaking a single-electron propa-
gator line.

The evaluation of an nth-order diagram for the sur-
face-transport propagator introduces two new features
into the analysis: (a) The sum over Ry ; in the #th-order
diagram is no longer just a sum over phase factors as in
Eq. (3.12); and (b) the averaging does not require that
the contribution associated with each irreducible seg-
ment be diagonal in the &; variables, so that the proper
self-energy must be defined by a matrix equation.

The sum in the general nth-order diagram [Eq.
(3.11)7] in the surface-transport case is given by

n—1
S = %:} H exp[—i- (qi+1—9;) - Rur 5]
i} i=0
X (1| Ry, @11~ a5) | £5)-

It is convenient first to discuss the new feature (b) in the
special case that the form factor »(R,; A k) is independ-
ent of Ry, so that feature (a) does not occur. In this limit
the matrix element in Eq. (3.13) becomes

(1| Ry, gi11—a5) | &)
= e iR (0—as k)£, (3140)

(3.13)

(1| o(Qi1a—aj, &) | &)
= 'U(qj«f-l"‘qj, ki)M(ki:EH-lagj) .

Therefore we can perform the averaging prior to the %;
summations, with results essentially identical to the
bulk results. The diagrammatic prescription for the
nth-order contributions to the propagator proportional
to ¢™is:

(3.14b)

(1) Draw dots representing the m-independent R;
values in Eq. (3.13).

(2) Connect these dots via % dashed interaction lines
[associated with {(£;11]|¢(qis1—4q, %5) | £;)] to n-+1 propa-
gator lines [associated with Go(q;,§;,iw,) ] in all possible
ways, subject to the conditions (a) of conservation of
parallel momentum q at each propagator-interaction-
line intersection and (b) that the total q and & transfer
associated with the interaction lines emanating from
a single dot be zero.
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(3) Integrate over the (n—m)-independent q;, k;
variables and sum over the (z—1)-independent §¢;
variables.

The proper-self-energy matrix is given by
E(q,iwe) = [[(¢'| 2(q,iwg) [ £)]], (3.15)

in which each matrix element (£|2(q,iw,)|£) is defined
to be the sum of all self-energy graphs associated with
propagator graphs in which Go(q,#,iw,) is the entering
line, Go(q,iw,) is the departing line, and the graph can-
not be separated into two topologically disconnected
parts by breaking an internal electron-propagator line.
The propagator is given by

G(g,iwg) = Go™(q,iwg) — 2(q,iw) ,  (3.16a)
G(qjin):—: HG(q’E,yE’iwq)” ) (3'16b)
Go(g,iwn) = 8y,:Go(q, /i) (3.16¢)

Therefore the evaluation of the propagator involves
both the evaluation of the matrix elements of the proper
self-energy [Eq. (3.15)] and the inversion of the matrix
(3.16a).

The second new feature in this surface-transport
analysis, the dependence of the form factors on Ry,
arises both due to the screening of charge impurities
and due to any spatial gradient, normal to the surface,
of the density or character of the potential fluctuations.
The change in character of the potential fluctuations,
e.g., from fluctuations due to irregularities in the bound-
ary layer to those due to impurity scattering, for differ-
ent values of R, suggests that the averages over R, ; and
Rii,; of S™ given by Eq. (3.13) should be performed
separately. In the case of bulk scattering using the po-
tential form factor given by Egs. (3.7), the averaging is
performed by a cluster expansion of S™ in which, if
Rii,:=R,,;, then necessarily R;;=R;. One might anti-
cipate that a description of surface transport is more
properly given by the two-step procedure of first averag-
ing over Ry, in the same fashion in each plane of con-
stant R,, and subsequently averaging over R,. The
physical interpretation of this procedure for impurity
scattering is that, by following it, we account for multi-
ple-scattering interference effects separately for each
plane of impurities parallel to the surface, and subse-
quently account for the interference between the various
planes. For graded junctions and surfaces, only this
modified prescription for the averaging is well defined.
The average over Ry, generates a power-series expan-
sion of the propagator in powers of ¢cii(R)=N;,u(R,)/4,
where N; i(Ry) is the number of impurities in a plane
parallel to the surface at a distance R, from it, and 4 is
the area of this plane. For a uniform system, the Ry
average generates an expansion in ¢;;=¢?/?, and the sub-
sequent R, average multiplies this expansion by a sec-
ond one in powers of ¢;=¢/3. Therefore the dual average
generates a two-variable expansion of the proper self-
energy in powers of ¢, and ¢; which, for a uniform sys-
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tem, degenerates into the customary expansion in
powers of ¢. The distinction between the bulk single
average and surface dual average is irrelevant for a
homogeneous fluctuation potential if one wants only the
lowest-order linear term in ¢. However, for a graded
junction the dual average is needed to calculate properly
this term as a linear superposition of the terms in the
dual average proportional to ¢;i(Ry).

We next develop a modified diagrammatic perturba-
tion theory for the calculation of the proper self-energy
in the general case that (a) the potential form factors
depend on R, as indicated in Egs. (3.8), and (b) the
fluctuation potential is inhomogeneous in the direction
normal to the surface, so that ¢u(R)=N;u(R))/4 is
explicitly a function of R;. It should be emphasized that
in most practical numerical calculations®!? only that
term which is the analog of the leading term in the ex-
pansion of the self-energy in powers of ¢;; and ¢, is con-
sidered. Although this term alone could be derived more
simply then via the discussion given below, the fact that
the formalism used by Stern and Howard® 19 (SH) is im-
plicitly but not manifestly equivalent to any of our
averaging procedures suggests that a more thorough
discussion of these procedures has utility. The discussion
proceeds in three steps. First, we give a prescription for
calculating the total self-energy after performing the Ry,
average, but prior to performing the R, average. Second,
we consider the example of the uniform potential (3.14)
and homogeneously doped sample to illustrate both the
reduction to the conventional bulk-averaging proce-
dure?22:27 and the definition of the proper self-energy
after the R, averaging has also been performed. Finally,
we give the extension of this example to the case of
graded doping and nonuniform potentials [Eq. (3.8)].

