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Effect of the Translational-Diffusion Mechanism on the Low-Field
NMR Spin-Lattice Relaxation Time in the Rotating Reference

Frame: Calculation of the Order Parameter P*t
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The eRect of the translational-diffusion mechanism on the low-field NMR spin-lattice relaxation time
in the rotating reference frame is calculated for simple cubic, body-centered cubic, and face-centered cubic
lattices. The results of these calculations suggest a new method for determining the preferred diffusion
mechanism. Previously NMR has been able to provide a direct measlrement of the activation energy only;
a theory has always been needed to determine the jump frequency from the experimentally measured relaxa-
tion time. Recently Slichter and Ailion developed a new technique for the study of ultraslow diffusion which
is applicable when the mean time v between atomic jumps is less than the spin-lattice relaxation time Ti.
In their theory, an order parameter P appears in the relationship between the experimentally measured
relaxation time and ~. This parameter P depends upon the diffusion mechanism and the angle 0, which de-
scribes the orientation of the crystal with respect to the external magnetic Geld. In this paper we have
calculated P versus 0 for vacancy diffusion, interstitialcy diffusion, and interstitial diffusion in bcc, fcc,
and sc lattices for two cases. In the first case, we have assumed that ~;, the mean time that an interstitial
atom occupies a particular site between jumps, is longer than T2, the spin-spin relaxation time, and we
have found that the angular dependence of P is quite different for different mechanisms. In the second case,
we have assumed that r;(T& and have found that the angular dependence of P for interstitialcy diffusion
differs from the vacancy results by approximately 10% for the three lattices considered. These theoretical
results, when combined with experimental measurements of the angular dependence of the low-field relaxa-
tion time, provide a method for the direct determination of the mechanism responsible for diffusion in these
crystals.

I. INTRODUCTION

M)NE of the most powerful tools for studying atomic
motions is nuclear magnetic resonance. It has

been used to study atomic diffusion' ' and molecular
rotations' in a variety of substances. In many cases it
has advantages over other techniques. For instance, it
is not restricted to the study of the motion of atoms
which have radioactive isotopes of convenient half-life,
but can be used to observe the jumps of any paramag-
netic nucleus regardless of whether or not that nucleus
is radioactive. There are many nuclei which are para-
magnetic, but which do not have convenient radioactive
isotopes (e.g. , Lir). A plot of the temperature depen-
dence of the linewidth (or Ts) or a plot of the spin-
lattice relaxation time versus reciprocal temperature
provides a direct determination of the activation energy.
By applying a theory like that of Bloernbergen, Purcell,
and Pound' (BPP) or that of Torrey, ' the jump fre-
quency can be determined from the experimentally
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measured relaxation time. Even though the determi-
nation of the mechanism responsible for the diffusion
is one of the most important problems connected with
atomic motions, nuclear resonance has not in the past
been able to provide a direct determination of the
mechanism. It is the purpose of this paper to describe
a new method for studying motions which will provide
direct information about the nature of the atomic
jumping process.

The temperature range over which diffusion can be
studied by NMR has been greatly extended to very low
temperatures by the development of a new method' '
which measures the low-field spin-lattice relaxation
time in a coordinate frame rotating at the Larmor
frequency. The new technique is valid provided that
7 the mean time between atomic jumps, is less than
T»', the spin-lattice relaxation time due to all mecha-
nisms other than diffusion; whereas previous NMR
techniques apply only to cases for which a&T2. Since
T2((T»' in a solid, this method has greatly extended the
range of observation to very slow motions. The method
has been applied to the observation of translational
diffusion in metallic lithium' ' in the temperature range
from room temperature down to 185 K. At the latter
temperature v- is of the order of 1 sec. The technique
has also been applied to the study of molecular rota-
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tions in a number of chemical compounds"" and in
gypsum. "

The above technique is based upon the realization
that atomic jumping results in a loss of dipolar order
and is thus a thermodynamically irreversible process.
The loss of dipolar order resulting from a diffusion jump
is a maximum if the nuclei are initially aligned along
their individual local fields. Such alignment can be
achieved by an adiabatic demagnetization of the sys-
tem from a large external field to a small external
field. This process results in the transfer of order from
the Zeeman system to the dipolar system. After a
nucleus undergoes a diffusion jump, it will in general
find itself in a different local field and, as a result, there
will be a loss of dipolar order. Following the jump, cross
relaxation between the dipolar and Zeeman systems will
transfer the loss of dipolar order to a loss of Zeeman
order which can be observed experimentally as a de-
crease in the magnetization. "

