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The absorbing power due to a photon exciting both a plasmon and an intraband transition in a semi-
inhnite electron gas of metallic density has been found to be of the order of 10"sec ' in the ultraviolet at
approximately ~„+~+.The plasmon absorption appears to give only a small contribution to the ultra-
violet absorption spectrum of most metals, but for the alkali metals it is of the same order of magnitude
as the previously calculated interband absorbing power. A linear superposition of the Drude, interband,
and plasmon conductivities suggests that sodium and potassium may exhibit small broad peaks in their
absorption spectra due to plasmon excitations near 8.8 and 5.8 eV, respectively. The calculated plasmon
absorption for other free-electron-like metals in the ultraviolet and for an n-doped semiconductor in the
infrared is briefly discussed.

I. INTRODUCTION Gilinsky, and Kivelson. ' The latter authors show from
diagrammatic techniques that the important absorption
contributions in the high-density and long-wavelength
limits come from the two pair 6nal states, namely, the
two-free-pa. ir state and the pair-plus-plasmon (bound-
pair) state. They also pointed out that the plasmon
conductivity is bounded by k„the minimum wave vec-
tor at which the plasmon can decay into an electron-
hole pair. About the same time, Matsudaira' used the
Bohm-Pines model to calculate the plasmon absorption
in a high-density electron gas. The advantages of the
Bohn-Pines formalism are (1) the long-range part of
the Coulomb interaction (k&k,) is explicitly described
in terms of the plasmons, which commute with the
electrons; (2) the short-range part of the Coulomb inter-
action (k) k,) is only a slight perturbation to the elec-
tron behavior in a high-density gas; and (3) in the high-

density limit a small expansion parameter is introduced
so that in the presence of a radiation 6eld the photon-
bound-pair 'absorption is of second order, the photon-
two-free-pair absorption is of third order, and all other
absorption processes are of third or higher order.

Both Matsudaira and DuBois e] al. ignored the dis-
persive term in the eigenfrequency ~I, for a plasmon of
wave vector k and thereby replaced to& by &ov. The eigen-
frequency for a high-density gas is given from the plas-
mon dispersion relation by

~ 'HE rather surprising optical properties of the
alkali metals, namely, the Mayer —Kl Naby res-

onance in the near infrared" and the high absorbing
power of sodium and potassium' 4 in the visible, have
been the subject of current theoretical interest. ' In this
paper we show that the ultraviolet spectral region of the
alkalies may also exhibit interesting resonant behavior.
%e have employed the Bohm-Pines formalism' for a
semi-infinite electron gas of alkali metal density and
have calculated the absorbing power for the process
where an incident photon excites a plasmon through
the intermediary of an intraband transition (electron-
hole pair). The conductivity for this process vanishes
at energies below the free-electron plasma energy Ace„
and has a maximum value of the order 10" sec ' at
approximately Apo„+eF, where po„=(4srEe'/rw) "', E is
the number of electrons per unit volume, and ep is the
Fermi energy.

The absorption due to this electron-photon-plasmon
process was originally considered by Tzoar and Klein. ~

A more general discussion of the propagation of elec-
tromagnetic waves in plasmas was given by DuBois,

35k' A'k4

tos=Mv+ + + ' '

5goss Scoy5$

where sp= Atov/es. The maximum value of the plasmon

D. F. DuBois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.
129, 2376 (1963).

~ N. Matsudaira, J. Phys. Soc. Japan 17, 1563 (1962).
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wave vector k, is approximately equal to ~xovo, which
for a normal electron gas is 0.47r, '"vo, where vo is
the Fermi wave vector. For a gas with the density of
sodium, r, is 3.96, k, is 0.937ve, and Eq. (1) is a fairly
good approximation to order ks. Then, since (&uq),
~1.18~„,a recalculation of the plasmon absorption,
which includes the plasmon dispersion, seemed in order.

In Sec. II of this paper we follow the procedure given
by Matsudaira to calculate the plasmon conductivity
of a high-density electron gas. We assume that the
Bohm-Pines Hamiltonian gives a qualitative description
at metallic densities and thereby maintain their ordering
of zero-, first-, and second-order terms. The plasmon
contribution to the optical conductivity arises from the
second-order (random-phase) term containing an elec-
tron, plasmon, and photon. We wish to point out that
Matsudaira introduced a canonical transformation in
order to eliminate both the first-order electron-plasmon
and electron-photon terms. The absorption cross section
which he evaluated, was, therefore, calculated from
dressed photons. We have kept the photons in the lab-
oratory system because the electron-photon term de-
scribes the intraband and interband absorption which
are required for our calculation in Sec. III of the total
absorbing power of the alkali metals. However, if coA, is
replaced by co„,our expression for the plasmon absorp-
tion coincides with that obtained by Matsudaira and
DuBois et at.

