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which agrees with Eq. (28) in PB-II, except for a factor
(—1/m) that is due to a trivial difference in our defini-
tion of F.

IV. DISCUSSION

Equations (17), (19), or (20) are exceptionally valu-
able since they provide an immediate qualitative inter-
pretation for some of the recent experimental results on
the infrared and Raman spectra of mixed crystals.

For example, in the case of Raman scattering from a
crystal with a single Raman-active mode the intensity
of the scattered radiation I(w) is proportional to
Im(G (¢, w?—1ie, k=0)),, 052 From the single-impurity
problem one knows local modes, or resonance modes,
appear when f(0) has a singularity. From Eq. (17) it
follows that G(c) must also have a singularity near the
frequency for the resonant, or local, mode. It follows that
the intensity I(w) has peaks near these singularities.
Thus the observation of new Raman lines in mixed
Si: Ge crystals®® can be interpreted by either the local-
mode theory or the random crystal theory. On the other
hand, for some defects F(¢) remains small for all fre-
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quencies and to first order in the concentration
I{w)~Im[w?*—ie—wr?+cF (c=0, 0®—i€)spop I, (31)

where (for these type of defects) f(c=0)=3_, v;. The
Raman spectrum of mixed CaFy: SrF, crystals, in which
no new lines appear,’ can be interpreted by (18).
Similar considerations also apply to the case of infrared
absorption by the lattice if o is replaced by the index
for the infrared-active branches.

The condition that (14+Gov,)1~1 [see Eq. (17)]
implies that F(c)=c¢ > v;. This constitutes a condition
under which the ‘“‘virtual-crystal approximation” will be
valid for a given mixed crystal. From Eq. (20) one can
see that this approximation could be valid for some
phonons and not for others. Possibly one can explain the
results®? in CaFy-SrF, and the results? on ZnS-ZnSe
by just such considerations.
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A simple model is considered of an alloy consisting of a free-electron gas with a dilute concentration of
impurities. Electron states at the Fermi energy have a spread in wave numbers which blurs the Fermi surface.
Only up to second order in perturbation theory is the average wave number of an alloy state the same as that
given by the rigid-band model. A renormalization of the alloy wave function occurs which decreases the
weight of that part of the state that is associated with a given wave number. The effect of renormalization
shows itself in positron-annihilation experiments in alloys as an apparent decrease in the number of electrons

in the vicinity of the Fermi momentum.

I. INTRODUCTION

N discussing the properties of disordered alloys it is
common to use the concepts and terminology of pure
metals. Thus it is common'™ to refer to the Fermi
surface, Brillouin zone, etc., of disordered alloys. The
most striking example is that of the use of the rigid-band
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model where the alloy is assumed to have the same
electronic band structure as that of the pure host metal.
Any additional electrons added by alloying are assumed
to cause the Fermi surface calculated from the pure
host to swell to accommodate the additional electrons.
In a recent paper* the range of validity of the rigid-band
model is discussed. It is shown that under appropriate
conditions the geometric aspects of the rigid-band
model are expected to be valid. The geometric aspects
are those that use the geometric properties of the
constant energy surfaces in & space. In that paper it was
emphasized that the % space used in the rigid-band
model has no simple relationship to any wave number
of the actual alloy wave function. In this paper we
investigate what this relationship is. In order to get
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some insight into this question it is useful to start from
a pure metal and to follow changes as the alloying
proceeds. We do so in this paper for a simple model of a
free-electron gas with a dilute number of impurities.
We do not limit ourselves to the Born approximation
but permit the potential of the impurities to be strong.

In Sec. II, the properties of the alloy wave function
are discussed. In Sec. ITI, the interpretation of positron-
annihilation experiments in alloys is presented. Section
IV consists of a summary.

