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CONCLUSIONS

In this study, we have attempted to determine the
extent to which the independent-particle model de-
scribes the angular correlation of the photons emitted
when positrons and electrons annihilate in metals and,
hence, to evaluate the experiment as a technique for
studying the electronic structure of metals. We have
concluded that the independent-particle model provides
a good first approximation to the angular distribution,
even in very anisotropic metals, but that some of the
detailed structure which the model predicts is probably
reduced by the Coulomb correlations in the system.

The electronic structures of the heavy rare-earth
metals have been shown to be rather similar, and the
angular distributions which we have observed are
qualitatively in agreement with the relativistic aug-
mented-plane-wave calculations of Keeton and Loucks.
The structure in the c-axis distributions has been shown
to be related to those aspects of the Fermi surface which
are believed to be important in determining the mag-
netic structures. In particular, the difference between
Gd and the other magnetic hcp rare-earth metals can
be qualitatively understood. The modification of the

Fermi surface in the helically ordered magnetic phase
of Ho has the expected eRect of reducing the structure
in the c-axis angular distribution. The electronic struc-
ture of the equiatomic Ho-Er alloy has been shown to be
similar to those of the constituent metals although a
rigid-band model is not apparently strictly applicable.
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A quantum-mechanical representation is defined by means of Qnite translations in direct and reciprocal
space. The eigenfunctions of the 6nite translations are found and their connection with Bloch functions
and Wannier functions is established. The new representation is used for describing the motion of a Bloch
electron in a magnetic and in an electric field. For the 6rst problem, well-known results are reproduced in
an extremely simple and natural way. It is also shown that the representation introduced in this paper gives
a straightforward way to compare classical and quantum dynamics for a Bloch electron in external magnetic
and electric fields.

I. INTRODUCTION

~ 'HE motion of electrons in solids (Bloch electrons)
in external magnetic and electric fields has at-

tracted great attention both experimentally and theo-
retically during all periods in the development of solid-
state physics. The reason for this is that very many
properties of solids, and in particular their energy
spectrum, can be measured by performing experiments
in external fields. For example, all the vast field of
magneto- and electro-optics and Fermi-surface measure-
ments by the de Haas —van Alphen technique is based on
this kind of experiment. It is therefore natural that
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many papers have been published on the motion of
Bloch electrons in external fields. ' ' The final results
derived in the mentioned papers have a very simple
physical interpretation and are closely related to the
dynamics of unperturbed Bloch electrons. This is a
common feature of all theories for the given problem,
and physically one should expect that the perturbed
motion will in one way or another be connected to the
unperturbed one. The mentioned papers' ' differ, how-
ever, by their approach to the problem, namely, different

' W. Kohn, Phys. Rev. 115, 1460 (1959);see this paper for other
references.

2 Laura M. Roth, J. Phys. Chem. Solids 23, 433 (1962).
3 Gregory H. Wannier, Rev. Mod. Phys. 34, 645 (1962);see this

paper for other references.' E. I. Blount, Phys. Rev. 126, 1636 (1962).
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basis functions are used in them for expanding the solu-
tion of the perturbed motion. It is a very interesting
demonstration of the well-known fact that the way the
solution is obtained is influenced by the choice of
the quantum-mechanical representation. Roth's' and
Blount's4 papers treat the problem of a Bloch electron in
a magnetic 6eld and were written in order to simplify
Kohn's' method. Although their task was achieved,
there still was a feeling that there must be a much
simpler method to obtain results with such a simple
physical structure.

In this paper it is shown that the clue for the solution
of the problem does indeed lie in the right choice of the
basis functions. For this purpose a quantum-mechanical
representation recently introduced by the author' is
used. In this representation the states are specified by
eigenvalues of finite translations in the direct and
reciprocal spaces. It turns out that in this representation
Schrodinger's equation for a Bloch electron in external
fields (magnetic and electric) becomes an equation in six
independent variables and contains side by side the
Bloch motion, the motion in the external 6elds, and a
term that couples them. Such an equation was predicted
before' and more recently obtained'" on the basis of
some assumptions but never rigorously proven because
of the lack of a suitable representation. Since we now
have a proof of this equation, its connection with the
original Schrodinger's equation becomes completely
clear, and it can be used, as we will show in this paper, as
a very powerful tool for describing the motion of a Bloch
electron in external magnetic and electric 6elds.

In Sec. II the new representation is described and its
connection with other representations is given. In Sec.
III we discuss the equation for a Bloch electron in
external magnetic and electric 6elds in the new repre-
sentation. Section IV deals with a Bloch electron in a
magnetic field. It is shown how the well-known results
can be obtained in an extremely simple and natural
way. In Sec. V a general description of the problem is
given in terms of the Ehrenfest theorem in quantum
mechanics.

II. Aq REPRESENTATION

In a previous paper' it was proven that finite transla-
tions in the direct and reciprocal space form a complete
set of corrimuting operators' that can be used to obtain
a representation in quantum mechanics. Since the
mentioned paper' was only a brief letter, in this section
we are going to reconstruct what we call the kq

representation.
Let us start with a one-dimensional case and let x and

p be the coordinate and the momentum that satisfy the

J Zakp Phys Rev Lettel s 19 1385 (1967)
6 H. C. Praddaude, Phys. Rev. 140, A1292 (1965).
r P. G. Harper, J. Phys. Chem. Solids 82, 495 (1967l.