We have found that the inclusion of the dispersive
term yields an absorption cross section roughly 30%
lower than the dispersionless cross section and shifts
the plasmon resonance about 1 eV further into the
ultraviolet for a gas with the density of sodium. We
estimate that our results for the plasmon conductivity
near its peak value are accurate to within 20%. In this
region the interband absorption roughly falls as co '.
The plasmon absorbing power of potassium, for which
r, equals 4.87, is similar to that of sodium.

In Sec. III we apply our results to real metals. In
order to ascertain whether the plasmon resonance might
be observable in sodium a,nd potassium, we have calcu-
lated their total conductivities to second order in the
ultraviolet by taking linea, r superpositions of the Drude,
interband, and plasmon contributions. The interband
absorption has been given by Butcher, ' and the intra-
band absorption is approximated by its Drude value
with relaxation time v-. If the electron-photon inter-
action were eliminated by a canonical transformation,
a superposition of absorption processes would no longer
be consistent. The plasmon absorption is calculated
from second-order perturbation theory where the elec-
tron wave function is approximated by plane waves and
the dispersive term of the plasmon eigenenergy is in-
cluded. Our results suggest that a careful experimental
study of the optical properties of a bulk alkali metal
above its plasma energy may reveal a broad peak in the

'0 P. N. Butcher, Proc. Phys. Soc. (London) A64, 50 (1951).

absorbing power due to the plasmon process when the
Drude relaxation time is suKciently long (approxi-
rnately 10 '4 sec). To our knowledge, complete optical
measurements (that is, measurements of the index of
refraction and extinction coeKcient which lead to the
complex dielectric constant and to the absorbing power)
have not been reported on the alkali metals in this spec-
tral region; however, recent measurements by Suther-
land et a/. "have been made at 7.11 eV, on sodium. The
plasmon absorption of other free-electron-like metals,
like aluminum and magnesium, appears to be too small
to detect experimentally, since reported values of their
ultraviolet conductivities are at least an order of mag-
nitude higher.

II. FORMULATION AND CALCULATION
FOR ELECTRON GAS

We now outline our procedure for calculating the
optical conductivity for a semi-in6nite electron gas in
the presence of an external radiation field. Our discus-
sion can be followed by referring to the summary of the
Bohm-Pines theory found in Matsudaira's paper. At
the outset we rewrite the Bohm-Pines model Hamilto-
nian'[which includes the plasmon coordinates as shown
in Eq. (2.11) in Ref. 9 and introduces subsidiary con-
ditions on the electron wave function) in second quan-
tized form and then employ the 6rst canonical transfor-
mation. The resultant Hamiltonian Lanalogous to Eq.
(2.12) in Ref. 9) contains (1) three zero-order uncoupled
terms consisting of the electrons (with the short-range
interaction included), plasmons, and photons; (2) two
first-order terms describing an electron-plasmon and an
electron-photon interaction; and (3) three second-order
random-phase terms describing an electron —two plas-
mon, an electron —two photon, and an electron-photon-
plasmon interaction. The 6rst-order photon-plasmon
term identically vanishes, since the respective unit prop-
agation vectors for the plasmons eI, and for the photons
e~q are orthogonal for this case (k= —1).

At this stage, Matsudaira introduced a further trans-
formation, containing a superposition of two generating
functions, which respectively eliminated the 6rst-order
electron-plasmon and electron-photon interaction. How-
ever, in our calculation of the optical conductivity to
second order for a metal, it is imperative to retain the
electron-photon term in order to utilize Butcher's calcu-
lation of the first-order interband absorption. We, there-
fore, introduced a second canonical transformation with
the generating operator S„t given by Eq. (2.16) in
Ref. 9j which eliminated only the electron-plasmon
interaction.