II. ALLOY WAVE FUNCTION

In discussing the Fermi surfaces of alloys we must be
able to define some wave vector in whose space we can
plot the constant energy surface with a value equal to
the Fermi energy. For periodic structures this wave
vector k is the one associated with the Bloch state ¢z
defined by

or(r+R,) = e Rugi(r). M

Here R, is a lattice vector such that the lattice at the
points r+R, looks exactly the same as at the point r.
For alloys we will see that at least three different wave
vectors naturally arise as contestants for the variables
in terms of which the energy is represented. To aid in
understanding the properties of alloys we choose the
simplest possible nontrivial model. The interaction
between electrons is neglected except as they enter into
shielding the ionic potentials. The pure material is a
free-electron gas and the alloy is produced by inserting
a dilute concentration of impurity atoms into the elec-
tron gas at random positions. We assume that the
potentials of the impurity atoms have spherical
symmetry.

It is useful to imagine that the alloy is formed in the
following sequence. The impurities with their electrons
are added to the pure metal matrix, but the interaction
between them is assumed initially to be turned off. Thus
the electrons added by the impurities spread throughout
the alloy and become additional free electrons causing
the Fermi sphere to swell to a larger diameter to
accommodate them. We call this the rigid-band model.
Then the interaction between the impurities and the
electrons is turned on in a continuous and gradual
fashion until it reaches its final value. At this point the
impurities will have localized electron-shielding clouds
in their vicinities and the alloy is in its final and correct
configuration.

In the rigid-band model the Fermi wave number in
the alloy kr has been increased over that of the original
electron gas by the increase of the electron density.
Because we are assuming that the impurities are
present in only a dilute concentration the change in
electron density is small and we can then approximate
the increase in the Fermi wave number by

[2/ (2r)* dnk@Akp=naZ, @)
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where k&g is the Fermi wave number of the pure metal,
Akp=Fkyr— ko is the increase of the Fermi wave numbers
in the rigid-band model of the alloy, » is the number of
electrons per unit volume in the pure metal, zna is the
number of impurities per unit volume, and Z is the
positive charge of the ion core of the impurity atom in
units of the negative of the electron charge. In an
actual substitutional alloy, Z is to be interpreted as the
difference in valence between the host and the impurity.
Our assumption of a dilute concentration of impurities
means that each impurity with its screening cloud of
electrons is far separated from all of the others. The
screening cloud and the self-consistent potential of each
impurity are the same as for a single impurity in the
metal. Since our impurities are inserted in a random
fashion there will be in reality some impurities close
enough together so that their interaction is not negli-
gible. However, the number of such cases will be pro-
portional to o?, and we assume that « is small enough
that o? can be neglected compared to it. Thus our
assumption of a dilute alloy permits us to characterize
the impurity potential by the same machinery of the
isolated impurity problem, i.e., a set of phase shifts as
defined in scattering theory. In terms of these phase
shifts the Friedel sum rule® is

2
==2_ Q2+ 1D)au(kr), ©)
T 1
where §;(kr) is the phase shift of the /th partial wave
at the Fermi surface. For the rigid-band model of the
alloy each electron state

¢k=eik-r

©)

can be characterized by a wave vector k, where 7k is the
momentum of the state. The actual alloy of course does
not have such eigenstates, but we can make a one-to-one
correspondence between the states of the alloy and those
of the rigid-band model in two different ways. For one,
consider a state k in the rigid-band model which has the

energy
Eo(k)=#2R2/2m. (5)

In a continuous fashion let the rigid-band model
transform to the actual alloy. In this process the state
®; transforms to another state Xi, and the energy
Eo(k) goes to E(k)+i(3T(k)). The energy becomes
complex because a current-carrying state such as X
cannot be an eigenstate in the alloy. The imaginary
part I'(k) is a measure of the lifetime of the state due to
scattering. In our dilute approximation I'(k) will be
linear in a. This way, which establishes a correspondence
between the rigid-band model and the alloy, we will call
the adiabatic way.