P. A. M. Dirac, The Princip/es of Quantum Mechanics (Oxford
University Press, New York, 1958).

commutation relation

$p,x]= i, —

where we have assumed A=1. It is known that for a
spinless particle (spin will not be taken into account in

this paper) either the operator x or the operator p forms

a complete set of commuting operators. ' This means, for

example, that x can be chosen to specify a complete set
of functions 5(x—xp), which are eigenfunctions of x,

xb(x —xp) = xone(x —xp), (2)

where 8(x—xp) is the Dirac 8 function and xp is the

eigenvalue of x in the state 5(x—xp). Any function of x,

say 1t (x), can be expanded in the set 5(x—xp)

P(x) = C(xo)8(x—xo)dxo,

It is well known that the operators (4) for a and any
multiple of a are of very great importance in solid-state

physics, where a has the meaning of a lattice constant.
Their importance comes from the fact that they com-

mute with the Hamiltonian for a periodic potential, the
period being given by the lattice constant. For example,
the Bloch theorem for an electron in a periodic lattice"
is obtained by requiring that the solution of Schrodinger's
equation is also an eigenfunction of T(a):

T(a)gi(x) = exp(ika)gi. (x) .

Here k speci6es the eigenvalue of the translation opera-
tor T(a) and k assumes values from 0 to 2'/a or from
—or/a to or/a. It is clear that Eq. (6) itself does not
define the function Pz(x) completely and it only re-

quires that fp(x) has the form of a Bloch function

Pi(x) = exp(ikx)Ni, (x),

where nz(x) is periodic in x with the period a. One way
of defining the function f&(x) completely is to require
that it satisfies Schrodinger's equation. The function

fs(x) will now have a band index m that specifies the
energy eigenvalues,

P„„(x)= exp (ikx)u„p (x) .

This is the way Bloch functions are specified by means

L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon Press, Ltd. , London, 1958).

C. Kittel, Quantum Theory of Solids (John Wiley 8z Sons, New
York, 1963).

where the integration is over the whole x axis. Let us

now define an operator

T(a) = exp(ipa),

where a is a constant. This operator represents a finite

translation in x space,
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of a continuous variable k which comes from the trans-
lation symmetry and a discrete energy band index" e.

Another way of defining QI, (x) in (7) completely is to
find operators that connnute with T(a) and that form
together with T(a) a complete set. Let us define another
operator

(9)T(b) =exp(ixb),

where b is a constant satisfying

a5= 2x'.

One can easily check that the commutation relation of
T(a) and T(b) vanishes:

This just means that T(a) and T(b) commute. We state
that T(a) and T(b) form a complete set of coiiunuting
operators. It is clear that any function of T(a) and T(b)
will commute with both T(a) and T(b). The question is,
however, whether one can find additional operators that
are not functions of T(a) and T(b) and that commute
with the set T(a), T(b). The answer to this question is
negative. Any function of x and p that commutes with
both T(a) and T(b) is a function of the latter operators
only. To prove this we use a known theorem" that any
function f of the operators x and p can be written

f(xP)= exp(iQ—.P+ iPx)
2'

XTrLf(xp) exp( inp —iPx)j—dndP, (12)

where Tr means trace. Assume now that f(xp) com-
mutes with T(a) and T(b). The only exponentials in
(12) will then be with n=na and P=mb because only
they conunute with both T(a) and T(b) Therefor. e, the
requirement that f(xp) commutes with T(a) and T(b)
will lead relation (12) to a sum over exponentials

exp (ieap+ irebx), (13)

and f(xp) becomes a function of T(a) and T(b) only.
This is the proof that T(a) and T(b) form a complete set
of con@muting operators. The constants a and b were
chosen arbitrarily with the only limitation that they
satisfy relation (10).As we mentioned already, in solids
a usually has the meaning of a lattice constant and then
b according to (10) will have the mearung of a constant
in the reciprocal lattice.

The operator T(a) gives a translation by a in the
direct space (x space). It can be seen that the operator
T(b) gives a translation by b in the rec—iprocal space

(P space)
T(b)4(p) =4(p-b), (14)

because the operator x in the p representation is given
by i(8/Bp) The opera. tors T(a) and T(b) are therefore

"G. F. Koster, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1957), Vol. 5.

I H. J. Groenewold, Physica 12, 405 (1946).

Rnite translations in the direct and reciprocal spaces,
respectively. In solids these operators can be given a
very simple meaning of being translations by Bravais-
lattice and reciprocal-lattice vectors.