The canonical transformation operator 5~ gives rise
to an infinite number of photon absorption mechanisms
in the transformed Hamiltonian. However, in the Bohm-
Pines scheme, the operator S~ is of order n=~„+q,„/cur.,

' J. C. Sutherland, E. T. Arakavra, and R. N. Hamm, J. Opt.
$oc, Am, 57, 645 (1967).
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where the co„+I,, „arethe electron eigenfrequencies de-
fined by (A/2222) [(v+k) 2—(v) 2$. Since this ordering par-
ameter is much less than 1 for a high-density gas, the
higher-order terms in S„rapidly converge. In this paper
we are interested in calculating the absorption of an
electron gas and of a metal in the high-density limit at
0 K to second order only. We shall ignore third-order
terms, which arise from a photon either creating two
electron-hole pairs or creating two plasmons, and also
higher-order terms. Two photon processes are also
ignored, since the intensity of the incident radiation

may be made arbitrarily low. The term, B,~„in the
transformed system describes the excitation of one plas-
mon and one electron-hole pair through the absorption
of one photon and contains contributions from second-
order terms, fourth-order terms, sixth-order terms, etc.
Hpf p is given by

Herp=Herp 2[SpcHer $ 2[Spc[S'pcHefp ])efp
+-6i[S„[S„[Sp,H.r']]],rp+, (2)

where, clearly, the subscript appearing on the com-
mutator relations above second order indicates that
portion which yields the net excitation of one plasmon
and one free-pair. The second-order random-phase terms,
not containing photons, can also be eliminated by a
further canonical transformation and can be shown to
contribute to the absorption only in the third and higher
order (contributing fourt. h order in H,rp). The fourth-
and higher-order corrections to Il.f~ are assumed to be
negligible in the high-density limit for our calculation
to second order. This assumption is the core of the Bohm
Pines formulation; that is, the canonical transformation
is introduced to eliminate the first-order electron-plas-
mon interaction, and all electron-plasmon terms ema-

nating from higher-order operations are negligible.
For a calculation of the optical absorption to second

order, the relevant terms of the Hamiltonian in the
transformed system are the uncoupled renormalized
zero-order terms, the electron-photon term, and the
electron-photon-plasmon term, which are given by

$2p2 (M
2

M 2—c2)2)

at„a„+H,., +U(r)+ Q [22ceI(At2AI+2) —2ÃMI2)+Q ka)n(btnbti+2)+5
V 2' &(&c lX 4' Q

f22re2f2 '~2 f2re2cv I,) 'I'
X(b' nb'a+b nest~

—2b'iibu —1) + 2 I
(p'le"'«'Iil p)bna'"a. +

v v Q (II22 ceQ v, v', v"; leak(2c

(p'le'"'lp"&(p" le"'ei pip& &p'le"'en Iilp"&&p" le'"'lp&
X~ —kblh~ v'~v (3)

Ie v" v' k v v"

where (1) the kinetic energy of the electrons is charac-
terized by an effective mass m* which is related to the
number of collective coordinates and which does not
enter into the calculation of the absorption; (2) U(r)
is the periodic electron ion-core potential; (3) the effect
of the transformation on the short-range interaction
H, , is assumed to be negligibly small; (4) &22 is the
Fourier coefFicient of the electron-electron interaction
and iS de6ned fOr the Semi-infinite CaSe by 42re2/k2,

where the term k=0 is cancelled by the positive cores
which give charge neutrality; (5) we have used the dis-

persion relation to diagonalize the unperturbed plasmon
Hamiltonian; and (6) at„anda„arethe electron creation
and annihilation operators, A ~ is the plasmon creation
operator, and big is the photon destruction operator.
Since the system is in the ground state at T=O'K,
only plasmon creation and photon absorption processes
are allowed.

We now restrict ourselves to an electron gas in a uni-
form positive background, neglect H. ., and the sub-
sidiary conditions, and therefore, assume that the elec-
tron wave function is given by the Slater determinant
of plane waves. For the range of frequencies of interest,
the photon wave vector I is negligible compared to the
electron and pla, smon wave vectors. We assume the
long-wavelength limit and describe the ra,diation field

in the metal by a single wave vector I', given by the
Drude theory with an infinite relaxation time as(l')2
= (~2/c2)(1 —cop2/co2), where cv=ca~q is the applied angu-
lar frequency. The optical conductivity or absorbing
power may be calculated by applying the Golden Rule of
quantum mechanics to the perturbations in Eq. (3). In
the long-wavelength limit the first-order intraband con-
ductivity vanishes and is replaced by its Drude value
with relaxation v in order to account for collisions. The
second-order plasmon conductivity reduces to an expres-
sion of the form originally derived by Lindhard, "except
that one must also integrate over all plasmon vectors:

2X2e4

~(~) = p ~2(22 en,)'f.[1 fp2)—
A+23 v, k(lec

Xb(~i+~v+2, v Cc') v (4)

where f„is the Fermi-Dirac occupation number. An
inspection of Eq. (4) shows that. the plasmon absorption
for an isotropic semi-infinite electron gas has the same
value for all angles of incidence of the radiation. It is
identical to the expressions obtained by DuBois et al.
and Matsudaira, except that we have replaced ~„by
u2 ——~p+3Ak2/5x0222. The evaluation of the conductivity

"J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -I'ys.
Medd. 28, 8 (1954).
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is straightforward.

o(s) =0, s&0

o (s) =
xo' 6

epI hr(s)+gr(s) j, 0&s& E,s

128 kx' 5xp

3 xp'
o(s) = paths(s)+gs(s)$,

128 Ax'

E,'& s& 2E,—
5xp
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128 Psx'

2
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2 & 2yr 4 IC, 16yrs

3

x= happ/eg q

y =L1+6/5xoj ',
ys ——

I
1—6/5xp]-',

E,= h,/vp,

s'= A(pp —cp&)/ep ~

Er= (yt'+yts) '"—yt,

Es=ys (ys' ——yss)'I', for ys positive

Es= ys+ (ys' —yss) '", for ys negative

Es (-',xps) '"——.

These equations are valid in the region where the sur-
face, 2E—E'/ys, does not exhibit a maximum for a
value of E less than the critical plasmon cutoff E,. Also,
E, must be less than or equal to 2. The above expres-
sions reduce to Matusdaira's results, when E,(1, if uI,
is replaced by co„,y& and y2 are replaced by 1, and g&,

g2, g3, and the last terms in h& and h2 are replaced by
zero. For E,&1, the dispersionless plasmon conduc-
tivity given by Matsudaira does not hold.

The above expressions for o(pp) in Eq. (5), which are
valid for a high-density electron gas, are now assumed
to hold for metallic densities. We have recalculated the
dispersionless plasmon conductivity" to take into ac-
count the corrections to Matsudaira's formulas which
must be made to extend their validity to k,&vo. A com-
parison of the plasmon absorbing power with and with-
out the dispersion in the plasma frequency is given in
Fig. 1 for the free-electron values of lithium, sodium,
and potassium, r, =3.22, 3.96, 4.87 and Ace~= 8.20, 5.99,
4.36 eV, respectively. The dispersion in the plasma fre-
quency shifts the peak to higher energy (approximately
A~~+s&) and reduces the absorbing power by approxi-

X(E,'—I~, )+-(E, —E, )—
2

(E,' K,')—
10xo

(Kss—Ets)+-(E.'—E,') — (E.s—E,s),

E,
hs(s) = -I 1+ (E.'—E~') ——»—

2k 2y,
(6)

6 1
gs(s) = — 1+ (Ks' E,') (Esp E—ts)—— —

xo' 4 2y&
M4
H

Pp0
53-
o

U2

cl
1

WITH DISPERSION

WITHOUT DISPERSION

1
(E,4 Er')—

16yg'

0
4 8 12 16

PHOTON ENERGY
20 22

6 1 s
gs(s) = — 1+ (E,4—Kt') ——(E.s—Ers)

5xo' 4 2y& 8

(IC '—K ')
24yj'

FIG. 1. The calculated plasmon absorbing power with and with-
out plasmon dispersion for electron gases of alkali metal densities
as a function of incident photon energy.

13The corrected formulas for the dispersionless plasmon con-
ductivity along with a detailed formulation of the plasmon problem
are contained in the Ph. D. thesis of R. J. Esposito t Temple Uni-
versity, 1968 (unpublished)g.
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mately 30%. The absorbing power due to this process
is of the order of l0" sec '. Although it is an order of
magnitude below ordinary metallic (nonalkali) absorp-
tion, it is the same order as the calculated alkali inter-
band absorption in the ultraviolet.

In the above calculations we have employed three
approximations which affect the accuracy of our results
at metallic densities. These are (1) the assumption that
the Bohm-Pines expansion parameter is suKciently
small and leads to a proper prescription of term ordering
in the Hamiltonian; (2) the neglect of terms of order k'
and higher in &us, and (3) the neglect of the effects of
II,., and the subsidiary conditions on the electron wave
function. V/e now discuss the validity of our approxi-
mations. The Bohm-Pines prescription for term order-
ing appears to be valid for r, &4, since the random-
phase terms can be still treated as perturbations. '4 The
average ordering parameter (n), Laveraged over all elec-
tron wave vectors not taking into account the frequency
selection rule in Eq. (4)$ ranges from zero to 0.33
(0.36, 0.40) for lithium (sodium, potassium) as k goes
from zero to k, . However, as a result of this 6 function
only a range of values for the plasmon wave vector k
contribute to the conductivity, and o, has a maximum
for each frequency. For exa,mple, in the sodium calcu-
lation with dispersion for A~ 6.6 eV, 0.09vo& k
(0.56vp, and n(0.1; for Pico~8.9 eV (absorption peak
of Fig. 1), 0.36vp&k(k„and n(0.4; for Acr 11.4 eV,
0.58vo&k&k, and e(0.7, where k, =0.937vo. For Acr