The second way to make a correspondence we will
call the dielectric way and it is as follows: Imagine the
alloy in the form of a slab of finite thickness surrounded

5 J. Friedel, Advan. Phys. 3, 446 (1954).
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on both sides by the pure metal. In the region of the
pure metal the electron can be described in terms of the
&, state of Eq. (4). An electron in state , impinging
on the alloy will scatter as it enters the alloy. The
combination of the scattered and incident waves will
give the actual wave function of the system. Inside the
alloy slab one expects in general that the coherent part
of the wave will be attenuated and also be changed in
wavelength, in analogy with the optical problem of
light passing through a dielectric slab. From scattering
theory® the actual wave function ¥, is

%®=%®+/%@wWﬂ%WWﬂ ©)

where Gy is the Green’s function or propagator in the
pure metal and

V=5 Vo(r—1) )

is the potential of the impurities. We assume dilute
impurities so that we can neglect overlap of shielding
clouds and thus can assume that V is a sum of the
potentials of isolated impurities Vo centered at r..

The assumption of dilute impurities permits an
approximation in evaluating (6). The state ¢, can be
divided into two parts, a coherent and an incoherent
part. The coherent part consists of the incident wave
&, plus the forward part of the scattered wave con-
tributed by the last term in (6). The sum of the incident
and forward scattered wave gives a coherent wave with
a new wave vector K given by’

K?=g+-4mnafo, ®)

where fo is the forward-scattering amplitude of the
impurity potential Vo and is given in terms of the phase
shifts 8; by

1 o
fo==3 (2I+1)e? sing;. ©)
k1=0

In treating the incoherent part of the wave we take
advantage of the diluteness of the alloy and use the
dilute scattering approximation to calculate quantities
to first order in a. In this approximation the wave func-
tion incident on a given impurity atom is e, the
incident part of the wave function only. The inco-
herently scattered waves from other impurity sites
produce a negligible contribution at the impurity site
of interest because of their diluteness. This incident
wave is scattered from each impurity site as though the
impurity were isolated, giving as our total wave function

Vo()=Ae™ 5 / G/ () Vol ~rdesrdr'. (10)

Here 4 is a renormalization constant, and G/ (r,r’) is

8 M. L. Goldberger and K. M. Watson, Collzswn Theory (John
Wiley & Sons, Inc., New York, 1964), p
7 M. Lax, Rev. Mod. Phys. 23 287 (1951)
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the electron propagator of energy Eq(q) =%2¢*/2m for a
single impurity in the pure metal centered at r; with the
forward-scattering part subtracted out. The forward-
scattering part of G; has already been incorporated into
the coherent part ¢*¥-*. Thus a knowledge of the single-
impurity scattering problem is sufficient to approximate
the wave function in dilute alloys.

One should note that the dilute approximation is
distinct from the Born approximation. In both cases the
incident wave function scattered at the impurity is
assumed to be the unperturbed part only. However, in
the Born approximation the scattering from an im-
purity is treated by perturbation theory while in the
dilute approximation this scattering is treated exactly—
in terms of phase shifts—as, say, in our case.

It is informative to look at the alloy in still another
way, similar to the one used in deriving the Friedel sum
rule. The perturbing potentials due to the impurities are
localized about each impurity, and, in the dilute case,
there is a region surrounding each impurity where the
potential seen by an electron is that of the pure metal.
In this region the solution of the Schrédinger equation
for energy Eo(q) =%%/2m is a state with wave number
g. Yet from (10) we see that the wave number in the
alloy for energy E(g) is K. This apparent paradox is
completely analogous to that of light passing through
a dielectric medium. Light has a certain wavelength in
free space which differs from that in the dielectric
because the scattered waves added to the incident wave
continually phase shift the incident wave, which has the
free-space wavelength, to produce a combination wave
with the different wavelength of the dielectric.

The fact that the potential around an impurity is
different from the potential in between the impurity
does not imply a spatially dependent band structure.
The states ¢, that we are considering are eigenstates of
the system and their energies are the same independent
of position. What does vary is the form of ¢, In the
perfectly periodic potential case, the wave function is
the same in each unit cell up to a phase factor. In the
case of an alloy, ¢, has a different form near an im-
purity than in between, but such a difference does not
lead to a spatially dependent band structure.