The prescription for generating (prior to averaging
over R,) that nth-order term in the propagator which is
proportional to

H Cn(Rn‘)
=1
is:

(1) Draw m<n dots associated with the m-independ-
ent values of R, in the average of Eq. (3.13).

(2) Associate with each dot a value of Ry (i=1,
--+,m) and connect the dots via # dashed interaction
lines [associated with (£j1]oRu, qi1—a;)|£)] to
n+1 propagator lines [associated with Go(q;,£;,5w,)] in
all possible ways, subject to the conditions (a) of con-
servation of q at each propagator-interaction-line inter-
section and (b) that the total q transfer associated with
each dot be zero.

(3) Integrate over the (»—m)-independent q; vari-
ables, sum over the (#—1)-independent §; variables, and
multiply by

‘1:11 Cu(Ru‘) .
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The relation of this prescription for calculating propa-
gator diagrams to the conventional bulk prescrip-
tion21+22:27 ig jllustrated by considering the equal-form-
factor limit in which the interaction lines are associated
with the potential (3.14), and ¢, is independent of R,.
To recover the fully averaged prescription given after
Egs. (3.14), we must perform the average over the R,
variables, with the assumption that R,;5<R,;. Thus each
dot is associated with a statistically independent im-
purity, and the R, average gives the condition of
> i k;=0 for the k; values associated with the interac-
tion lines emanating from a single dot. The other limit-
ing case, corresponding to accounting for interference
effects within a plane of constant R, prior to considera-
tion of interference effects between the planes, consists
of taking all of the Ry; values to be equal prior to averag-
ing over R;. In general, we specify in a diagram those
values of R, which are taken to be equal in the final
average by drawing a closed contour around the dots
with equal Ry;. The distinction between the bulk, co-
herent, and mixed selection of Ry; values is illustrated
in Fig. 4.

The concept of a proper-self-energy diagram is defined
only after all of the averages are complete. Thus Figs.
4(a) and 4(c) illustrate improper-self-energy diagrams,
but Fig. 4(b) illustrates a proper-self-energy diagram
because after the R, average, all of the dots in the closed
contours are associated with a single >, k;=0 conserva-
tion rule. A general topological definition of a proper-
self-energy diagram is one which cannot be split into two
disconnected pieces by breaking a single propagator
line. However, it is convenient to distinguish between
local proper-seli-energy diagrams, in which the enclo-
sure of the impurity dots does not constitute a topologi-
cal connection, and proper-self-energy diagrams, in
which such an enclosure does constitute a topological
connection. A variety of proper-self-energy diagrams is
shown in Fig. 5.

For graded doping, it is desirable to use the above ex-
pansions of a local self-energy to formulate a perturba-

Ry # Rz # Ry
7 \\ Il ‘\ 1 \\
/I \ ] \\ /o
L AY i ) L \
(a)
Ry = Rp = Ry
Il ‘\ l’ ‘\ II \
/0 [ [
Lo FANY Lo\
(b)
Ry = Rz # Ry3

LAY
(c)

Fic. 4. Sixth-order perturbation-theory diagrams in which (a)
illustrates the bulk-averaging procedure in which each independ-
ent value of Ry is also associated with an independent value of
R,, (b) illustrates the surface-coherence limit in which all of the
independent Ry values are associated with the same layer, and
(c) illustrates a mixed case.
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tion theory, to which we refer as the coherent-parallel-
plane (CPP) theory, in which interference effects within
planes of fixed R, are accounted for prior to considera-
tion of interference between these planes. The essential
ingredient of the CPP theory is our restatement of the
averaging procedure in such a fashion that the averages
over R, and R, are separate. This added flexibility per-
mits the summation of different subsets of self-energy
diagrams than those usually considered in the bulk
impurity case.?'?%27 The appellation “‘coherent parallel
plane” arises from the possibility of summing up all self-
energy diagrams for motion in a given plane parallel to
the interface prior to the evaluation of the total proper
self-energy by performing the R, averages. This parti-
cular subsummation proceeds in two steps. First, we
construct the local proper-self-energy tensor to be the
sum of the self-energy diagrams which (a) are associated
with only one value of R, and (b) are local proper-self-
energy diagrams in the sense that interaction lines, but
not enclosures of impurity dots, form topological con-
nections between portions of the diagram. Such a con-
struction is shown in Fig. 6. Terms proportional to ¢,/™,

AN AN
S \‘\ A \
] \ 1 !
L_._Ju...l
{a) (b)
/Q\ ,’®\ 7NN
4 A N p) P \

(c) (d)

F16. 5. Proper-self-energy diagrams in which the equal values
of Ry; in the final Ry average are denoted by closed contours about
the Ry independent-impurity dots.