)7.8 eV (s)1.2K, /sp) the conductivity is sensitive
to k, . This suggests that any corrections to a(p~) must
include some contributions from II, ,, which become
noticeable only for k, vo. Therefore, our neglect of
terms fourth order and higher in the electron-photon-
plasmon contribution to the conductivity means that
we are making approximately a 20% error in the repre-
sentation near the resonance. Near the high-frequency
cutoff value the ordering parameter is large and n, „

~j..2. Also, for k k„the terms of order k4 and higher
in Eq. (1) will contribute about 20% to the value of
coI, and affect our results only in the high-frequency fall-
off region.

Let us point out that we do not invoke "the random
phase approximation" in the Bohm-Pines scheme. (Such
an approximation neglects the random-phase terms and,
in our case, all contributions to the plasmon conduc-
tivity. ) In fact, we have calculated the random-phase
terms themselves to second order in an expansion par-
arneter which is valid at metallic densities for most of
the plasmon k space. Our neglect of the effect of H, ,
and the subsidiary conditions on the wave function is
questionable at metallic densities and introduces an ap-
proximation of the same order as the random phase
approximation. For example, the Bohm-Pines subsidiary
condition appears to be equivalent to the form of the

"P.Nozieres and D. Pines, Phys. Rev. 111, 442 {1958).

ground-state wave function for the Sawada'5 Hamilto-
nian. The Sawada model treats the short-range and long-
range Coulomb interactions with equal weight, but ne-
glects a priori in the high-density limit certain very
small terms in the original Hamiltonian and cornmuta-
tion rules. Thus, the difference in the two pictures for a
high-density gas is the following: The Bohm-Pines
model explicitly introduces the plasmons as the ele-
mentary excitations and treats the remainder of the
Coulomb interaction (H, , and random-phase terms)
as small perturbations; whereas the Sawada model re-
moves some random-phase terms (corresponding to
scatterings of excited states to excited states) at the
beginning, correctly treats the short-range part of the
Coulomb interaction in this approximation, and evi-
dences a plasmon set of solutions. The approximations
made in each picture are valid in the high-density limit,
perhaps with the Sawada treatment being on 6rmer
ground as it provides the basis for the Bohm-Pines
assumptions. Both pictures lead to equivalent results
at metallic densities in the random phase approxima-
tion, ""this time with the Bohm-Pines picture possi-
bly having the edge. For example, at r, 2, the ratio of
the average potential energy per particle to the average
kinetic energy per particle, which Sawada used as an
ordering parameter, is about 1, and in the random phase
approximation the pair distribution function becomes
unphysica1ly negative. "On the other hand, the Bohm-
Pines model appears to give reasonable results for
r, &4 if a Slater determinant of plane waves is chosen,
as we have indicated in the above paragraph. At r, &4
Pines' has shown that the neglect of H, ., and the sub-
sidiary conditions on the wave function is not a very
poor assumption. Thus, despite the speculative nature
of our approximations, we believe that our results near
the plasmon resonance should be accurate to within
20%, or at the very least, should show the general trend
of the plasmon conductivity. Indeed, since we have
neglected H, ., and the subsidiary conditions, our calcu-
lation is expected to hold to second order only. Any more
accurate calculation of the conductivity must include a
more appropriate wave function (including some effect
from H, , ), the higher-order corrections in pip, and the
third-order terms which correspond to other absorption
processes.

The optical absorbing power can also be calculated
from the Hamiltonian obtained by Matsudaira after
the first canonical transformation fEq. (2.12) in Ref. 9j
by straightforward perturbation theory. The resulting
expression for the plasmon absorption is similar to Eq.
(5) only for &o close to co~. We 6nd that our choice of sec-
ond-order and higher-order terms in the second canon-

'5K. Sawada, K. A. Brueckner, N. Fukuda, and R. Srout,
Phys. Rev. 108, 5N {1951'}.