To recapitulate the preceding discussion, we have
associated three different wave vectors with the alloy
wave function of energy Eo(g). One is the wave vector
q which is the solution of the Schrédinger equation of
energy Eo(g) in between the impurities where the alloy
appears like the pure metal. Another is the wave vector
K which is the wave vector of the coherent part of the
wave function and its relation to q is given by Eq. (8).
The third is the rigid-band-model wave vector k whose
relation to q we have not yet determined. To determine
this we must determine E(k), the real part of the energy
of the adiabatically corresponding state in the alloy. In
our dilute case AE(k)=E(k)— Eo(k) will be propor-
tional to na, the number of impurities per unit volume.
The coefficient of proportionality can be determined in



168

the special case of a single impurity. Consider a single
impurity placed at the center of a sphere of the pure
metal of radius R. The impurity potential V, introduces
phase shifts §;(k) into the various angular-momentum
states of the electron with wave number %. In order to
match the boundary conditions, a state of angular
momentum / in the pure metal with wave number % is
changed adiabatically to %', where

ER=F'R+5,(k). (11)

Remembering that far enough away from the impurity,
the potential seen by an electron is exactly the same as
in the pure metal, and thus the same energy—versus—
wave-number relationship holds in the alloy as in the
pure metal in this region, we have

Wk 72k &, (k)
m m R

where AE;(k) is the change in energy of the state of
angular momentum . However, we are interested in
AFE’'(k), the change in energy of a plane-wave state
caused by a single impurity. Since this plane-wave
state is composed of all angular-momentum states
weighted by their degeneracy, we can determine
AFE' (k) by

AE' (k)= Zz AE, (k) (21+ 1)/21_“, (2141)
72k

= 3 52+ 1)/T (21+1).
mR ! l

(13)

For a finite volume the denominator of (13) is finite
because the maximum value of ! is limited. For a
spherical sample of radius R, the maximum value that
an electron can have and still remain inside the sample
is approximately /=kR. Using the relationship that
po(Eo), the density of states of the pure metal at Eo(k)
per unit volume, is given by

R 2m
41 Rpo(Eg)=——2_(2+1),
W ak ?

(14)
we can write (13) as
2

AE'(k)=—~ Zz 8:1(214-1) /47 RPpo(Ey) - (15)

The number of impurities per unit volume in this case
is [(4x/3)R*T*. For na impurities per unit volume
AE(k) is

2na
AE(k)=—— Zz: 8:(214+1)/po(Ev).

™

(16)

We then have the relationship between £ and ¢ that
E(k)=Eo(q), (17)
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and from the definition of AE(k) and (17) we obtain

dmno
k=g 22 0:(204+1)/po(Eo). (18)
/5
Using the relationship that
po(Eo)=km/x*1?, (19
Eq. (18) can be written as
4drna
k= g+ 8 (2+1). (20)
[

Using (8), (9), and (20) we can obtain the relationship
between k& and K to be

drna

B= K>+

2 (2U+1) (8;— e®tsing;) .
Bl

@n

It is important to keep clear the distinction between
the adiabatic and the dielectric corresponding states.
In the adiabatic case a current-carrying eigenstate of
the pure metal of a given energy is transformed into X,
a current-carrying state of the alloy but with a finite
lifetime and a differing energy. In the dielectric case a
current-carrying eigenstate of the pure metal of a given
energy is transformed to a non-current-carrying eigen-
state y of the alloy of the same energy. What we now
show is that, at least to order «, the states ¢ and X are
closely related to another. In fact, the X which has a
given real part of the energy E(k) is ¢ of energy E(k)
with the imaginary part of K set equal to zero. To show
this we show that the energy of the ¢ with the imaginary
part of K set to zero is complex and equal to that of X.
We know that the energy of ¢ can be written as a
function of K,

E(K)=E(q), (22)

where K is complex and can be written in terms of its
real and imaginary parts as

K=Ky+iKs. (23)

Now if K;=0, then the energy becomes complex and to
first order in a,

E(Ky)= Eo(g)—iK.E' (K,),

where E,(Kl) = [ VKIE(Kl) I .

