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VI. CONCLUSION

Although the interpretation of the characteristics of
the helicon propagation is far more complicated than
the interpretation of direct resistance and Hall e6ect
measurements by conventional techniques, the helicon
technique is more suitable for low magnetoresistance
studies. As the results that we have discussed show,
useful information about the topology of the Fermi
surface can be obtained from the oscillations arising
from magnetic breakdown.

A more detailed study of the quantum oscillations
should enable further quantitative checks to be made,

not only of the band-structure calculations but also
of the theory of magnetic breakdown.
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The 0.5-G splitting of the conduction-electron spin resonance in potassium (at 4200 G) observed by
Walsh, Rupp, and Schmidt can be quantitatively explained providing the conduction electrons are in a
charge-density-wave (CDW) ground state. The Fermi-surface distortion caused by the CDW energy gap
leads to an anisotropic conduction-electron g factor depending on the angle between 8 and the wave vector
Q of the CDW. The extremal values of g, corresponding to (}J H and Q~~H, ditfer by (3V/SEe)hg, where
Ag= —0.0025 is the observed g shift. V is the observed threshold energy of the Mayer-El Naby optical-
absorption anomaly, and Ez is the Fermi energy. The predicted maximum splitting is 0.56 G. Interpretation
of the data requires the sample to have a macroscopic domain structure, caused by thermal stress and plastic
Qow when the potassium-Para6lm sandwich is cooled to He temperature. The orientation of Q in stress-free
regions should be parallel to H. In regions of high stress, Q is presumed perpendicular to the surface, and
therefore approximately perpendicular to H.

I. INTRODUCTION

WO years ago, Walsh, Rupp, and Schmidt'
observed conduction-electron spin resonance

(CESR) in extremely pure potassium. Linewidths as
narrow as 0.13 G were obtained at a resonance field of
4200 0 and a temperature of 1.3'K. The observed g
shift, caused by spin-orbit coupling, was kg= —0.025(4),
and represents an experimental shift of 5.3 G. A very
puzzling feature of their result was that the CKSR
signal split into two well-resolved components as the
magnetic field was tilted away from an initial orienta-
tion parallel to the surface of the potassium. The
splitting reached a maximum value of about 0.5 G at a
tilt angle of 9'. At larger tilt angles the signal intensity
diminished, and one component vanished rapidly. The
splitting has been observed in a number of specimens'
having sufhcient purity to yield comparably narrow
lines.

The possibility that the splitting is caused by an arti-
fact arising from excitation of both faces of a thin

' W. M. Walsh, Jr., L. W. Rupp, Jr., and P. H. Schmidt, Phys.
Rev. 142, 414 (1966).' W. M. Walsh, Jr. (private communication).

sample has been ruled out by Lampe and Platzman, '
who computed the surface impedance spectra for a
variety of configurations. They found line-shape varia-
tions but no splitting. The possibility that it is caused
by new collective modes (paramagnetic spin waves),
resulting from conduction-electron exchange inter-
actions, was ruled out by Platzman and Wolff. 4 They
indeed found that such modes exist theoretically and
provide a quantitative explanation of the sidebands
reported by Schultz and Dunifer. ' The 0.5-6 splitting,
however, remained a mystery. 4

An important characteristic of CESR is that in-
dividual electrons undergo several thousand quantum
transitions among levels at the Fermi energy during a
spin relaxation time T2. Consequently the resonance
field is determined by the average g factor (the average
over all levels that contribute to the paramagnetism).
Since an averaging process necessarily results in a
unique number, a single resonance must always be

' M. Lampe and P. M. Platzman, Phys. Rev. 150, 340 (1966).
4 P. M. Platzman and P. A. WolG, Phys. Rev. Letters 18, 280

(1967). For a theory of short-wavelength paramagnetic spin
waves, see L. L. Van Zandt, Phys. Rev. 162, 399 (1967).

6 Sheldon Schultz and Gerald Dunifer, Phys. Rev. Letters 18,
283 (1967).
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FIG. 1. The lemon-shaped Fermi surface of a CDW ground
state. The vertical dashed lines through the conical points, e.g.,
point C, are the planes in k space where the energy gaps caused by
the CDW potential occur. The conical-point distortion is exag-
gerated by about a factor of 3.

consistent periodic potential,

U(r) = V cosQ. r.
The wave vector Q is unrelated to the lattice periodicity,
and for a simple metal, has a length just right for
critical contact between the Fermi surface and the two
energy gaps of magnitude V. This distorts the Fermi
surface into a lemon shape as shown in Fig. 1.