'6 J. Hubbard, Proc. Roy. Soc. {London} A243, 336 {1957}."A. J. Glick and R. A. I'errell, Ann. Phys. (¹ Y.} 11, 359
(1960)."D.Pines, Phys. Rev. 92, 626 (1953).
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ically transformed system is consistent with the 6rst
transformed system; but, the introduction of the second
canonical transformation offers a better perturbation
scheme, because it eliminates at the outset the Grst-
order electron-plasmon interaction.

III. DISCUSSION AND APPLICATION TO
FREE-ELECTRON-LIKE METALS

We now assume that the Bohm-Pines prescription
serves as an adequate approximation for a free-electron-
like metal. In this case the long-range electron-electron
interaction (k&k,) is treated by the introduction of the
plasmon coordinates, the short-range electron-electron
interaction is assumed to be comparatively small, and
an appropriate periodic potential V(r) describes the
electron-ion core interaction. The electron-photon term
now describes both the intraband and interband ab-
sorption. The plasmon absorption in the ultraviolet
should be experimentally observable if it is not masked
by the interband absorption. The relatively low inter-
band absorption of the alkali metals indicates that they
offer the best chance for observing the plasmon ab-
sorption. In this section, we assume that the total
absorption (conductivity) to second order in the high-
density limit is given by a superposition of the intra-
band, interband, and plasmon conductivity. This super-
position makes evident the consistency of our choice in
eliminating only the 6rst-order electron-plasmon term
by a canonical transformation. The intraband contribu-
tion is replaced by its Drude value with relaxation time
v.. For simplicity, the Slater determinant of plane waves
and the long-wavelength limit for the photons are used
in the calculated plasmon absorption of the alkali metals.
The former assumption means that the only permitted
second-order process is that of a photon decaying into a
plasmon with an accompanying intraband transition.
The process of a photon exciting a plasmon with an ac-
companying interband transition and higher-order proc-
esses are not considered. An effective mass M (different
from m~) replaces the normal electron mass in ~„,so
that co„is equal to the experimental plasma frequency.
The same eRective mass M is also used for the Drude
contribution.

The optical constants of sodium have been reported
by several investigators, namely, by Ives and Briggs'
from 2.15 to 4.89 eV, by Mayer and Hiete12 from 0.5 to
4.2 eV (in fairly good agreement with the previous
authors), and by Sutherland et al." between 6.2 and
7.1 eV. Sutherland also reported the index of refraction
e to 30 eV and found the extinction coefficient k between
6.0 and 30 eV to be less than 0.04. However, detailed
measurements above 7.1 eV of the absorbing power of
sodium, which is related to the optical constants by

a(ei) =e4)/2~,

have not been made to our knowledge. Our Kramers-
Kronig analysis of the data for the index of refraction

did not produce values of the extinction coe%cient con-
sistent with experiment after several simplifying extrap-
olations were tried. The plasma energy for sodium was
extrapolated by Sutherland to occur at 5.69 eV in agree-
ment with electron characteristic loss studies; earlier
transmission measurements by Wood and Lukens" indi-
cated the plasma edge at 5.91 eV. We assume through-
out that all the above studies, which were made on thin
alms, give results which are indicative of the bulk
optical properties.

The internal photoelectric absorption of the alkali
metals was calculated by Butcher, "who used the one-
electron approximation with plane waves and a nearly-
free-electron energy spectrum. This model yields for the
alkali metals a single adjustable parameter, the Fourier
coe%cient of the self-consistent potential V~~0 which is
chosen to fit the experimental data from which the
Drude contribution has been subtracted. A choice of
V»0=0.323 eV for sodium produces reasonably good
agreement with the measurements of Ives and Briggs.
Appelbaum20 noted that when Butcher's model is 6tted
to the observed absorbing power in the visible spectral
region, V~~0 is higher than those values of the pseudo-
potential form factor inferred from band calculations
(between 0.11 and 0.24 eV) and de Haas —van Alphen
studies of the Fermi surface (between 0.18 and 0.25
eV)."Appelbaum refined Butcher's calculation by using
orthogonalized plane waves and a more realistic band
structure given by a pseudopotential calculation with
two adjustable band gap parameters. However, he found
that the more sophisticated calculation yielded an inter-
band absorption not only smaller than the experimental
values for a reasonable choice of pseudopotential form
factors but also smaller than Butcher's predictions for
the same V~~0. A later study of interband matrix ele-
ments by Overhauser" included not only the direct
electronic interaction with the photon field, but also the
Hartree-Fock potential arising from the transverse col-
lective motion of all the electrons responding to the
applied photon field. For a band gap energy (2V»s) of
0.500 eV this calculation agrees fairly well with Mayer
and Hietel's data between 2 and 3 eU. However, the
rapid fall-oR in Overhauser's calculated absorbing power
above 3 eV does not agree with experiment.