m>1, arise from three sources: local proper-self-energy
diagrams, like Fig. 5(d); local self-energy diagrams, like
Fig. 5(b), in which only one R, value is involved, but
the diagram is not a local proper-self-energy diagram;
and diagrams like Fig. 5(c), in which more than one
value of R, occurs. We wish to evaluate the subsum
which consists of summing all contributions to the self-
energy in which the R, values are the same in higher-
order terms in ¢,(Ry). Thus the local-proper-self-energy
tensor X(q,iwg; Ry) is treated as a building block to be
summed prior to the R, average being performed. The
coherent local proper-self-energy tensor I'(q,iwg; Ry) is
defined to sum up the proper self-energy to all orders in
cu(Ry) for a given value of R,. It is given by

r(q)iwq; Rl) = z(qyimel)[l—- Go(q,'i(x)q)
X E(q,iwe, R T, (3.17a)

and is illustrated diagrammatically in Fig. 7, in which
the wavy line denotes I'(g,iwg; Ri). We reemphasize
that summing this selected subset of diagrams does not
generate alljthe terms proportional to ¢, m>1, in the
perturbation theory. For example, it omits Fig. 5(c),
which is the usual® second-order term for homogeneous



168

systems. In fact, we define the coherent self-energy
not so much because of its utility, but because it is the
end result of systematically treating the system as an
array of two-dimensional impurity planes (each with its
own impurity density and potential form factors) from
which the electron scatters independently. Therefore,
summing the above subset of diagrams formalizes the
intuitive approach of SH,!° which utilizes only the
“T-matrix” expansion for the self-energy illustrated in
Fig. 8.

The total nth-order proper self-energy is obtained
from the local self-energy by adding to rules (1)—(3)
above the following final prescriptions:

(4) Draw only nth-order diagrams which are proper-
self-energy diagrams (using both impurity-dot enclo-
sures and interaction lines as topological connections).

Ry Ry
® O]
] A
< Quiag ;roIE> ‘,I_L‘_ * A
o' q¢ € ¢
$ R
+ /N + 7\ +

o

+ 1 XN Foenn
I

o u

F16. 6. Definition of the local proper self-energy (& |Z (q,iwq; Ry)
X | £) for motion in the plane parallel to the surface a distance Ry
from the surface. For convenience, the external propagator lines
have been retained in the diagrams, although they do not con-
tribute to =. The fact that (¢'|¢(Ry, q — 0)|£) does not vanish
for a graded junction has been used in constructing the definition.

In a given diagram multiply by
H Cl(Rli) b
=1

corresponding to s-independent impurity-dot enclosures,
and integrate over dRy,. This diagram then gives a con-
tribution to the proper self-energy proportional to
cn™cyb.

(5) Sum over the possible topologically distinct 7th-
order diagrams.

The coherent proper-self-energy tensor

= (qio)= [ IRy a(RT(ajiog R (.17h)
J

corresponds to the sum of all self-energy diagrams linear
in ¢,(R,), but of arbitrary order in ¢;(Ry), for a single
value of R,. The conventional transport theory results
from considering only those terms proportional to ¢i;(RY)
which in turn, for a single-band model, are the T-matrix
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F16. 7. Definition of the coherent self-energy of an electron due
to the potential fluctuations in a plane parallel to the surface. It
is not true that (¢'|¢(Ry,q)|£) vanishes as ¢ — 0 for a graded
Junction. ’

diagrams of Fig. 8 contributing to both I'(q,iw,; R,) and
Z(q,iwq; Ry).

D. Diagram Evaluation: Simple Example

In this subsection, we evaluate several low-order dia-
grams in the CPP theory and compare the results of this
theory with those of Stern and Howard.?10 The under-
lying physical approximation in the SH model poten-
tial (Appendix B of Ref. 10) is that the space-charge
channel is narrow relative to changes in the potential of
a charged-impurity center. Interband-scattering matrix
elements are expected to be small in such a limit because
of the orthogonality of the X.(z). Therefore let us, for
purposes of illustration of the interband-scattering
effects, consider the opposite limit of a & potential
(“contact interaction”) whose strength, however, can
depend on its distance R, from the semiconductor sur-
face. We use

9(Ry; 0—Riy, 32— Ry)=va(R1)8(e—Ri)8(z—R,), (3.18a)
v(Rlyq)k) = vQ(RL) ) (318b)

in which vq(R)) is the strength parameter with units of
energy-volume. The use of Eq. (3.18) is well known to
lead to certain pathological results.*? However, this fact
does not eliminate the utility of Egs. (3.18) for our illus-
trative purposes.

The lowest-order contribution to the proper self-
energy is that illustrated by the leading term in Figs.

® @ ® G

PR A /1 i\

= /A + AR + IO\ e
L ALY IR

_ F16. 8. The “T-matrix” diagrams corresponding to the contribu-
tions to the proper self-energy which are linear in the total im-
purity concentration in the equal-form-factor case. The presence
of the diagram with a single dashed line is a consequence of the
fact that the first-order matrix element (&'|¢(Ry,q)|£) does not
vanish as ¢ — 0, and for graded junctions does not result in trivial
subtractions.

0 C. Herring, Exchange Interactions Among Itinerant Electrons
(Academic Press Inc., New York, 1966), pp. 14, 15. e
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7 and 8:

(6120 (q=0)| &)= / 4R, o(R)

X(Ef[‘i’(Rl) q= 0) I gt) )
C(RJ.)ECH(RJ.)G.L(RJ.)-

(3.19a)
(3.19b)

It is convenient to perform the % sum in Eq. (3.14a) ex-
plicitly. Doing this, Egs. (3.14) lead to

00

(&r|p(RLQ) | &)= dz Xg(2)Xz.(3)
- Xv(Ry, q, 5—R.), (3.20)
which, for the & potential, gives
(&r]p(RL) | £) =%, (R)va(R)Xg(Ry).  (3.21)

In the limit of equal form factors and homogeneous
doping, the off-diagonal terms of (3.19a) are zero by the
orthogonality of the X¢, whereas the diagonal terms give
the well-known?2!:22.27:41=4¢ impurity-induced shifts of
the bottom of the band of carriers, AE=v(q=0, £=0).
For graded junctions or spatially dependent form fac-
tors, the band shifts due to the diagonal terms in (3.19a)
depend explicitly on £, and the off-diagonal terms no
longer vanish. This result is a consequence of the spatial
dependence of the average impurity potential. The
matrix elements (&|Z®|£) vanish if and only if the
average impurity potential is incorporated into the
definition of the external potential V.(x) in Eq. (2.3b).