Having proven that T(a) and T(b) form a complete
set of commuting operators, let us now 6nd their
eigenfunctions. It was mentioned already that the
eigenfunctions of T(a) are Bloch functions f& given by
relation (7). We now require that they also be eigen-
functions of T(b):

T(b)gi, (x) = exp(igb)Pi, (x) . (15)

where the function f(kq) is still to be defined from the
normalization of Pi„(x).That fi„(x) is an eigenfunction
of both T(a) and T(b) is very easy to check just by
verifying relations

T(a)gi„(x)= exp(ike)Pq, (x), (17)

T(b)P, (x)= exp (iqb)P, (x) . (18)

Let us now check the orthogonality of f&,(x) for differ-
ent eigenvalues kg:

P,*(x)P;(x)dx= bi f(kq) i'b(k —k')8(g —g'). (19)

For Pi, ~ to be normalized
~ f(kq) ~

=1/gb The funct. ion

Pi, then becomes

(20)Pi„(x)= P b(x q na) exp(iknu) .——

Being eigenfunctions of a complete set of commuting
operators T(u) and T(b), the functions Pq, form a
complete set of functions. Any function of x can be
expanded in them. One of the checks of the completeness
of Pi„(x) is that

/pe*(x)Pi, (x')dkdq= 8(x—x'), (21)

where the integration is over unit cells in the direct and
reciprocal lattices.

While constructing the eigenfunctions of T(u) and
T(b) we used functions of x and this is why the final
result (2) is given in the x representation. It is easy, for

Here q specifies the eigenvalues of T(b) in the same way
as k does it for T(a) in (6). The reason for having such
similar relations is because T(a) and T(b) are unitary
operators with eigenvalues given by exp(ika) and
exp(iqb), respectively. In relation (15) q assumes values
from 0 to 2m/b or from w/b to ~—/b in complete analogy
with the values k assumes. In solid-state physics one
would say that k varies in the first Brillouin zone while q
varies in the erst symmetric unit cell."From require-
ment (15) we get that Pi„(x) has to be of the form

Pi„(x)= f(kq)P 8(x—
q
—na) exp(ikna), (16)
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example, to get 1P1., in the P representation by taking a
Fourier transform of relation (20):

f1„(P)= exp( —ikq)Q 8(P—k —nb)

&k'q'I plkq)= dpdp'&kql p&&pl pl p')&p'Ik'q')

dpp&kql p&&p I
k'q'&

8
i 8—(q' —q)8(k' —k) .

Bg
(24)

In deriving the result (24) we used expression (22) and
the relation &plkq&=f&, (p). Similarly one finds an
expression for the operator x:

8
&k'q'Ixlkq)=i b(k' —k)b(q' —q)

Bk'
+q'b(k'-k)b(q'-q). (25)

There is no doubt that the expression we obtained for
the operators x and p depends on the choice of the phase
we made in the function P~,(x). As we will see later, this
choice makes the functions in the kq representation be
Rloch-type functions. Alternatively, expressions (24)
and (25) can be written as follows:

p= iB/Bq, —

x=i(8/Bk)+q.

(26)

(27)

This completes the construction of the kq repre-
sentation: We have a complete set of commuting opera-
tors (4) and (9), their eigenfunctions (20), which form a
complete set of eigenfunctions, and expressions for the
basic operators x and p.

Until now we wrote the results for a one-dimensional
case but the generalization to three dimensions is
straightforward. The translations will be

T(R„)= exp(ip. R„),
2"(K )=exp(ir K„),

(28)

(29)

wllel e R =n1a1+n2$2+ n3$3 K fll1b1+ nj2b2+ BZ3b3

with integer n1, n2, n3, m1, rnid, ma and a; b;= 2mb, ;.The
complete set of the operators is defined on the basis

)&exp(—iqnb) . (22)

Finally, the eigenfunctions of T(a) and T(b) can
be written in their own representation (in the kq
representation):

Pg, .(kq) = b(k —k')b(q —q') . (23)

To complete the construction of the kq representation
let us find expressions for the operators x and p in it. We
start with the operator p:

where 7 is the volume of a unit cell in the direct space
and the vectors k and q vary in the cells built on the
vectors b1, b2, b3 and a1, a2, aa, respectively. Again, the
connection with the concepts of a Bravais lattice and a
reciprocal lattice is obvious. Finally, the operators p and
r in the three-dimensional case are

p= —i8/Bq,

r = i(8/Bk)+q (32)

The kg representation has a number of very inter-
esting features. First of all, it is a representation in which
the operators r and p are partly defined together. By
giving k and q one can tell where in unit cells of k space
and q space the values of the operators p and r are, but
one cannot tell in which of the cells they are. This
follows from the fact that k and k+K define the same
eigenvalue of exp(ip R„) and similarly, q and q+R„
define the same eigenvalue of exp(ir K ).Of course, the
possibility of defining partly r and p together does not
violate the uncertainty principle. However, working
with k and q together, which means with p and r partly
together, makes the quantum-mechanical description
very close to the Hamiltonian classical description. This
will be shown in Sec. V. Another interesting feature of
the kq representation is its connection to the Bohr-
Sommerfeld quantization rules. Let us consider a one-
dimensional case. It is known' that for Qnding energy
levels one can use the condition

pdx= 2mh(n+y), (33)

where the integration is on a closed path in phase space,
e is an integer which gives the quantum state number n,
and y is a phase factor which we assume here to be zero.
One can write relation (33) in a different way:

pdx/2m b =n, (34)

and interpret the left-hand side of it' as the number of
quantum states contained in the area of phase space
j'pdx. This is just the well-known rule that the number
of quantum states in an area of phase space is given by
this area divided by 2mA. In the kq representation the
area of the elementary region where k and q vary is
2~/a)&2~/b=2m. or 2m.h if k is not assumed to be 1.
Every point in this elementary cell gives a di6erent
quantum state. Allow now the kq values to cover the
whole plane and we get the phase space. The number of
times that a definite quantum state appears in an area

vectors a1, a2, a3, b1, b~, b3 while all the other operators
in (28) and (29) are functions of them. The eigen-
functions in three dimensions will be

r -1/2

PI„(r)= — P b(r —q—R„)exp(ik RN), (30)
(2w)' R
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„(t("Pdx is given by this area divided by 2m 6 because every
quantum state appears once in the area 2&A. We there-
fore can associate a more precise meaning to formula
(34), namely, e gives the number of times a given
quantum state appears in the area gpdx or the weight
of every quantum state. It is in this meaning that
formula (34) is used in integration over phase space in
statistical mechanics. "One usually replaces the classical
elementary area dpdx by dpdx/27rk.

It is also interesting to compare the functions fk, (r)
in (30) with functions one uses in the Bloch theory of
solids. First of all, P&,(r) is a Bloch-type function be-
cause it satisfies relation. (17). However, while Bloch
functions f„k have a discrete band index and a con-
tinuous wave vector k, the functions f~„are specified by
two continuous vectors k and q. As we will see in the
next section, this will lead us to a six-dimensional
equation from which one can obtain a very good insight
of the motion in external 6elds. A function very often
used is the Wannier function. ' The expression (30) is of
the same type as the one that connects Sloch functions
with Wannier functions. The only difference is that the
Wannier function appears instead of the 6 functions in
(30)."One can therefore say that the Wannier functions
that are defined through the fk, Bloch-type functions
are infinitely localized, and instead of having a discrete
band index, they are defined by a continuous vector q.
This infinite localization of the Wannier-type functions
8(r—q—R„) is just the feature that is needed in
describing the dynamics of Bloch electrons in external
fields"

Other features of the kq representation will become
apparent in the following sections.

III. SCHRODINGER'S EQUATION
IN THE Aq REPRESENTATION

In this section we obtain the equation for an electron
in a periodic potential and constant magnetic and elec-
tric fields in the kq representation. In doing so we start
with Schrodinger's equation for this problem in the r
representation

e 2

p+—HXr 2m+ V(r)+eE r P(r) = qk(r), (35)
2c

where V(r) is the periodic potential, H and E are the
magnetic and electric fields, respectively, and e is the
charge of the electron with a minus sign (e)0).By using
expressions (31) and (32), this equation can be written
in the kq representation:

where C(kq) is the wave function in the kq representa-
tion. That the periodic potential is just a function of q
follows from its periodicity which enables the expansion

V(r)=g V(K ) exp(iK r), (37)

where K are vectors of the reciprocal lattice defined
earlier. Expression (37) contains the operators T(K )
and since C(kq) satisfies relation (40) below, the
exponential in (37) can be replaced by exp(iK q) which
leads to V(q). This makes the kq representation par-
ticularly useful for treating problems with a periodic
potential. The wave function C(kq) is connected to f(r)
in Eq. (35) by the relation

f(r) = dkdq C(kq)fk, (r), (3g)

where/ k, (r) are the eigenfunctions (30) of the operators
(28) and (29), and the integration is over the unit cells
in k and q space. The inverted formula is

C(kq) = de/(r)P, *(r) . (39)

From the expression (30) for pk, it follows that C(kq)
satisfies the following conditions:

C(k+K„,q) =C(k,q),

C(k,q+R„)=exp(ik. R )C(k,q).

(40)

(41)

C(kq) = exp(ik q) U(kq) . (42)

These are the boundary conditions on C(kq) and we see
that the latter are Sloch-type functions, they are
periodic with respect to k, and produce a phase factor
exp(ik R„) when q is replaced by q+R„.

Equation (36) conta, ins six independent variables k
and g. This does not mean that the number of degrees of
freedom of the problem has changed. The only thing
that happened is that instead of having three variables
r in an infinite region we have now six variables k, q tha. t
are restricted to unit cells in k and q spaces. This change
leads to a very important consequence. While in Kq.
(35) there are infinite terms caused by the magnetic and
electric fields when r —+~, none such terms appear in
Eq. (36) because k and q are limited to unit cells only.
In order to appreciate more fully the significance of
Eq. (36), let us perform a phase transformation by
looking for C(kq) in a form

The equation for U(kq) will be8 e 8—i—+—HX i—+qi
Bq 2c Bk

2m+ V(q)
8 e 8)~—i—+k+—HXi—

~

2m+ V(q)
Bq 2e Bk)( 8

+eE
~

i +k) C(kq)= C(kq), (3Ci)—
Ik W.

"L. D. Landau and K. M. Lifshitz, Statistical P/zysics
(Pergamon Press, Ltd. , London, 1958).