In order to estimate the interband absorption of
sodium in the ultraviolet, we assume that Butcher's cal-
culation for V~~0 ——0.323 eV, in spite of its shortcomings,
can be employed, since it fits the experimental data of
Briggs and Ives. The plasmon absorbing power of so-
dium was calculated from Eq. (5), where the normal
electron mass was replaced by an effective mass
M =1.03m to produce agreement with the experimental

'~ R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938).
ss J. A. Appelbaum, Phys. Rev. 144, 435 (1966).
"Recent band studies and Fermi-surface measurements for

the alkali rn.etals are discussed in Refs. 20 and 22. Also, see N. %.
Ashcroft, Phys. Rev. 140, 935 (1965).

"A. W. Overhauser, Phys. Rev. 156, 844 (196/).
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plasma frequency of Wood and Lukens. It then follows
that the electron values for the plasma absorption are
op=3.09 eV, @0=1.89, r, =4.06, and E,=0.945. The
calculated Drude (for a relaxation time of 10 "sec),
interband (based on Ives and Briggs's data), and plas-
mon absorbing powers are given in Fig. 2. The effective
electron mass 3f was used in the calculation for the
Drude contribution and the free-electron mass for the
interband contribution. The Mayer —El Naby resonance
in the near infrared is not shown. If one assumes that
the total conductivity can be determined from a super-
position of the three absorption mechanisms, a peak in
the ultraviolet conductivity due to the plasmons should
be experimentally observable near 8.8 eV when the
intraband relaxation is sufficiently long (perhaps even
for relaxation times as short as 10 " sec). If the
plasma energy is set equal to 5.69 eV, the calculated
plasmon peak is shifted to slightly lower energy, but
the general features of Fig. 2 remain the same. Suther-
land's results indicate some structure in e2 between
6.20 and 7.11 eV and may provide some evidence for the
onset of plasmon absorption. However, it is dificult to
distinguish between interband and plasmon absorption
in this spectral region, and the Butcher model does not
properly take into account the band structure. Our cal-
culated total conductivity at 7.11 eV is 3.5&10"sec '
(3.0X10" sec ' for very long ~), whereas the conduc-
tivity from Sutherland's data is (2.4&0.9)&(10i3 sec '.

The optical constants of potassium were also reported
by Ives and Briggs4 from 2.15 to 4.89 eV. Their values
are in good agreement with the later measurements of
Mayer and El Naby' from 0.62 to 3.40 eV. Several dif-
ferent values of the plasma energy have been reported
by optical techniques, these are at 3.76,"3.94," and
4.25 eV.' The value at 3.94 eV, which we choose for our
calculation, is in good agreement with Ives-Briggs's
data and with electron energy loss experiments. Butch-

er's choice of V1~0——0.305 eV for potassium produces
reasonably good agreement with the observed internal
photoelectric absorption in the visible spectral region.
Experimental evidence indicates that Vy]0 is about
0.20 eV. Hop6eld'4 expanded the electron wave func-
tion to second order in the electron-ion potential for
potassium and found a peak slightly above 4 eU in the
imaginary part of the dielectric constant, in rough agree-
ment with Butcher's calculation. The parameters for
the plasmon absorption which agree with the experi-
mental plasma frequency are 3f=1.22m, op=1.73 eV,
@0=2.28, r„=5.95, and E,= 1.14.The Drude, interband,
and plasmon absorption for potassium are given in Fig.
3.A superposition of the three ultraviolet conductivities
reveals that the plasmon absorption should be obser-
vable near 5.8 eV. If the plasma energy is chosen to
be 4.25 eV, the plasmon resonance would be close to its
free-electron value with dispersion shown in Fig. 1 and
still should be experimentally observable. If the value
of 3.76 eV is chosen, the resonance will occur in a region
of higher interband absorption but is resolvable in our
model.