An immediate consequence of the distorted Fermi
surface and modi6ed electron wave functions, arising
from (1), is that the average g factor depends on the
angle between Q and the magnetic field H. The principal
axes of the g-factor tensor will of course correspond to
QIIH and QJ H, and will be associated with the ex-
tremal values of g. In Sec. II we show that

anticipated. This is strikingly conhrmed by resonance
experiments on dilute paramagnetic alloys. ' Paramag-
netic Mn dissolved in Cu or Ag produces a single line
with g factor intermediate between that of the Mn ion
and the host metal. Spin exchange between conduction-
band levels and localized paramagnetic levels is suf5-
ciently rapid to merge the contributions into a single,
sharp resonance line.

We conclude therefore that a split CESR indicates
that the metal sample is heterogeneous. That is, we

suggest that a K sheet ( 0.02 cm thick) sandwiched
between layers of Parahlm divides into contiguous
regions having either of two possible g factors. This
hypothesis requires that there are two distinguishable
variants of K, and that both occur in samples where
CESR splitting was observed. Had this occurred in Na,
an immediate explanation would have been possible.
Below 35 K, Na partially transforms martensitically'
from bcc to hcp structure. Conceivably the two struc-
tures would have slightly different g factors. However,
there is no similar transformation in K. It must also
be appreciated that the splitting, though only 0.5 6, is
relatively large, 10% of the spin-orbit shift, which is

the true measure of such an eGect.
The purpose of this paper is to show that the foregoing

hypothesis is a natural one provided the electronic
ground state of the metal is a spin-density-wave (SDW)
or charge-density-wave (CDW) state. For alkali metals
a CDW state is preferred for theoretical' and experi-
mental reasons. In this case, as with other alkali-metal
anomalies that have been explained quantitatively'

by assuming the ground state has an exchange in-

stability wave, the interpretation is the same for either
a CDW or SDW. The theoretical characteristic of
either state is that each electron experiences a self-

s David L. Cowan, Phys. Letters 18, 770 (1967); S. Schultz,
M. R. Shanabarger, and P. M. Platzman, ibid. 19, 749 (1967}.

' C. S. Barrett, Acta Cryst. 9, 671 (1956).' A. %. Overhauser, Phys. Rev. (to be published).
9 A. %'. Overhauser, Phys. Rev. Letters, 13, 190 (1964); A. %.

Overhauser and S. Rodriquez, Phys. Rev. 141, 431 (1966); D. R.
Gustafson and G. T. Barnes, Phys. Rev. Letters, 18, 1 (1967);
J. R. Reitz and A. W. Overhauser, Phys. Rev. (to be published).

a(Q& H) —g(QIIH)=(3V/8&~) &g, (2)

d g(k)——yk' sin'0, (3)

where 0 is the angle between k and H. For a nearly
spherical Fermi surface,

aq= (~g(k)),= ——;&k,s.

We need not compute the coeKcient p since the experi-
mental Ag can be used in Eq. (2).

The CDW energy gap V in K is 0.6 eV, the threshold
energy of the Mayer —El Naby optical-absorption
anomaly. "Es = 2.12 ev. Consequently Eq. (2) predicts
that the maximum splitting is 10.6% of the observed
Ag, which implies a maximum observed splitting of
0.56 G.

In Sec. III we indicate why a thin K sheet subjected
to severe thermal stress on cooling would likely divide
into contiguous patches having Q either parallel to
H or perpendicular to the surface (and therefore per-
pendicular to H). The remarkable quantitative agree-
ment between the predicted maximum splitting and
that observed provides signi6cant additional evidence
for a CDW state in K.

II. ANISOTROPY OF g

In order to compute the conduction-electron g factor,
starting from Eq. (3), we must know the eigenfunctions
and energy spectrum E(k) of the Schrodinger equation
having the potential-energy term (1). Compact solu-
tions of this —the Mathieu equation —cannot be written
down, so we make use of the following arti6ce which has
sufhcient accuracy. The perturbation (1) can be divided
into two parts, one which leads to the energy gap for
k, = —-', Q, the gap on the left in Fig. 1, and the other

"Y.Yafet, Phys. Rev. 85, 478 (1952)."H. Mayer and M. H. El Naby, Z. Physik 1?4, 289 (1963).

where Ep is the Fermi energy. Derivation of this result
does not require an accurate theory of the conduction-
electron g factor. All one needs is the simple result,
valid for alkali metals, '0 that the g shift of a nearly-free-
electron Sloch state k is
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which leads to the gap for k, =-',Q. Each part must be
treated with great accuracy because wave functions
and k-space occupation are significantly altered near
the gaps. The simplifying feature of the problem is that
the physical consequences of the two parts are additive.
Accordingly, we shall compute the anisotropy of g
arising from that part of the perturbation associated
with the left-hand gap, and multiply the result by 2.