As mentioned earlier, a theory is needed to relate
the experimentally measured relaxation time to v. The
theories of BPP and of Torrey cannot be used in the
case of weak fields as they are perturbation theories in
which the dipolar Hamiltonian is treated as a pertur-
bation on the eigenstates of the Zeeman Hamiltonian.
This type of theory clearly does not apply when the
external fields are less than or equal to the average
dipolar fields. For this reason Slichter and Ailion
developed a new theory' which is applicable only if
r))T2. This theory, which thus complements the BPP
theory, is based upon two assumptions. First, it is
assumed that enough time elapses between any two
diffusion jumps so that both the dipolar and Zeeman
systems can be described by a common spin temperature
prior to each jump. Since the time required for a spin
temperature to be established is of the order of T2 and
since the time which any one nucleus spends on the
average at any particular site is v, this assumption is
equivalent to assuming that v))T~. The spin-tempera-
ture assumption allows us to use the density matrix
and to formulate physical quantities as diagonal sums
which can be evaluated without determining the eigen-
functions. '4 The second assumption is that the sudden

'0 D. W. McCall and D. C. Douglass, Appl. Phys. Letters 7, 12
(&965).

"D. C. Douglass and G. P. Jones, J. Chem. Phys. 45, 956
(1966)."D. C. Look and I. J. Lowe, J. Chem. Phys. 44, 2995 (1966).

i' lt is experimentally dificult to demagnetize the spins from a
large Geld (~j.0000 G) to a Geld of order of the dipolar Geld
(~1 G) in a time short compared to the spin-lattice relaxation
time and yet long enough for the process to be adiabatic. For this
reason, the nuclear relaxation is observed in a frame rotating at
such a frequency as to exactly cancel the static magnetic Geld.
LSee C. P. Slichter and W. C. Holton, Phys. Rev. 122, j.701
(1961).g Such a treatment is justi6ed by the work of A. G. Redheld
(iNd 98, 1787 (1955).g, who showed that a nuclear spin system
subject to an rf Geld which is strong enough to saturate the nuclear-
resonance line should be described by a spin temperature in a
frame rotating at the frequency of the rf Geld. This means that
Curie s law will hold in the rotating frame, and the magnetization
will be parallel to the rotating Geld B&. Since H& is typically only

approximation of quantum mechanics can }&e applied
to the jumping process; i.e., we assume that the time
the nucleus spends in the actua1 process of jumping is
so short that, immediately after a diffusion jump, the
spin will have the same orientation as it had immediately
before the jump. Since the actual time which a nucleus
spends in transit is of the order of the lattice vibration
period ( 10 " sec) and the time required for the nu-
cleus to change its orientation is of the order of the
Larmor period ( 10 ' sec in a field of 1 G), this as-
sumption is clearly justified. Were it not so and were
the nucleus to jump so slowly that it would have time
to align itself along the new local field during the actual
jumping time, the jumping would not result in a loss
of dipolar order and would not be observable by mag-
netic resonance.

where
X=X,+As',

se, =~A[(II, (~/&))I, +—II,I.j,
I,=P I„, I,=g I.,

Also

where
(1 3 cos O~s)

A,s——sty'i'r'~—

Z,,s )
Here, K~' is the secular part of the dipolar Hamiltonian;
i.e., K~' is that part of the dipolar Hamiltonian which
commutes with I,.

The assumption that, prior to each jump, the dipolar
and Zeeman parts of the spin system can be represented
by a single temperature is equivalent to assuming that
initially the system can be represented by a density
operator p;, given by

exp[—(Ks'+3('.,)/k 8j
pi=

In the above formula, Z is the partition function. After
the jurnp the dipolar Hamiltonian has changed to
Kq~' and the temperature 0 has changed to O'. However,
since we are assuming that the spin orientation is the
same right after the jump as it was immediately before,
3C, is unchanged. We then have

exp[ (Ksrs+K—.)/k8' j
PJ'= (~)z

a few 6, it will be much easier to demagnetize IIi than to de-
magnetize H0.

r4 J. H. Van Vleck, Phys. Rev. '74, 1168 (1948).

II. CALCULATION OF THE ENERGY CHANGE

Let us consider a spin system consisting of nuclei
interacting with each other and with an external static
field Ho and a strong rf field Hi. In a frame rotating
with Hi, we then have an effective Hamiltonian K:
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where A;;y is the value of 3;; after the jump. We then
have that

AE= U Q' (A;, —A gA;;r). (15)

f') I'2

Fio. 1. (a) represents the situation in a bcc crystal before an
interstitialcy jump and (b) represents the situation after the jump.
r1 and rg represent the initial positions of the jumping atoms and
qI and g~ represent their final positions.