+eE i—U(kq) = cU(kq). (43)
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The boundary conditions on U(kq) are accordingly

U(k+K, q) = exp( —ir K )U(k, q), (44)

U(k, q+R )= U(k, q). (45)

These conditions are the same that the periodic part of
the Bloch function u„p in (8) satisfies. In fact, if one
assumes in Eq. (43) H= E=0, one has

i 2
~

~

—i—+k
~

2m+ V(q) U(kq) = eU(kq), (46)
aq

which is the same equation that u„I,(r) satisfies. " In
(46) the vector k can be used for specifying the function
U and the energy p and for a given e„(k) the solution of
(46) is just u„&(q).

In the general equation (43) both k and q are vari-
ables, and solutions have to be found for e that are
independent of k and q. An equation of the type of (43)
for 8=0 was given already in Ref. 3 and applied in
describing the dynamics of Bloch electrons in an external
electric field. However, instead of the real energy c, a
variable W appears which is k-dependent and which is
in some limiting way connected to the energy of the
system. Equation (43) was also obtained in Refs. 6 and 7

and shown to be very useful in the effective-mass ap-
proximation. In Ref. 6, Eq. (43) was obtained by using
a set of functions that was assumed to be complete.
Although not stated explicitly, the boundary conditions
on the wave function in Ref. 6 are the same as are given
by relations (44) and (45). In Ref. 7, Eq. (43) was ob-
tained for the magnetic field only by using symmetry
properties of Schrodinger's equations for a Bloch elec-
tron in a magnetic field. It was pointed out before'4 that
it is doubtful whether the functions used by Harper can
be solutions of Schrodinger s equation. In fact, by using
his functions Harper obtains Eq. (43) for E=O; how-
ever, with boundary conditions on U which are in
error. ' It is only now when Eq. (43) is derived on a firm
quantum-mechanical basis that the variables in it and
the wave function become well defined.

As was mentioned before, Eq. (43) contains six
variables k, q. It can be seen that the terms in Eq. (43)
that depend on q give simply a Bloch Hamiltonian,
while the terms that contain only lz represent a Fourier
transform of the Hamiltonian (35) for V(r)=0. It
follows therefore that in Eq. (43) the Bloch motion and
the motion in external 6elds appear side by side. The
term that contains both variables k and q couples these
two motions. 'r This feature of Eq. (43) corresponds to
the general picture for the motion of Bloch electrons in
perturbed crystals. '

In conclusion of this section we expand U(kq) in
solutions of the unperturbed equation (46), u &(q).
Both U(kq) and u„z(q) satisfy the same boundary
conditions (44) and (45), and therefore

U(kq) =P B.(k)u. s(q),

"J.Zak, Phys. Rev. 136, A1647 (1964).

where
u-. (q)=Z S -(k)u-p(q)

A„(k)=P S„,(k)B,(k). (50)

Formula (48) is obtained just by expanding u„s(q) in

(47) according to (49), which is always possible because
u p(q) form a complete system with respect to any
periodic function, "and by using the definition (50).The
convenience of expansion (48) is given by the fact that
in it the variables k and q are completely separated.

The following observation will be of very great im-
portance in the next sections where we describe the
motion of a Bloch electron in external fields. Let us
substitute in Eq. (46) for E=V= 0 the expansion (47),
then multiply Eq. (46) from the left by u &*(q) and
integrate over q. Ke obtain the following equation
for B„(k):

e„(k)B„(k)= eB„(k), (51)

which is just the equation for a Bloch electron without
external fields. If we do the same with the expansion
(48), an equation for A (k) is obtained.

( k' kp.
i

p (0)+ A (k)+P A„(k)=eA„(k), (52)
2m - nz

where
t9

p .= t' u" p—(q)—u.p(q)dq.
Bq

(53)

It is therefore seen that while Eq. (51) has no interband
terms, Eq. (52) is a coupled system of equations. We
know, however, what kind of transformation one has to
perform on A„(k) Dormula (50)) in order to get rid of
all the interband terms and to pass from Eq. (52) to
Eq. (51):

P(St(k)H(k)S(k)) „B„(k)

=P e„(k)b „B„(k)= eB (k) . (51')

The matrix S(k), by means of which this transformation
is carried out, is unitary, as can be seen either by com-
paring the right-hand sides of Eqs. (51) and (52) or by

» J. M. Lnttinger and W. Kohn, Phys. Rev. 97, 869 (1955).

with coeKcients B„(k) that are periodic in k, the period
being the vectors K of the reciprocal lattice. Let us
note that the summation in (47) is only on the band
index. This divers from the usual expressions' ' where
summation on k is also performed. It turns out' "that
for constructing effective one-band Hamiltonians it is
more convenient to use the functions u„p(q) in the
expansion (47). We then have

U(kq) =P A „(k)u„p(q),
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a straightforward calculation:

~5&(k)5(k))„„

=P 5*(k)„„5.„(k)

u p(q)u &*(q)dq u p*(q')u i, (q')dq'

S (k) = u p*(q)u. i, (q)dq. (55)

Since one-band effective Hamiltonians are obtained by
transforming away interband terms, the transformation
(55) will be used extensively in the next sections.