The imaginary part of the energy of X, which we have
denoted by 3T, can be obtained by reasoning similar to
that used to determine E(k). We first find the imaginary
part of the energy for a single impurity by calculating
the total scattering cross section, and multiply by the
number of impurities to find I'. By use of the optical
theorem of scattering theory,?® we find

2 noh?

m

(29)

yr-

Imfo, (25)

8 Reference 6, p. 183.
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Fi16. 1. The distribution of wave number in an eigenstate for the
model of a dilute alloy. The width of the peak I is proportional to
a, the fractional amount of impurity. The height of the broad
distribution is proportional to « while its width remains fixed.

where Im fo means the imaginary part of f,. Comparison
with (24) and (8) shows that to first order in «

T=K.E'(Ky). (26)

Thus we have proved the desired relation between X
and ¢,.

Some further clarification of the relation between X
and ¢, is in order. The eigenstate y, represents the
steady state of an incoming electron suffering both real
transitions into other states and virtual transitions
representing modifications of the incoming state in the
vicinity of the impurities and a change in wave number.
The noneigenstate X; represents a plane-wave state
initially created throughout the whole alloy. The alloy
introduces virtual transition modifications into Xy, but
the real transitions do not modify it; they only produce
the finite lifetime of the state. In ¥, the decay in real
space of its coherent part is accounted for by the
creation of states into which the incoming electron can
make real transitions. In X; these real transitions are
not included in the spatial variation of X, but in its time
dependence as a finite lifetime.

Equation (21) indicates that the rigid-band-model
wave number of a state and the real part of the actual
wave number differ by order §;® and thus of order V.
This indicates that the rigid-band-model description of
the Fermi surface is valid to second order in V.

III. POSITRON ANNIHILATION IN ALLOYS

There are two different types of positron-annihilation
experiments used to study the properties of solids. One
measures the angular distribution of the annihilation
v rays for the two-y-ray decay mode.® This determines
the distribution of the solid’s electron momentum
components perpendicular to the direction of the y rays.
The other measures the intensity of the annihilation
v rays emitted exactly antiparallel to one another as a

9 P. R. Wallace, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1960), Vol. 10.
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function of the orientation of the single-crystal sample.*®
Assuming that the core effects can be taken into
account, the intensity is assumed to be proportional to
the dimensions of the Fermi surface in the direction of
the observed v rays passing through the &-space origin.
In this section we analyze the momentum distri-
bution of the alloy wave function in order to interpret
positron-annihilation experiments in alloys. Inspection
of the wave function in (10) indicates that there are two
distinct contributions to the momentum. One is the
term e which in view of the complex value of K gives
a momentum distribution peaked at K; with a width
of order of Ky, i.e., proportional to . This momentum
width comes from real transitions from the state X; to
other states X;’. The other contribution comes from the
last term in Eq. (10) and represents virtual and real
transitions. The virtual transitions give a broad distri-
bution whose width is constant but whose magnitude
is proportional to a. This is illustrated in Fig. 1. In an
experiment, only the first contribution—the momentum
peak—will be observable; the broad distribution will
blend into the background. Thus momentum-measuring
experiments measure K r, where, by Eq. (8),

KF2= qF2-|—41rnaf0 . (27)

Here ¢r is the Fermi wave number of the pure metal
assuming no volume change on alloying. The area under
the peak is now less than 1 for a given electron state
because the total area in Fig. 1 should be equal to 1.
This decrease in the peak area is sometimes referred to
as a renormalization of the wave function. To calculate
this renormalization we calculate the area outside of the
peak. The second term in Eq. (10) contains real
scattered waves at the energy of the incident wave and
virtual scattered waves which are composed of un-
perturbed states of energies different from the incident
energy. The real scattered waves in the forward direc-
tion change ¢ to K. The real scattered waves in the
other directions do not decrease the weight of the peak
because they just redistribute the K of energy E into
other directions. This redistribution is compensated by
the scattering from other states of the same energy into
the K state. The decrease in the weight of the peak
comes from only the virtual transitions. To calculate
the weight in the virtual transitions we expect that for
dilute alloys this weight will be proportional to the
number of impurities #a. The constant of proportion-
ality is determined by considering the case of a single
impurity in a free-electron gas of volume V. The wave
function in that case is given by (6), where G, can be
written as