In evaluating higher-order matrix elements of the
proper self-energy, we consider the retarded self-energies
obtained by the analytic continuation 4w, — e+8. The
second-order contribution to 2 resulting from the second
term in Figs. 7 and 8 is

(&]129(q,0) | £)= / 4R, o(R,)

XEZ, (&r|d(Ry, a—a) [£)G(E d's€)
X(E' |o(Ry, ' — Q)| &)

If the free propagator G, is used in the intermediate
state (as is customary in the one-band model), then the
real part of the self-energy diverges logarithmically at
gate voltages, for which a new & band moves through
the Fermi energy. Thus the free-electron intermediate
propagator is adequate for calculating the lifetime
matrix

(&71/270(q,€) | £)=1 Tm (£;|2?(q,€) | &)
= (gfl I‘o(q,e) | S‘L) )

(3.22)

(3.23)

41 R, Parmenter, Phys. Rev. 97, 587 (1955); 104, 22 (1956).

2 M. Lax and ], C. Phillips, Phys. Rev. 110, 41 (1958).

8 P, A. Wolff, Phys. Rev. 126, 405 (1962).

4V, L. Bonch-Bruevich, Fiz. Tverd. Tela 4, 2660 (1962)
[English transl.: Soviet Phys.—Solid State 4, 1953 (1963)].
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but we must use a dressed propagator
GI‘(([,E,G) = [é—E(q)— E+1F0(q>e; E):I-l

to compute the real self-energy. We find for the § poten-
tial at 7=0

To(gy6,8)= f 4R, o(R.) [va(R0) ] Xe(R)

(3.242)

X% | Xer(RL) | 2mpu (£)0(e— &), (3.24D)
<£fl2(2)(q;5) l &)= /dR-l c(Ry) [WQ(RJ.) Izigf(Rl)Xgi(Rl)

X% | Xe(RL) |2F (Eo,To(£,€),€¢), (3.25a)

1 [Tet(E—e?
F(EoTo )= pu(#) {— lnl:———]
2 F02+E02

—i[tan'l(Eo/Po)—tan—l((s'—e)/ro)]] , (3.25b)

pu(§)=m(§)/2x%?,

in which E, is a cutoff of the d?g integrals due to our
model potential not depending on ¢, and m(§) is the
carrier mass in the £ band (the values of # are not iden-
tical for all ¢ in multivalley semiconductors). We again
anticipate that for a uniform system the orthogonality
of the X; will have the consequence of small off-diagonal
matrix elements.

We next consider two additional types of diagrams
which are not explicitly incorporated in the T-matrix
approximation to the self-energy. These are the self-
energy-insertion diagrams of the form illustrated in Fig.
9, and the crossing diagrams as illustrated in Fig. 10.
The self-energy insertion illustrated in Fig. 9(b) has al-
ready been utilized implicitly by calculating Eq. (3.25)
by use of (3.24). However, Eq. (3.24) takes into account
only the lifetime effects associated with the self-energy
insertion. Its use is conventional in bulk-resistivity cal-
culations?"?%27 for which the bottom of the impurity
band lies far below the Fermi energy. However, from Eq.
(3.25b) we see that as || — 0 (i.e., the bottom of a
quantized-state band moves through the Fermi energy),
both dispersive as well as lifetime effects become impor-

(3.26a)
(3.26b)
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F16. 9. The lowest-order self-energy insertions into the inter-
mediate-state propagator of the second-order T-matrix diagram.
These terms are proportional to ¢(Rii)e(Rys) and therefore are of
lower order in an expansion in powers of c.
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Fi6. 10. The two lowest-order crossing diagrams omitted from
the T-matrix approximation shown in Fig. 8.

tant. Thus, if we were to rigorously use perturbation
theory in Eq. (3.25), we find that for a single quantized
state the energy-shell dispersion relation is given by the
solutions to

x=E(@)+Ep(8) In|x/Eo| , (3.27a)

ED(E)':Pll(f)/dRL c(RL)|va(Ry) 2| Xe(RL) |4, (3.27b)

x=e—§. (3.27¢)

The solution to Egs. (3.27) indicates a shift to higher
energies of the bottom of the £ band. This shift occurs
in addition to that given by Egs. (3.19) and is a conse-
quence of the strong e dependence of the real self-energy
as || — 0. A proper treatment of these dispersive
effects requires a solution to the Dyson equation illus-
trated in Fig. 11. The diagonal terms of this matrix equa-
tion are given by

E(E,é) ""I:P(E,G) =§ ED(E)E/)F(Elye) ’ (3.28&)

ED(E;£,)=pll(E,)/.de C(Rl)lvﬂ(-Rl) | 2

X [ Xe(R1) || X (RL) |2,
I2(¢,6)+[E—et+-2(£,¢) J?
I'2(¢,6)+[Eoct+2Z(4,6) 2

o2

— tan"l(%;—ig—fﬁ>} . (3.28¢)