IV. BLOCH ELECTRON IN A MAGNETIC FIELD

In this section we reproduce the well-known one-band
effective Hamiltonian for a Bloch electron in a magnetic
6eld. ' "The reason for doing it again is to show that the
kq representation, introduced in this paper, makes the
problem trivial. We want to solve Eq. (43) for E=O:

8 e 8)2—i—+k+—Hxi—
(

Bq 2c Bk/
2222+ V(q)

X U(kq) = c U(kq) . (56)

Let us use expansion (48) for U(kq), then multiply Eq.
(56) by u p*(q) from the left and integrate over q. The
result is

f 8 2

e p(0)+( k+—HXi-
2c Bk

2222 A„(k)

8
+P k+—HXi—p „rn A„(k)

2c Bk

= eA„(k). (57)

Equation (57) for a Bloch electron in a magnetic field is
the same as Eq. (52) for H=O with k replaced by
k+ (e/2c)HXiB/Bk. The usual problem of constructing
an effective one-band Hamiltonian is to get rid of the
interband terms in (57). We know, however, how to do
it for Eq. (52) and to pass to Eq. (51) which has no
interband elements. This was achieved by the trans-
formation (50), where the unitary matrix 5(k) is given
in (55). Since Eq. (57) can be obtained from Eq. (52) by
replacing in the latter k by k+ (e/2c)HX iB/Bk, we can
expect that the matrix $(k+ (e/2c)HXiB/Bk), where k
is replaced by k+ (e/2c)HX iB/Bk, will transform away
the interband elements in Eq. (57).As we will see, this is
almost the case. The problem is that the matrix
S(k+ (e/2c)HXiB/Bk) is not well defined because the

(54)

where we have used completeness of the functions I and.
the definition of 5(k) from (49):

components of the vector k+(e/2c)HXiB/Bk do not
commute with each other:

where e p~ is the unit antisymmetric tensor in all the
three indices and a summation on repeated indices is
understood. Let us mention at this point that Blount in
his paper4 arrived at the same equation (57) and was
faced with the same problem. He works, however, with a
semiclassical mixed representation where the commuta-
tion relation (58) is replaced by quite complicated
multiplication rules on functions. It is for this reason
that his diagonalization procedure becomes rather
complicated.

One possible way of defining the matrix Sk+ (e/2c) H
XiB/Bk from S(k) is to syirnnetrize in the latter all the
products of the components of the vector k Dor ex-
ample, to write 2 (k,k„+k„k,) instead of k,k„j and then
to replace k by k+ (e/2c)HXiB/Bk. The function that
is obtained in such a procedure will be denoted by

[S(k)], (59)

where the rectangular brackets mean that $(k) was first
symmetrized as a function of k and then k replaced by
k+ (e/2c)HX iB/Bk Notati. on (59) will be used in what
follows.

Let us now show that the operator LS(k)jdiagonalizes
the Hamiltonian in Eq. (57) to the lowest order in
magnetic field. The meaning of diagonalizing Eq. (57) to
diGerent powers in the magnetic field' '' will become
clear below. It is first to be noted that LS(k)j is not
unitary. For checking it we want to 6nd

Lst(k))LS(k)j,

where we have used the fact that rectangular brackets
and conjugation are commuting operations. In order to
be able to use formula (54) we have to write the product
(60) as a symmetric function of the variable k+ (e/2c) H
Xi 8/Bk. Although each term in (60) is symmetric, their
product will in general no longer be so. In the paper by
Roth' a rule is given how to expand a product of any
two functions LA(k) jL8(k)g in a power series of the
magnetic 6eld where the coeKcients are symmetric
functions in the components of k+ (e/2c) HX iB/Bk. The
rule is as follows (to second order in the magnetic field):

PA (k)1/8(k)$
BA (k) 88 (k)= LA (k)8 (k)j—ih e X,

Bk Bkp

8'A (k) 8'8 (k)
hag~a'P' X + ", (61)

Bk Bk BkpOkp

( e 8) e 8)
] k+—HXi—[, k+—HXi—[

2c Bk), 2c Bk) e

e=—..»a~, (5g)
C
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where the summation on repeated indices is understood.
The definition of a function in rectangular brackets is
given in (59) and

h ~e = 4 ~p7eH~/2c ~

In (62), 4 e~ is the antisymmetric unit tensor and H& is
the p component of the magnetic 6eld. By applying
formula (61) to the product in (60) we find

-BSt(k) BS(k)-
Ls'(k)]Ls(k)]=I—ih.e x

8k Bkp

O'St(k) a'S(k)——heh e X, (63)
Bk Bk . Bkp8kp.

where I is a unit matrix and was obtained by using

formula (53) for the unitarity of S(k). We see therefore
that to the lowest order in the magnetic field the matrix
[S(k)] is unitary.