The part of (1) which we shall treat causes the un-
perturbed state it to be mixed with it+Q only. That is,
we solve the secular equation,

( (p'/2 m) E——,'U exp( —iQ r))
! l=0,
5'2 U exp(iQ r) (p'/2m) —E

within the space defined by the basis states it and it+ Q.
The energy for the solution below the gap is

2(e&+e&+Q) 2I (s& e&+Q) +v ] ~ (6)

where ez= ksk2/2m, the unperturbed energy. The corre-
sponding eigenfunction is

f2 cosy exp——(ik r) —siny expLi(k+Q) r], (7)
where

COSy(&) —= V/LV'+4(ek —Ek)']'" (8)

It is of interest that Eq. (6) is the exact solution of the
spiral SDW problem. " i

For that case, the two terms
of Eq. (7) would have opposite spin states. $

The equation describing the Fermi surface is obtained
by setting

E,=E,=l k2pQ)2/2m] ——;v. (9)

The last equality is imposed because Ep must be the
energy of the point of critical contact, ' point C of
Fig. 1. We choose Q in the s direction and introduce
dimensionless variables:

~—=k./Q, e=—k,/Q, tt = (k*+2Q)/Q, (1o)

so point C is (0,0,0). The equation of the Fermi surface
in the (N,m) plane is

t (2o2+~2)1/2 ~ ttt2]1 f2 (11)

where o, =mV/O'Q2. Note that N=O at m=0, which
verjfjes our choice for Er in (9). This surface has a
peculiar shape. Near point C it is a circular cone. But
near point D of Fig. 1, the other intersection with the
m axis, it is nearly spherical, as indicated by the dashed
curve. The coordinate of point D is obtained by setting
(11) to zero.

2t'(D) =—7= (1—2~)'" (12)

The radius rsQ of the Fermi surface at w= 2, the origin
in k space, can be written as a power series in n. To
first order, Eq. (11) is

rs——',(1—2n) . (13)
'2 A. W. Overhauser, Phys. Rev. Letters 4, 462 (1960); Phys.

Rev. 128, 1437 (1962).
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FIG. 2. Schematic conception of the stress-induced Q domains
in a thin sheet of K, sandwiched between layers of Parallm. For
large co,v. spatial diffusion of electrons is very directional, and is
parallel to H. For example, an electron originally at point A.
will, upon diffusion to the other side, arrive near point B. Subse-
quent diffusion back will again be along the line from B to A.

~g(QIIH) = —~(k'+k„'), . (17)

The density-of-states average over the Fermi surface
is the one required. For the case Q J H, with H in the
y direction,

Ag(Q J H) =—p(k, '+k.' cossy+(k, +Q)' sinsy), . (18)

The reason why (18) is more complex than (17) is that
the wave vector It in Eq. (3) is not the wave-vector
label of the state, but the actual eigenfunction com-
ponent wave vector. Since (7) has two components,
it and it+ Q, they both must be included in proportion
to their probabilities. There is no contribution to (18)
from the interference term of the two components. The
reason for this depends on the fact that Q is incom-
mensurate with the reciprocal lattice. For the alkali
metals the conduction-electron g shift can be considered
to originate from the corelike p functions admixed into
the (otherwise) pure plane waves by the process of core
orthogonalization. If one were to examine the g-shift
contribution attributable to a particular atomic cell of
the metal, there would be an interference term de-
pendent on the relative phase of the ir and it+Q com-
ponents at that cell. However, the crystal sum of the
interference term vanishes because Q is not a simple
rational fraction of a reciprocal-lattice vector.

+ The reader should not concede this point, however, without
verifying that the volume enclosed by the surface, Eq. (1l),
differs from that of a sphere of radius ro only by terms of order
)OlQ

This radius must equal the free-electron-sphere radius
to order o, ,

" since the effect of the perturbation on
states near the belly of the lemon is of order 0.'.
Consequently,

Q/k p= 1/rs —2 (1+2rr) . (14)

Together with the definition of o. given above, this
implies

Q—2krl 1+(V/4Er)]. (15)

This result then provides an expression for 0, depending
only on V/Er'.

cr= (V/8Er)/$1+ (V/4Er)]'.
The geometry of the semideformed Fermi surface has
now been completely specified.

The g shift for the case QllH can now be computed
from Eq. (3):
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(F)-=~ ' F(w) dw, (21)

where F(w) is the value of F a,t k.= (w —s)Q
Fermi surface.