A more detailed discussion of the dispersive effects de-
scribed by this equation will be given elsewhere.?®

The contributions to the self-energy of the crossing
diagrams illustrated in Fig. 10 may be written (for the

(3.28b)

F(te=3In

®

:D:———>+—>-/_:(>—_:‘):>

F16. 11. The Dyson equation for the dressed propagator (de-
noted by the double solid line) in the second Born approximation.
Only the diagonal components of the matrix equation are explicitly
considered in the text.
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6 potential) as
<£f|2(i)(q7iw4) ] £i>= Z A® (SI:EEELS%&)

£1b283
XS(EI)&;E?»;q:iwq), (3293)
S(ElyEZ,E%q)in)
3
= > 1II GI‘(‘ls:Es:iwq)aqa.q1+qz——q , (3.29b)
41,492,943 s=1

A (g, 1,80, 85,8 = BEp Eryba k) B(En, 0 E5,80) ,  (3.29C)

B(&o,£1,80,83) = /de ¢(Ry)|va(R)) |2
X XEO(RL>XEI(R—L) iéz(Rl)XSa(RL) ) (3-29d)

A ® (Ef’£17£2;£37£i)= /dRJ. Cll2<R.L)c]_(RJ_) ‘vn(RJ.) I ¢
><><asf(Rl)Xz,-(Rl)IiI1 [Xe,(Ru) |2, (3.29)

The important aspect of these diagrams is that because
of the 8 function in Eq. (3.29b), for £<0 their order of
magnitude is given by??
Im{E[Z@ | E)~To(To/| £]),
~To, ToS|E].

[E[>Ts (3.30)

Therefore the crossing diagrams are of the same order of
magnitude as the T-matrix diagrams when |£|~T,.
We begin the comparison of our analysis with that of
SH® by noting that in this subsection, we have utilized
the & potential [Eq. (3.18)] to illustrate the application
of the prescriptions of the previous subsection to calcu-
late some low-order diagrams. We find that in bands for
which |£[ ST, dispersive effects in real =(g,¢) can sub-
stantially influence the self-energy and that crossing dia-
grams are not in general negligible relative to 7T-matrix
diagrams. A numerical study of these effects, as well
as those due to the off-diagonal matrix elements of the
self-energy tensor, is given elsewhere.?* The Born-
approximation equations of SH*!° correspond to setting
Re (¢'|2(q,e) | £)=0 and using Eqs. (3.23) and (3.24b)
to calculate the inverse lifetime 7. The extra factor of
cosfly.q in their integrals arises from the vertex correc-
tions (Sec. IV B) to the resistivity discussed in the next
section of this paper. The SH phase-shift analysis corre-
sponds to using the energy-shell 7" matrix in place of the
potential matrix element in Eq. (3.24b). For the single-
band model which they use, this result follows from a
summation of the diagrams in Fig. 8 in a fashion exactly
parallel to its well-known derivation in three dimen-
sions.??227 Hence our evaluation of the self-energy dis-
persive effects and crossing diagrams constitute an
estimate of the corrections to the Boltzmann-equation-
type model used by SH. However, we reiterate that the
emphasis is placed quite differently in our analysis than
in that of SH. They are primarily concerned with
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a realistic evaluation of the potential and lowest-order
scattering associated with charged impurities. We are
primarily concerned with the structure of the transport
theory itself and use the 6-model potential as a tool to
illustrate various aspects of this structure. Therefore, as
pointed out in the Introduction, the two analyses are
complementary, and a thorough study of, e.g., the Si
experiments,? must incorporate aspects of both.

IV. EVALUATION OF THE LOCAL
SURFACE CONDUCTIVITY

A. Formal Specification of the Conductivity

In this subsection, we derive specific formulas for the
surface conductivity Ac,, given in Eq. (2.13) by using
the surface-channel representation (2.8) in Egs. (2.7)
and (2.12c). Noting that for surface transport we want
only pv={1,2} in Eq. (2.13), the substitution of Eq.
(2.8) into Egs. (2.7) and (2.10b) leads to

e2h?

Pou(q,8,8 iwn) =—— 22 Xg,(3) Xeo(8) Xes(3') Xy (2)
Me? Erkakata

X Z pv"rn[p-f—; £1,E3,00p; P—;E%E%K“’p"‘wﬂ)] ’ (4-13)

p,iwp
wa=2mn/B, (4.1b)
wp=(2n,+1)7/B, (4.1¢)
PL=p=+3q. (4.1d)

The quantity , is referred to as the vector-vertex func-
tion and is defined diagramatically in Fig. 12. The
lowest-order contribution is given by

W#(o)[p+7glsg37iwp; p—5£2’£4>i(""p—w")]
= pul1| G(p+iwsp) | E5)(E2| G(p-,i(wp—wn) | £4).  (4.2)
A simplification occurs when Eq. (4.1) is inserted into

Eq. (2.13) for the conductivity, because the z’ integra-
tion in Eq. (2.12¢) gives a 8¢, factor in (4.1a), and the

P Ko & ilwy-wy )

E E»i“’n

F+,€| 63- i“‘P

I

+

-
B3

FiG. 12. Diagrammatic definition of the vecté)r-vertex function
Tu(DE1,E8,50p 5 P-Es,E2,8(wp—wn)). The lowest-order vertex function
is"gi\i;en’ b)yz chi (4.2’) in the text. Only those diagrams are included
in the sum which contain no self-energy insertions on the propa-
gator lines. The propagator lines are associated with the complete
propagator matrices.
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2z integration gives a 8¢, Thus we regard
%: 7";4[[)4.,51,52,1.(0”; p~7£2,£47i(wp-wwn)]
2
= (&1 mu[psiwp; P-yi(wp—wn) ][ &) (4.3)

as the matrix elements of a matrix =,. Using this nota-
tion, Eq. (2.12¢) becomes

eh?