Pf =Pi=P (9')

%e then have, in the high-temperature approximation,

AE= Tr(X~r' Xg')p=-
k8(2I+ 1)~

XLTr(X.s)r- Tr(X.OHgrs) g. (10)

If there are Eo jumping units each of which spends a
mean time vo between jumps, we have the result that
the average rate of change of the dipolar energy due to
jumplIlg ls

8(Xg') Es (Xa')=—(AZ)=—
Tc

For a system described by a temperature we can calcu-
late the average energy E from

E=Tr(xp). (8)

The energy change which results from a single jump is
then given by

DE= Tr(Xgpg) Tr(X;p—~) . (9)

The assumption that the spin orientation is un-

changed as a result of the jump tells us that

III. DETERMINATION OF p FOR s; (OR g„)))Ts

DE= 2U Q' (A;„'—A;,A;,), (16)

where we have used the fact that only the atom initially
at r jumps. The factor of 2 arises since either i or j
can be r.

Now in general there are a number G of diGerent
equally probable sites into which the nucleus at r can
jump. (For nearest-neighbor vacancy diffusion, G is the
number of nearest neighbors. ) Since these are equally
probable we should average over them. If we do so, we
obtain

2V
(AE)= P'(A, „-A,„A,,).

G '.e

Since, for vacancy diffusion, the atom at r must have
a vacancy next to it, we can replace the sum over oc-
cupied sites by a sum over all lattice sites. If we subtract
the term corresponding to i= q, we then get

2V 2V
(hE) = g (A;„'—A;„A;,)— g A,„' (18a)

=2U Q A;,'— P (A,„s+g A;„A,,) (18b)
G

A. Vacancy DiBusion

In this section we will assume that diffusion takes
place as a result of nearest-neighbor jumps. Let us
consider a particular jump. let r represent the initial
site of the jumping nucleus and let q represent the Anal
site. Then

Slichter and Ailion' have shown that the time T, is the
relaxation time that would be obtained if B1——0.

%e can de6ne a local 6eld Hl, in the rotating frame by

C~r, ' Tr(Xso)'
= U Q'A;P,

8 k8(2I+1)~

where

CH1,2 2—(1—p)
8 E

P=—P LA,„s+P A,„A,,q

(18c)

(19)

where U is a factor involving the trace of the spin
operators, S is the number of atoms, and C is the Curie
constant. The prime indicates that we are summing only
over occupied sites. If we assume that the number of
unoccupied sites is small compared to the number of
occupied sites, then

++~2
=EU Q A;P, (13)

T»s formula for p was first derived by Slichter and
Ailion. ' If we substitute our expression (18c) into
formula (11) we get

where we have replaced Eo by E, and v 0 by v, and have
used the fact that some atom must jump whenever a
vacancy jumps and thuswhere the sum now includes all lattice sites and g

represents the total number of atoms. Also

Tr(Xs'Xgrs)-= U Q'A;;A;;r,
k8(2I+1)~ 'i

X„/r, =E/r. (21)

(14) In the presence of a rotating field Hi, Slichter and Aiiion
have shown that the magnetization will decay with a
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time constant T given by

1 2—=-(1-p)
~re+ jul.s

(22)

20-

I I I I I I I I I I I I I I I I I

I

(The T used here corresponds to the Tr, used by
Redfreld s and others. r ' )

B. Interstitialcy Di8usion

i,s- SIMPLE CUBI C

LATTICE

Interstitialcy diffusion occurs when an interstitial
atom collides with an adjacent atom occupying a
normal lattice site with the result that the initially
interstitial atom moves to the normal site and the
initially normal atom has moved to a new interstitial
site."Ke are regarding the diGusion to be a simul-
taneous motion of the two atoms. " This is shown in
Fig. 1.