Gowr=r [T
ry)=— .
’ v J [Eo(g)—Eo(k)] (2r)

1 D. L. Williams, P. Petyevitch, and G. Jones, Bull. Am. Phys.
(81090.7}0, 1181 (1965); O. Sueoka, J. Phys. Soc. Japan 23, 1246
67).
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If we normalize ¥, to one per unit volume, the total
weight in ¢, of wave numbers other than q is given by

B 1 [e =tV (" )W, (x))d3r' |2
e V2 k#q Ey(q)— Eo(k)
=E 9 [P/ a3k |fe—“""V(r’)xl/q(r’)d?'r’]2} ’
V 0Eo(q) (27)3 Ey(k)—Eo(g)

where P denotes principle value and 9/98Ey(q) is taken
holding q fixed. Using the definition of the { matrix

thg=V (1)¥q, (30)

we can write (29) also as

2 —__

&% txq|?

(27)* (Eo(k)—Eo(q))’

where

Z(Eo(q),q)=P/

and

tkq=/e“ik"V(r)w,lxq(r)d3r.

In the case considered, the number of impurities per
unit volume is 1/V. Thus for na impurities per unit
volume (31) becomes

)
B*=na )E(Eo(q),q)- (32)

o\q

In Fig. 1, B? represents the area in the broad distri-
bution. The weight associated with the peak in the
momentum distribution of Fig. 1 is

a
1—B*(Eo(g))=1—na )E(Eo(Q),Q)- (33)

dEq(q

The momentum distribution in the ground state of
the alloy can be obtained by integrating the contri-
bution from each state over the total number of
occupied states. To order @, the number of occupied
states ¥, per unit energy at the vector q of energy Eo(g)
is given by**

N(EO(Q))=f(Eo(Q))Pk(Eo(Q)) )

J(Eo(g))=[1—e Er—Eo()/kT]-1

(39
where

35)

(E())—— 2 /‘ dSh
PRI s ] TvaBo @)

and % is the rigid-band wave number corresponding to
¢ which is given by (20). The expression on the right
side of (35) is evaluated in the rigid-band-model % space

1L E. A. Stern, Phys. Rev. 144, 545 (1966).
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N(k') - 1

'F K

F16. 2. The distribution of wave number N (%) in a dilute
alloy. The dashed line is for a pure metal with the same Fermi
wave number.

where d.Sy is an elemental area on the constant energy
surface E= Eo(q) in the k space. Note that the right side
of (35) does not use g or K space. The validity of this
result is discussed in Refs. 4 and 11 and it can briefly be
summarized as follows: There is a one-to-one corre-
spondence between the rigid-band-model states and
those of the alloy via the adiabatic correspondence
discussed in the previous section. The adiabatic alloy
states X, are not eigenstates but have an imaginary part
to their energy. However, the real part of their energy
is the same as that of the true eigenstates and the
imaginary part of their energy contributes to p(E) of
order a?. Thus to order a the imaginary energy part can
be neglected and the X; can be treated as eigenstates.
Because of their one-to-one correspondence to the
rigid-band states their number can be counted in %
space, thus leading to Eq. (35).

Putting all of these ideas together the momentum
distribution in the alloy N (k’) is given by

2
V)= [ [ B E)

T
<T1 Ko dSrdE(q)
i [(Ku—kdP+K22] | ViEo(g)|
2 a
+——na
(2m)3  OEo(k")

{ [£xrq|2f(Eo(g)) dSkdEo(‘I)} 36
[Eo(q)—Eo(k")] | WiEo(g)|)

The first integral on the right side of Eq. (36) represents
the contribution from the coherent parts of the wave
function, the peak contributions. The product IJ:
means the product where ¢ has the three values x, y, 2
corresponding to the three components of K=K;+iK.,.
The second integral on the right side of (36) represents
the contributions from the virtual transitions in y,, the
broad background in Fig. 1. Schematically, one expects
the N ('), where %’ is now the magnitude of %', to look
as shown in Fig. 2. For small values of ', N(#')=1
because the width of the broad background is of the
order of K. Then the second integral in (36) is approx-
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imately equal to B2(Ey(%’)) and makes N (£)=1. As we
increase k’ and approach Ky so that Kr—%’ becomes
smaller than the width of the broad background, the
contribution from the second integral on the right side
of (36) becomes less than B2(Ey(k)’), and N (k') <1. If
K were zero, then the slope of N (k') at Kr would be
infinite. However, because K»r7#%0, we end up with a
finite slope at Kp. Also, because of the broad back-
ground, we obtain the tail in N (&) for ¥’>Kp.