Po(ayion)= (4.42)

2

2 208 u(P4,P—iwn) ,
P

Me

Su(P4,P—,iwn)
1
=EZ Tri{m[py icwy; p—ai(‘*’p—wnﬂ} , (4.4b)

in which the Tr operator is defined with respect to the
¢ index, and the sum over w, must be performed prior to
the analytic continuation 4w, — #w-+16 needed to ob-
tain P%,, for use in Eq. (2.13). Equations (4.4), (4.3),
and (2.13), together with Fig. 12, define the Green’s-
function calculation of the surface conductivity.

From Eq. (4.4) we see that the calculation of A con-
sists of two steps: the evaluation of the vector-vertex
matrix [Eq. (4.3)], and the performance of the p integral
and w, sum in (4.4). The need for introducing the vector
vertex arises because the contributions of all the first
three terms on the right-hand side of the equation in
Fig. 12 give contributions of equal order of magnitude to
the vertex®!:22 in the limit that | Ty|<<|£|. In analogy
with the three-dimensional case,222 the ‘“ladder-
diagram” contributions to the vector vertex are summed
by solving the integral equation illustrated in Fig. 13
and given by

T P i0p; P—yi(wp—wn) ]= G(pyiwp)
X {Pu‘f‘% / AR, ¢(R)®(Ry1,q)m,
X[ps+a, iwp; p-+q, i(wp—wa)]
X®(R,, —q) } G(p—i(wp—wa), (4.52)

(R, =¥ [o(R0,@) [ £ (4.5b)

The matrix elements (¢'|¢| £) are given by Egs. (3.10).
When a band edge is near the Fermi surface, ie.,
|£] — 0, then in the component of =, diagonal in £,
other diagrams besides the ladder diagrams give con-
tributions to Im w~T. This result is analogous to the

e

Fi16. 13. Diagrammatic expression of the integral equation for
the vector-vertex matrix which sums the ladder diagrams.
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large contributions to the crossing diagrams in the self-
energy and arises from the same cause: the failure of
phase-space restrictions on intermediate-state propaga-
tors to give factors of T'y/| £|<<1. Thus we anticipate an
enhanced resistivity in bands whose minima lie just
below the Fermi energy.

The use of Egs. (2.13), (3.22), (3.23), (3.24a), (4.4),
and (4.5) gives the Green’s-function approximation to
the conductivity equivalent?!?? to the Boltzmann-
equation method of SH® ! but extended to the case of
multiple occupied localized state bands. These equa-
tions, plus the diagrammatic prescription in Fig. 12 for
calculating corrections to them, constitute the formal
solution to the problem of calculating the conductivity
for an arbitrary interaction and arbitrary quantized-
state eigenvalue spectrum in the space-charge region.

B. Independent-Band Limit

In the case of an arbitrary impurity potential, the
conductivity can be evaluated in closed form only in the
independent-band limit in which the off-diagonal ma-
trix elements of ® and G are taken to be zero in Eq.
(4.5). We also require that for all occupied bands,
T'o(£)/| £]<1, so that the crossing diagrams are negli-
gible. In this limit we replace G with G r as given in Eqs.
(3.23) and (3.24) and perform the analysis for an arbi-
trary interaction ®. The use of the & potential [Eq.
(3.18)] leads to the vanishing of the “ladder-diagram”
corrections illustrated in Fig. 13. Therefore the calcu-
lation of the conductivity is greatly simplified. However,
the results of such a calculation remain sufficiently com-
plicated and dependent on the details of the doping for
graded interfaces that we defer discussion of them to
another work.?s It is evident that the independent-band
limit will give us the two-dimensional analog of the
three-dimensional Boltzmann-equation transport theory
in each band. The technical aspects of our analysis differ
from those of the well-known derivations?!:2% of this re-
sult in three dimensions only via our use of temperature-
dependent retarded Green’s functions rather than
the zero-temperature time-ordered Green’s functions.
Therefore we present only an outline of the calculation.

Rather than solving Eq. (4.5a) for =, directly, it is
customary to define A by

DA (pyicoy; icon) =5 / dR, c(R)B(Rug)
q

Xz [ D44, iwp; p-+q, i(wp—w,) JB(RL,q) ,

and solve for A via the use of

(4.6)

A(p,iwy; Q,i0,) = /de c(R)Y (—P—>
¥ \p

X COSBP'P'(I)(Rlx p— pl) G(p+,7iw17) { 1+A(pl7iwmq)iw n)}
X G- i(wy—wa))®(R, p'—p), (47)
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which is derived directly from Eq. (4.5a), assuming that
®(R,, p—p’) depends only on p, p’, and cosf,.,.

In order to solve Eq. (4.7) for A, we first note that
only S,(p4,p—,iw,) enters into Eq. (4.4). By first evaluat-
ing S, in terms of A, we argue that the p’ dependence of
A can be ignored in the integral on the right-hand side of
Eq. (4.7). From Egs. (4.4), (4.5), and (4.6) we see that

1
Syu(Ps,P—yiwn) Z[; 2 2w Tr{G(py,ic,)
X[1+A(p;iwp7qyiwn)]G[p—: i(“’ﬁ_'wn)]}

=2fi' dzf(z) Tr{G(py,2)

i J
X[14A(p,5; 4,i0n) JG(p-, 5—iwn)}
f(z)=[1+exp(z/kT) 1.