It is now very easy to show that [S(k)] diagonalizes

Eq. (57) to the lowest order in magnetic field. Indeed,
by using [S(k)) for transforming A„(k) to new func-
tions B„(k),

A (k) = [S(k)]B(k), (64)

Eq. (57) becomes

[St(k)][H(k)][S(k)]B(k)= e[S'(k)][S(k)]B(k), (65)

where [H(k)] is the Hamiltonian of (57) which is
originally written in such a symmetrized way. The right-
hand side of Eq. (65) was already written as a power
series in the magnetic field. Let us use formula (61) and
do the same with the left-hand side of (65). We have

1 BS(k)- &St(k) 8
[St(k)][H(k)][S(k)]=[St(k)H(k)S(k)]—ih e St(k)—(p +h ) + X (H(k)S(k))

m Bkp Bk Bkp

1 O'S(k) BSt(k) 8 t' 1 &S(k)—h, ph e. St(k) 6,.+ X
I (p~'+h~')

2m Bhecjhe. Bh Bhe E m rjhe

1 O' St( k) 8'
+- X (H(k)S(k)), (66)

2 Bk Bk . BkpBkp

[4(k)]B„(k)= eB„(k). (6'I)

This equation follows at once from (66), (63), and (51').
The result (67) is the same as was obtained before. ' '4
One-band effective Hamiltonians in higher powers of the
magnetic field can be obtained by diagonalizing Kq. (65)
and making use of the expressions (63) and (66). We
will not do it here because Eq. (65) together with the
expressions (63) and (66) is exactly the result of Roth's
paper' [Eq. (24) together with formulas (45), (46),
(50), (51), (52), and (56)].It is to be mentioned, how-

ever, that the derivation in Ref. 2 was based on an
assumption of completeness of some set of functions
while in this paper the kq representation was used which
was proven to produce a complete set of functions. In
some sense one can say that the reproduction of the
results of Ref. 2 by means of the kq representation is a
proof of the completeness of the functions used in
Ref. 2.

where again as before the rectangular brackets mean
that the function inside is symmetrized with respect to
the components of k, and k is replaced by k+ (e/2c)H
Xi8/itk. The quantity p in formula (66) is a matrix
with elements given by formula (53) while h is clearly
a scalar matrix. In the lowest order of the magnetic Geld

Kq. (65) for any band e becomes

V. FUNDAMENTAL DYNAMICS IN THE
BLOCH THEORY OF SOLIDS

Two theorems have been very widely used for de-
scribing the motion of a Bloch electron in external
electric and magnetic fields. These theorems are" "

= —eE, (68)

k= —(e/c)vxH, (69)

where k is the time derivative of the k vector and v is
assumed to be the velocity of a Bloch electron in the
state specified by the vector k. Because of their im-

portance many proofs of theorems (68) and (69) have
been presented in the literature. Having the kg repre-
sentation it is interesting to rederive these theorems.

Let us start with the electric-held case. The motion is
described by Eq. (43) with H=O. The coordinates in
this equation k and p give the eigenvalues of translations
exp(iy a) and exp(ir b), respectively. The rate of
change in time of k is defined by the Hamiltonian II of

(43) with H= 0 and is as follows:

k=i[H,k]= —eE.

We see therefore that Kq. (68) follows straightforwardly

~6 A. H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1965).
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in the kq representation. It is worthwhile to mention the
meaning of Eq. (68). When there is only a periodic
potential, the eigenvalues exp(ik a) of translations
exp(iy. a) are constants of motion. If in addition to a
periodic potential there is also an electric field present,
the eigenvalues exp(ik a) are no longer constant in
time and are given as follows:

exp(i[k —eKt] a). (70)

It is to be noted that expression (68) or (70) is exact and
has nothing to do with a one-band approximation.

The equation for the magnetic case is given in (56). If
we would try to calculate k from (56) by using the
relation k=i[H, k], this would lead us to a gauge-
dependent result. "This is not surprising because only
the combination k+ (e/2c)HXi B/Bk is gauge-inde-
pendent. In fact, the classical analog of (69) is

mv= (%)vXH, (71)

with the velocity v on the left-hand side and not the k
vector as in (69).

In order to find an equation for a Sloch electron in a
magnetic field that corresponds to (71) for a free
electron, we use the result of the preceding section. It
was shown there (and is well known'") that in the
lowest order of the magnetic field, the one-band Hamil-
tonian is given by [e„(k)], where the rectangular
brackets mean here that e (k) is first symmetrized with
respect to different components of the vector k and then
k is replaced by k+(e/2c)HXiB/Bk. The derivative
with respect to time of the vector k+(e/2c)HXiB/Bk
(which is the velocity operator for an electron in a
inagnetic field) is as follows:

(d/d~) [k]=i[[a.(k)],[k]], (72)

where on the right-hand side the outside brackets mean
just the conunutation relation. By using formula (61)
one finds that to first order in the magnetic field, relation
(72) will be

d e Be„(k)-—[k]=——
c Bk

XH. (73)

In deriving Eq. (73), which is correct to first order in the
magnetic field, we took only the zero-order term in the
eRective one-band Hamiltonian, because higher-order
terms in the effective Hamiltonian would lead to higher-
order terms in (73).