Since the expected plasmon absorption for lithium
occurs at energies far removed from reported measure-
ments of the optical constants, it will not be discussed
further at this time. For the case of the heavier alkali
metals, the random-phase terms are no longer second
order (k,)v&&), and the replacement of the electron wave
function in the calculation of the plasmon absorption
by plane waves is a more questionable approximation
than for the case of the lighter alkali metals. However,
if we assume that our approximations are valid for
rubidium and cesium, we find that the calculated plas-
mon absorption for rubidium, Ace„=3.09 eV and
E,=1.37, shows a peak of 6.5X10" sec ' at 4.5 eV.
The experimental conductivity of rubidium, which was

'3 J. Bosenberg and H. Raether, Phys. Rev. Letters 1S, 397
(1967). s4 J. J. Hopfield, Phys. Rev. 139, A419 (1965).
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reported by Ives and Briggs, " rises from 5.87)&10"
sec ' at 4.10 eV to 6.83X10" sec ' at 4.89 eV. Their
results in the near ultraviolet are in fairly good agree-
ment with the preliminary data of Mayer and Hietel;
however, the agreement is not good in the visible spec-
tral region. The two groups are in better agreement for
cesium, and their results indicate a rise in the conduc-
tivity at their ultraviolet limits above 4.0 eV. The cal-
culated plasmon absorption for cesium, A~„=2.86 eV
and E,=1.39, peaks at 4.25 eV with the value of
6.38X10ts sec ', which is roughly 40'Po of the exPeri-
mental value. Although a more accurate model is cer-
tainly required, the absorption from our rather elemen-
tary model of an electron gas of heavy alkali metal
density indicates that the plasmon absorption may be
important for rubidium and cesium.

Several other free-electron-like metals were also in-
vestigated; however, the plasmon absorption is com-
pletely masked by the interband absorption. The calcu-
lated plasmon absorption for aluminum, r, =2.34, is
above 2.0X10"sec ' between 20 and 26 eV. The peak
value is 2.4&(10"sec ' and occurs at 22 eV. Transmis-
sion measurements through thin aluminum films, sub-
jected to the atmosphere, yield a conductivity of roughly
10'4 sec ' over this energy region. "A bulk plasmon res-
onance does not seem evident from the data, although
there is some scatter in the values for the extinction
coeKcient. For very thin films the plasmon dispersion
relation reveals that the oscillations should be a func-
tion of film thickness and plasmon wave vector. '~ The
conductivity determined by a Kramers-Kronig analysis
of the reAectivity from a bulk aluminum specimen is

"H. K. Ives and H. B.Briggs, J. Opt. Soc. Am. 27, 395 (1937).
"W. R. Hunter, J. Opt. Soc. Am. 54, 208 (1964); W. R.

Hunter, in Proceedings of the International Colloquium on OPtical
Properties and Electronic Structure of Metals and Alloys, Paris,
1965, edited by F. Abeles (North-Holland Publishing Co., Amster-
dam, 1966), p. 136.

s' H. Kanazawa, Progr. Theoret. Phys. (Kyoto) 26, 851 (1961).
For experimental studies on thin Qlms, see T. Sasaki and A. Ejiri,
in Proceedings of the International Colloquium on Optical ProPerties
and Electronic Structure of Metals and Alloys, Paris, 1965, edited
by F. Abeles (North-Holland Publishing Co., Amsterdam, 1966),
p. 417.

also roughly 10' sec ' in the far ultraviolet. "Our calcu-
lations for magnesium, r, = 2.99, give a peak of 2.8X10"
sec ' near 15.5 eV. The experimental conductivity of
magneisum is about an order of magnitude higher in
this region. "It thus appears that for metals, the alkalis
offer the best choice for the observation of the ultra-
violet plasmon absorption.

As a last example, we consider the plasmon absorption
in the infrared due to the conduction-band electrons in a
heavily e-doped semiconductor. Such a group of elec-
trons constitute a very high-density electron gas,
r, &1.29 An e-doped InSb specimen at room tempera-
ture may exhibit the following parameters": X=1.82
)(10"cm ', M =0.041m, a host dielectric constant equal
to 14.7, ken„=0.0654 eV, eg=0.13 eV, K,=0.252, and a
relaxation time equal to 2.9/10 " sec. The peak in
the calculated plasmon conductivity for this specimen
occurs at about 0.10 eV and has a value of roughly 10'0
sec '. The Drude conductivity at room temperature is
approximately 10"sec ' at this energy and completely
masks the plasmon conductivity. Depending upon the
material, the onset of interband absorption may also be
important. In general, the conduction-band plasmon
absorption for a doped semiconductor or semimetal will

not be observable in the infrared, unless one chooses a
material with idealized electronic parameters, including
a very long intraband relaxation time at low tempera-
tures.
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