The contour ¢ and cuts of both the G and A factors are
shown in Fig. 14. Performing the z integration first and
then the analytic continuation iw, — #iw+-18 gives

(4.8a)
(4.8b)

00

1
S (pp—w)== [ fle)dx p, Tr[ G*(py, x+7iw)

XIm{[14AR4(p,x,q,0) JG4(p—,x) } — Im{ G~ (p4,x)
XI:I"I_ARA(p;xyq!w)]}GA(p——) X hw)} . (49)

The surface conductivity is specified by Egs. (2.12),
(2.13), and (4.4) to be

(274 1)eh2

m 2w

Ao, (q,0)= Y po Im[S,B(py,p_w)], (4.10)

where in writing all our results we use the conventions
that FE=Re(F)—1i Im(F), and j is the spin of the carri-
ers of effective mass m,.. For many-valley semiconduc-
tors an additional sum over valleys must be inserted into
Eq. (4.10).

Im(z)

c— I (2n+1)
B R

WW\/V\NWWWV\/VVVW\N\IM(Z):iw"

{ -

Re(z)

Fi1G. 14. The contour C for the evaluation of the integral in Eq.
(4.8a) in the text. The cuts at Imz=0 occur from both G(p,,2)
and A (p,2; q,iws). The phases have been selected so that the cut
in A lies infinitesimally below that of G. The cuts at Imz=1iw,
arise from a cut in G(p_, 2—iw,) placed infinitesimally above one

in A (p;z,qriw'l)'
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The important result to be noted in Egs. (4.9) and
(4.10) is that in calculations of the conductivity, the fac-
tor Im(¢|GE(p,x) | £)=rd(x— E(p)— &) in Eq. (4.9) will
project out a single value of E(p) for a given x value.
Furthermore, as w — 0 for the uniform static conduc-
tivity, the two terms in Eq. (4.9) cancel unless xS k7.
Therefore, in calculating the low-temperature conduc-
tivity, if #7<<|%| for the filled bands, then we must
evaluate A(p, #, ¢=0, o — 0) only on the Fermi surface
of the various two-dimensional bands, i.e., at | p| = pr(£)
defined by Eq. (3.26a). This observation motivates the
central approximation used in deriving the Boltzmann
transport theory: the replacement A(p,iw,,q,iw,) —
b0l¥'| Apr(8), iy, a=0, iwn)| £) in Eq. (47). In the
independent-band limit this replacement reduces Eq.
(4.7) to an algebraic equation for the diagonal matrix
elements of A(pp,iwy,,0,iw,). The solution to the equa-
tion may be written as

A=M[1-MT", (4.11a)

(€| M (pr(8),iwpyiwn) | £)
= /de C(RL)Z’: cosby.p’ l (EI‘I’(Rl, p—p’) l f>| 2

XGI‘[p,agai(wﬁ—w")]GP(plag;iwp) ’ (4'11b)
in which both M and A are diagonal matrices in the &
index. The further approximation is made at this point
that the p’ dependence in ¢ is slow relative to that in the
Green’s functions. We obtain from Eq. (4.11b) the
result

(e | = (4122
— 2mpu(®) f dR. o(R) f i
71(,£) 2m
X |(€|¢(Ri, pr—p#) | £)|? cosbp.p, (4.12Db)
=28 e 300,018 =2r0(9) [ 4R, oR)
7o(p,%)

X/d¢pll<sl¢(1€l,pp—pp'){g:)P. (4.12¢)
2T

The final step in the evaluation of ¢,,(0,») is the in-
sertion of Eqs. (4.11) and (4.12) into Egs. (4.9) and
(4.10). The p integral in Eq. (4.10) is performed first.
To obtain the Boltzmann-equation result, we again use
the approximation that 71 and 7o can be thought of as
constants in the p integral because they vary slowly
relative to the Gr factors which occur in Eq. (4.9) in
the independent-band limit. Using this approximation
and noting that the Tr operation in Eq. (4.9) reduces
to a sum over filled-band indices £<0 in the inde-
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pendent-band limit, we obtain after some algebra

(2j+1)e
- Z %Pll(f)(h2PF2(5))0(“ 5)

70u(0,0) = 8,
m.2 £

X/ %Ef(x)—f(x-{—ﬁw)] Re[ :I, (4.13a)

7
w_,_i/T(PF)E)
/7(p,€)=1/T0—1/71

dd’p’
=27Tp[|(2)/C(RL)dR1/( )

2

X | (€| ¢(Ry, pr—pr) | £)|2(1—cosby.p). (4.13b)

In the limit that w— 0 we obtain the static
conductivity

‘TW(O;O)= 5vu2 W ’
H Me

(4.14a)

n(§)=(2j+1)pr*(E)/4r.

Equations (4.13) and (4.14) are just the Born-approxi-
mation Boltzmann equations used by Stern and
Howard,*0 as we anticipated from the analogy with the
analysis in three dimensions.2!:22

The above analysis can be generalized to include the
case in which both the real and imaginary parts of the
self-energy depend on e but not on p. The results, which
are given in Ref. 25, are not quite equivalent to using
7(pr,E) = 7(pr,Ex) inside the integral in Eq. (4.13a).
They reduce to this substitution only in the limits that
|6—E—(£|ReZ(x) | £)|>>%/7(pr,£,x) for all values of #
which are important in the integral, and (¢|ReZ(x)]£)
can be regarded as constant over this range of values for
x.