It follows therefore that the correct equation for
describing the motion of a Sloch electron in a magnetic
field' is (73) and not (69). The reason that Eq. (69)
leads to correct results when used in a semiclassical
theory of transport" is easily seen by comparing (69)
with (73). The only difference between these two
equations is that in the latter k is replaced by k+ (e/2c) H
XiB/Bk which is just a relabeling of the variable. It is
clear that one has to have in mind the velocity com-

ponents k+ (e/2c)HXiB/Bk and not k when using the
equation of motion for a Bloch electron in a magnetic
field.

The next question to ask is what kind of an equation
does one get for a Bloch electron in both a magnetic and
electric field. We saw that for the electric case the vector
k appears in the equation of motion, while in the mag-
netic case the vector k+(e/2c)HXiB/Bk appears. To
find the equation of motion when both fields are present
we need an eRective one-band Hamiltonian. Let us
show that the matrix [5(k)] given by (55) and (59)
diagonalizes the equation for a Bloch electron in both an
electric and magnetic field to zero order of the magnetic
field (as before) and to first order in the electric field.
By using expansion (48) one gets from (43) the following
equation for A„(k):

f e B
e„(0)+~ k+—HXi-

2c Bk

8
2nz A (k)+eE i—A (k)

Bk

8 B )+Q k+—HXi—
i p „m

2c Bki

P (k)]« i—P(k)]
a

8 t'
=e& i—+P' (k)]~E I

i—P'(k)] I. (75)
Bk I, Bk

In the second term the derivative with respect to k can
be replaced by the derivative with respect to k+ (e/2c) H
X iB/Bk and we can therefore apply formula (61) to this
term. In zero order of the magnetic field and first order
in the electric field the eQ'ective one-band Hamiltonian
of (74) will be

[e„(k)]+eE i—+[x..(k)] ~,
Bk

(76)

x„„(k)= u. i,*i—u„i,dq.
ak

(77)

When H=O, expression (76) goes over into the known
one-band eRective Hamiltonian for a Bloch electron in
an electric 6eld only. '~ We can now find the time deriva-

"E.N. Adams, Phys. Rev. 107, 698 (1957).

XA „(k)= eA (k). (74)

This equation differs from the one for a magnetic field
only by the presence of the diagonal term containing the
electric field. By applying the transformation [5(k)] to
the part of the Hamiltonian in (79) that does not depend
on the electric field, we get the same result as before to
the zero order in magnetic field, namely, [e (k)] as in

Eq. (67). The part of the Hamiltonian that depends on
K will become
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tive of k+ (e/2c)HXiB/Bk. By using (76) and (61) one

gets in the lowest order of magnetic and electric fields
components of the vector":

g
—=k—(e/2c)HXiB/Bk. (82)

d ( 1 Be(k)-—tkj= —
e~~ E+— XH) .

di k c Bk
(78)

Their commutation relation is

[X,—,X„—j=ieH/c. (83)

2xeH
X,+dX„+= (n+y) .

Ac
(80)

Qn the left-hand side we have an area in the X space
S(e,X,) for a given energy e and X,+. Relation (80) can
therefore be written

S(e,X,+)= (2neH/Ac) (n+. y), (81)

which is Qnsager's relation. ' By using the coordinates
g+ we did not take into account all the degrees of
freedom of the three-dimensional problem. The couple
of conjugate coordinates X +, X„+describes one degree of
freedom, while X,+=k, describes another one. The third
degree of freedom can be described by the x and y

's L. Onsager, Phil. Nag. 43, 1006 (1952).

It is again to be noted that formula (78) differs from the
one commonly used in transport theory. In the latter no
rectangular brackets appear. As was already mentioned,
this di6erence is not essential in the semiclassical
transport theory because it means just using a different
notation for the vector k. There is no doubt, however,
that quantum mechanically Eqs. (73) and (78) without
the rectangular brackets are completely meaningless be-
cause then the noncommutativity of the components of
k+ (e/2c)H)&iB/Bk becomes essentiaL This is best
demonstrated in the derivation of Onsager's relation
(E=O). I.et us assume that H is in the s direction and
denote

7(+=k+ (e/2c) H)& iB/Bk. (79)

X,+= k„and according to (73) is a constant of motion.
The other two components X,+ and X„+satisfy relation

(58), and the Bohr-Sommerfeld quantization rule (33)
for them is (h is not assumed to be 1)

with
exp(iX, A), exp(iX„B),

AB = 27rc/eH,

(84)

(85)

can be used for specifying eigenstates" of [e (k)j.The
complete specification of the eigenstates of [e„(k)j will

therefore be given by the number e in (81) by k, and by
the eigenvalues of the operators (84). Since the Hamil-
tonian [e„(k)j does n.ot depend on the latter, this leads
to the known degeneracy of Landau levels which in our
description will be given by the number of states con-
tained in area of variation of X, , 'X„.This area equals
2s/AB and the number of states is therefore"

eP/2m bc. (86)

In conclusion we would like to remark that this

paper shows how well-known results can be repro-
duced in a simple and very natural way by using the kq
representation.
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Both X, and X„commute with the Hamiltonian

[e (k)j and the commuting set of operators [see ex-

pressions (4), (9), and (10)]