With Eqs. (10), (17), (18), and (21) in view we

define two subsidiary functions:

A(n)—=

L(w —-')' cos'q+ (w+-', )' sin'p7dw. (22)

Furthermore, we define the fractional g-factor aniso-

tropy f of the CDW state:

f(n) =Lg(Q& H) —g(QllH) 7/Ag, (23)

where Ag is the g shift for Qlln. Inspection of (17),
(18), and (22) allows us to conclude

f(n) =2{LlA (n)+&(n) 7—A (n) )/A (n) (24)

The factor 2 accounts for the anisotropy introduced by
the other energy gap, at k, = —,'Q, as anticipated in the
first paragraph of this section. The factor ~ inside the
square brackets follows from the obvious relation

(k,'), =xs(k,'+k„'), . The integral A (n) is easily Per-
formed after using Eq. (11). The integral B(n) is

likewise elementary after the functional dependence of
cos'q on w is found. From (6), (8), and (10),

coss q& =—L1+w (w&+n&) &/~7 (25)

The flnal result, with the help of (12), is to terms linear
ln o.

f(n)=3n (26)

Use of Eq. (16) to order V/E~ completes the derivation
of Eq. (2), f~3V/8Ep.

The question remains as to what fraction of f is
caused by repopulation of k space and what fraction is
caused by admixture of k&Q components into iP&.

The axial symmetry of the Fermi surface about the
s axis makes the density-of-states average a very simple
operation. Consider a slice of k space perpendicular to
the s axis and having thickness 8, as shown in Fig. 1.
The number of quantum states of energy &E within
the slice is

Z=~P3/8~'= (m3/4~'k')LE —Es(Z)7. (19)

Here t is the radius of the energy surface E at k, =E, and

E&(E) is the s component of energy, Eq. (6) evaluated
at (O,O,E). The density of states 1V in the slice is

1V= (aZ/aE) =~3/4 &k&. (2o)

Since this is constant, the density-of-states average of
an axially symmetric function Ii is merely

This is easily answered by setting y—=0 in (22) and
repeating the balance of the calculation. One obtains
3V/8EI again. Thus, to lowest order, the entire g-shift
anisotropy is caused by repopulation of k space. The
k~Q admixture contribution is of order (V/EI )s.

The tedious analysis of this section was of course
necessary. However, with the understanding that
inevitably is acquired one can surmise the final result
in a single glance: The fractional increase in J'k, dk,
is just three times the conical-point distortion,
p= V/4E~. The factor 3 comes from the binomial
coeflicient of (1+p)', associated with the upper limit
of integration in k, . This increase is diluted by 50% due
to the invariance of J'k, 'dk, . Consequently f= ssP

III. STRESS-INDUCED Q DOMAINS

In Sec. I we concluded that the only possible explana-
tion of CESR splitting in K was a macroscopic division
of the sample into two species having different g
factors. Our purpose here is to elaborate the required
physical characteristics of such a domain structure and
to show how its origin is easily understood on the basis
of a CDW ground state. This will not require any novel
or new subsidiary assumptions.

K has a very large thermal-expansion coeKcient.
Its lattice constant at 5, 78, and 293'K is 5.225,
5.247, and 5.344A, respectively. Consequently, the
linear expansion between 5' and 78'K alone is 0.4%.
The elastic moduli are known. " It follows that a
negative pressure of 4.5 kg/mm' would be required to
prevent the contraction below 78'K. The polycrystalline
yield stress has been measured" throughout this tem-
perature range and is only 0.1 kg/mm'. Consequently,
a sheet of K cooled to He temperatures between layers
of another material to which it adheres will undergo
severe thermal stress and plastic deformation. It is
reasonable to assume that the stress state of such a
sample will be macroscopically heterogeneous. Some
regions where a great deal of slip has occurred will be
relatively stress free. Others will be in planar tension.

We believe that in relatively stress-free regions Q
will tend to align parallel to H. This is not a new
assumption, since it is also required" for the explanation
of other anomalous phenomena. However, we also
assume that severe stress prevents alignment parallel
to II. The striking stress dependence" of the high-
field magnetoresistance establishes elastic stress as a
crucial variable affecting electronic properties. The
directional effect of stress on orientation of Q can
possibly be surmised from the conflicting data on the
optical anomaly. Hodgson" failed to observe it. An

'4 V7. R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids
26, 273 (1965).

"See Fig. 5 of D. Hull and H. M. Rosenberg, Phil. Mag. 4,
303 (1959).