Angular correlation positron-annihilation experi-
ments by Stewart on LiMg alloys" indicate a momen-
tum distribution as shown in Fig. 2. In pure Li the
positron data is consistent with a rectangular momen-
tum distribution as indicated by the dashed lines in
Fig. 2. In the LiMg alloys, the positron data indicate a
momentum distribution that drops below the dashed
lines below the Fermi momentum, in agreement with
Fig. 2. Stewart correctly attributed such behavior in the
alloy to the virtual transitions corresponding to the
relative pileup of charge around the Mg ions. The
calculation in this paper completely confirms the
suggestion of Stewart.

The positron-annihilation experiments that use a
rotating single-crystal sample to measure the dimen-
sions of the Fermi surface must account for the effect
of the renormalization of the electron wave function.
If not correctly accounted for, this renormalization
effect would appear as a decrease in the Fermi-surface
dimension with alloying. If the renormalization were
independent of sample orientation, it would not change
the relative shape of the Fermi surface and could be
accounted for by renormalizing the experimental data.
However, if the Fermi surface is anisotropic, one would
expect in general that the renormalization would also
be anisotropic, and the Fermi-surface shape determined
by the rotating-crystal method of positron annihilation
would give an incorrect shape.

Another experiment that has been used to determine
the size of Fermi surfaces in alloys is to determine the
Kohn anomaly in the phonon spectrum measured by
neutron scattering.®®** Such a measurement determines
the Fermi-surface size in K space, just as positron-
annihilation experiments do. One expects deviations
from the rigid-band model, then, when the alloy cannot
be treated by perturbation theory. The situation when
perturbation theory is expected to be or not be valid
is discussed in Ref. 11.

12 A, T. Stewart, Phys. Rev. 133, A1651 (1964).
(1;6?5 D. B. Woods and B. M. Powell, Phys. Rev. Letters 15, 778
(1;’6%‘0 Ng and B. N. Brockhouse, Solid State Commun. 5, 79
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IV. SUMMARY

The properties of electron states in a model alloy is
considered. The model consists of a free-electron gas
with a dilute number of impurities. The alloy states
differ from the free-electron states in two ways: (1)
Because of a localization of charge around the im-
purities, which is described by virtual transitions, a
broad momentum distribution is added to the alloy
state whose weight is proportional to the concentration
of impurities. (2) In addition to the broad background,
the coherent part of the state contributes a peak in the
momentum distribution about a value K3, the real part
of K given by Eq. (8). The width of the peak is 2K, the
imaginary part of K. The width of this peak comes
physically from the scattering of free-electron states
by the impurities and corresponds to a blurring of the
Fermi surface for states at the Fermi energy. Besides
the smearing of the peak the impurities also shift the
value of the peak in an analogous manner to a dielectric
medium. The relationship between the wave number
K in the alloy, the rigid-band model wave number £,
and the wave number ¢ that a free-electron of the same
energy has, is discussed in detail. In particular K and %
differ when second-order perturbation theory is no
longer valid for the alloy.

Because of the broad background, a renormalization
occurs for the coherent part of the wave function,
giving it less weight than 1. This renormalization
contributes important effects in positron-annihilation
experiments and must be included in order to correctly
interpret the results in alloys.

Note added in proof. It is important to distinguish
between the discussion in this paper on the decrease of
the weight in the momentum distribution near Kr and
the variation of the positron-annihilation probability in
pure metals as a function of the % state of the elec-
tron.1518 The variation discussed in this paper is caused
by alloying and is an additional mechanism to the one
producing the variation in pure metals.
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