(4.14b)

C. Synopsis and Discussion

In Sec. II, the surface conductivity due to carriers in
a space-charge channel is formulated as the linear re-
sponse to an electric field parallel to the channel. The
evaluation of the conductivity in terms of a finite-
temperature, retarded-propagator formalism is given in
Sec. IV. In order to evaluate the propagators, a pertur-
bation-theory, diagrammatic formalism is developed in
Sec. IIT which utilizes averaging techniques suitable for
the description of a random fluctuation potential. This
potential is constructed to include the effects of scatter-
ing from the surface and of local variations in both the
concentration and scattering potential of individual
scattering centers. This extension of the bulk-conduc-
tivity calculation leads both to the necessity of incor-
porating the average fluctuation potential into the self-
consistent definition of the one-electron channel poten-
tial and to modifications of the strength of various
perturbation-theory diagrams. In the quantum limit the
two-dimensional character of the localized-state energy
bands causes both rapid changes in the single-particle
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(and transport) lifetime with energy and logarithmic
dispersion in the single-particle energy spectrum. Sec-
tion IV B concludes the analysis with a specification of
the approximations and limits needed to recover from
the propagator theory the single-channel Boltzmann-
equation analysis of Stern and Howard.®:10

As implied in the Introduction, the theory in this
paper is developed primarily for its application to the
description of surface transport in narrow channels
at the semiconductor surface in a field-effect de-
vice.1:5:9-14,16-18 Ttg application to the analysis of trans-
port at InAs surfaces is given elsewhere.?’ An important
aspect of transport in semiconductor surface channels is
the tendency of these channels to form “one-dimensional
atoms” at low temperatures when they trap enough
charge to form a degenerate Fermi gas. The appellation
“atom” is used because the width of these regions is
t~ap, and the energy spacing of the localized-state
eigenvalues (for motion normal to the surface) is ~1-10
times the shallow-donor (acceptor) binding energy. In
such channels the quantum limits of AE;>[«T,To(£:),
T'9(£;)] can be achieved for good surfaces at helium tem-
peratures. As the temperature or surface roughness is in-
creased until AE;~[kT,To(£:),Io(¢;)], the quantum
theory developed herein goes over into the well-known
semiclassical Boltzmann-equation theory—%4% for trans-
port in systems which are macroscopically inhomogene-
ous, but, unlike our case, are microscopically homogene-
ous. A quantum theory is required in the limit of the
channel width becoming sufficiently small that the
microscopic-homogeneity condition is violated. This
situation also can exist in other systems, like continuous
very thin films.46:47

Previous theoretical analyses?S of quantum size effects
in thin bismuth films have neglected both the inhomo-
geneity of the potential form factors and the dispersive
effects discussed in Sec. III D. In fact, we show in Ref.
25 that the neglect of the dispersive effects substantially
alters the calculated results for both equilibrium and

4 A recent review of the semiclassical transport theories of sur-
face conductivity has been given by D. R. Frankl, Electrical Prop-
erties of Semiconductor Surfaces (Pergamon Press, Inc., New York,
1967), Chap. 4.

4 B. A, Tavger and V. Ya. Demikhovskii, Fiz. Tverd. Tela 5,
644 (1963) [English transl.: Soviet Phys.—Solid State 5, 469
(1963)7; V. B. Sandomirskii, Zh. Eksperim. i Teor. Fiz. 52, 158
(1967) [ English transl.: Soviet Phys.—JETP 25, 101 (1967)]; L
O. Kulik, JETP Pis’'ma v Redaktsiyu 5, 423 (1967) [English
transl.: Soviet Phys.—JETP Letters 5, 345 (1967)].

47 Yu. F. Ogrin, V. N. Lutskii, and M. I. Elinson, JETP Pis’ma

¥ Redaktsiyu 3, 114 (1966) [ English transl.: Soviet Phys.—JETP
Letters 3, 71 (1966)].
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transport properties. Therefore the calculation of the
properties of thin bismuth films should be reexamined
using our more general perturbation theory.

Finally, it is evident that in the quantum limit our
transport theory is similar to that of a dilute, random
alloy,?®41.4-52 hut in two rather than three dimensions.
Therefore many features of transport in these alloys
have analogs in the quantum theory of transport in
narrow channels. An example of current interest is the
Kondo effect,? which occurs when the scattering centers
exhibit the spin-dependent potential V(x—R,)=0¢-S,J
X (x—R;). The perturbation theory developed by
Abrikosov?® can be trivially extended to the narrow-
channel situation via replacing multiplication by the
concentraction ¢ with multiplication by ¢(R,) and inte-
gration over Ry, using at each fermion-pseudofermion
intersection the interaction (¢'|J(Ry,q)| £) defined using
Egs. (3.14). All sums over £ variables are performed in
accord with the prescriptions in Sec. ITI C. The logarith-
mic divergence of (¢|ImZ®(q,¢)|£) as e— 0 occurs in
our theory in exact analogy with its occurrence in the
theory of three-dimensional dilute magnetic alloys. The
new analytical feature of the Kondo effect in two di-
mensions is the exact rather than approximate constancy
of the density of states inside the perturbation-theory
integrals. The new physical feature of the surface-
channe] system, important for both the Kondo effect
and other many-body effects, is the possibility of vary-
ing the density of the degenerate-electron fluid by vary-
ing the gate voltage. Therefore the properties (and in
particular the phase diagram) of the fluid can be studied
experimentally, using a given sample in which both the
temperature and density of the fluid can be controlled
both reversibly and in a relatively simple fashion. This
fact renders the surface-channel system as an outstand-
ing possible test case for the various many-body theories
of the electron gas and, in particular, for theories of its
collective magnetic and superconducting behavior.
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