'6 A. N. Overhauser, Bull. Am. Phys. Soc. 10, 339 (1965)."P. A. Penz and R. Bowers, Solid State Commun. 5, 341
(1967)."J.N. Hodgson, Phys. Letters?, 300 (1963).
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important difference between his experiment and that
of Mayer and Kl Naby" is that the former was carried
out by reQection from an evaporated metal layer on a
glass interface, whereas the latter was by reffection from
a bulk-metal vacuum interface. The theory' of the
anomaly based on a CDW or SDW model predicts that
it should be observed only if Q has a component parallel
to the reQecting surface. Hodgson's failure to see the
anomaly can therefore be explained if Q were perpen-
dicular to the surface of his evaporated layer. Such a
layer is probably under severe planar tension because
of the large differential expansion between K and glass.
We therefore postulate that the similarly stressed
patches of the CESR samples also have Q nearly
perpendicular to the specimen surface. Since H is
approximately parallel to the surface, these patches
will have Q nearly perpendicular to H.

The dependence of Q orientation. on H and uniaxial
stress that is needed to explain the CESR splitting is
identical to the behavior that has been postulated
previously to explain other anomalies in K. It should
also be appreciated that similar behavior has been
established experimentally in other systems. For ex-
ample, the ability of magnetic field" or uniaxial stress'
to orient the SDW Q of Cr has been conclusively
demonstrated by neutron diffraction.

A schematic illustration of stress-induced Q domains
in a thin K sheet is shown in Fig. 2. The linear size of
the domains in the plane of the sheet must be about 1
or 2 mm, as shown below. To understand the behavior
of CESR as H is tilted slightly from an orientation
parallel to the surface, one must recall the salient
properties of conduction-electron diffusion in a magnetic
field The djffusjon constant parallel to H js Bl &

= 3p p
where v& is the Fermi velocity and r the conductivity
relaxation time. Diffusion perpendicular to 8 depends
on co,7., where co, is the cyclotron frequency. For
ce T))1 Dg=D~[/((a) r)s The relev. ant quantity for
CESR is the spin diffusion length I,= (DT,)'I', which

"A. Arrott, S. A. Wemer, and H. Kendrick, Phys. Rev. Letters
14, 1024 (1965); Phys. Rev. 155, 528 (1967). This behavior was
also surmised from susceptibility measurements by R. A. Montalvo
aud J. A. Marcus /Phys. Letters 8, 151 (1964)g.

20 T. J. Bastow and R. Street, Phys. Rev. 141, 5io (1966).
"G. D. Gaspari, Phys. Rev. 151, 215 (1966).

is the average distance an electron will diffuse before
the phase coherence of its spin polarization is lost. T&
is the transverse spin relaxation time. For the extremely
pure specimens of Walsh, Rupp, and Schmidt I.li

cm. Since co,r 40, 1.& 0.025 cm.
Suppose now that H is perfectly parallel to the surface

of the specimen. The electrons travel in tight helical
paths about the field lines. Since their spin diffusion
length parallel to H is about 1 cm, the volume average
g factor of the stress-induced Q domains will characterize
the CESR. There will be a single resonance line, as
observed. ' Suppose that H is now tilted as shown in
Fig. 2. The extensive diffusion in the plane is suppressed.
An electron originally at point A of Fig. 2 will diffuse
along the line AB. After reaching point 8, it can only
diffuse back to A, etc. Such electrons are trapped in the
low-stress domain and will contribute a CESR with
g= g(Q ~~

H). Geometrical considerations govern the
orientation at which a significant splitting can occur.
No splitting should occur if the domain size is too small,
i.e., smaller than I-&. Since the observed maximum
splitting occurred for a tilt angle of —,'rad, the average
domain size was probably 10 times the thickness of
the sheet.

It is clear that CKSR splitting in K is a phenomenon
that is sensitively dependent on the metallurgical
preparation of the sample. Even when preparation
techniques are reproduced, the precise behavior of the
resonance with tilt angle will vary from sample to
sample. ' The ideal specimen —one prepared in a stress-
free condition —should not exhibit any splitting.

Since hg(0, Eq. (2) predicts that g(Q~~H) )g(Q J H).
Therefore the low-field CESR component must be
attributed to the stress-free domains, which have Q
parallel to H. One puzzling feature of the data is the
rapidity with which this component disappears for
tilt angles greater than O'. One can only speculate about
the cause. The stress-free domains are presun1ably those
in which extensive plastic Qow has occurred. Conse-
quently slip bands wiB have caused originally smooth
surface to become irregular, providing a greater likeli-
hood for contamination and surface spin relaxation.
As tilt angle increases, the low-field component rejects
more uniquely the relaxation behavior peculiar to its
own domains.