To calculate p we can use formula (15) but we must
recognize now that in interstitialcy diffusion two atoms
will have their dipolar energies changed. If rj and r2

represent the initial positions of the jumping atoms and

q& and q2 represent their final positions, then the only
terms which change are those for which either i or j is
rr or rs (excepting, of course, the terms i=rr, j=rs and
i=re, j= rr, since the interaction term between the two
jumping atoms does not change). We then get

~=2U 2' [(A'r —A'rA'sr)

+(A;„'—A;rsA;s, )j. (23)

p
l 4-

I.O-

g,s—

I /
I /

/
/ I

Q4-

Vacancy
Q2 - Interstitialcy

tntersti t ial I
(for 2', & r, I

I I I I I I I I I I I I I I I I

0 I 0 20 30 40 50 60 70 80 90

two interstitial sites can be treated equivalently. We
then get

Fro. 2. A;:plot of 1/(1 —p) versus 8 for r;) 2's in a simple cubic
crystal, assuming (a) vacancy diGusion, (b) interstitialcy diffusion,
and (c) interstitial diffusion.

If we assume tha, t the number of interstitial atoms is
small compared to the number of normally occupied
lattice sites, we can delete the prime in Eq. (23) and let
the sum range over all normal lattice sites. (We are thus
neglecting interactions between two interstitial atoms. )
However, in the jump, the dipolar energy between the
interstitial atom and the atom at r2 does not change.
Since this term has been included in the sum over i, we
must explicitly subtract the term corresponding to i= rs.
We should further recognize that q» and r2 refer to the
same normal site, and r~ and q~ refer to interstitial
sites. I et us replace the indices for the normal lattice
site by q and the indices for the interstitial sites by r.
Since we will average over di6erent jump directions the

'5 We have not performed our calculations for complexes of
atoms like split interstitials, di-interstitials, or crowdions, but have
limited our considerations in this paper to the motion of point
defects like interstitial atoms and vacancies. However, if in a
particular structure, complexes were thought to be responsible
for the diGusion, the method of calculation considered here could
be applied to that case.

'6 We could alternatively regard the motion to consist of two
steps, in each of which only one atom moves. In the first step, the
normal atom moves to an interstitial site thereby leaving a vacancy
between two interstitial atoms; in the second step, the initially
interstitial atom jumps into the vacant site. If we calculate the
energy changes for each step and add them, we will get the same
total energy change as we get if we assume simultaneous motion
of two atoms. We must be careful, however, to include the fact
that the spin temperature prior to the second step is greater than
it was prior to the 6rst because of the heating which results from
the erst jump.

2U
(~E)= Z LZ (A;,'+A;, —2A;,A,,)-A,„j. (24)

Q c

Ke must also recognize that in a cubic crystal there
may be a number G of different but equally probable
sites in which the interstitial atom can be situated. (In
a bcc crystal in which the interstitial atom occupies the
center of an edge as in Fig. 1, G'=3, corresponding to
the cases in which the lines joining the interstitial a,tom
to its nearest neighbors lie along the x, y, or s directions. )
If we average over these different sites, we get

CHI, ' SU
-=XU g A; '=

8 ' GQ/ .-...&

(26)

We get ((&E)) of the form (18c) only now p is given by

tr 1 2
P =I;Z A s,s+ — Q A;„A,s——Q A .

(GG' r, s GG' I,~, q G';, , j
—Q A; '. (27)
G i, e

2U
((AE))= Q (P (A;„'+A;,' 2A, „A;,) A„s). (—25)—

G/

The sum over i is a sum over all lattice sites. Now
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BODY-CENTERED CUBIC LATTICE

Also
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Therefore

2—= 'r'U Q .-'I,,'.
0

CIII,' 2

0

(30)

(18c)

l.2——Vacancy
—--

I nt erst i t i a Icy
I.O =-.- interstitial (nearest neighbor jumps)', (for $; & T~)

---- Interstitial (next-nea rest neighbor jLimps) I

0.8—
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FIG. 3.A plot of 1/(1 —P) versus II for r;)T.„in a body-centered
cubic crystal, assuming (a) vacancy di8usion, (b) interstitialcy
di6'usion, (c) interstitial ditfusion (to nearest-neighbor interstitial
sites), and (d) interstitial diA'usion (to next-nearest-neighbor
interstitial sites).

In this formula, r represents an interstitial site, q
represents the normal lattice site into which the inter-
stitial atom jumps, i ranges over all normal lattice
sites, 6 is the number of atoms which are nearest
neighbors to a given interstitial atom, and 6' is the
number of different sites in which the interstitial atom
can appear.

g A,,'. (31)

IV. DETERMINATION OF P FOR s; (OR s„)«Ts

Only at very low temperatures will r; (or r „)be longer
than T2, and at these temperatures it may be difficult
to achieve an interstitial (or vacancy) concentration
sufficiently great that r & T~', where r is the mean time
between jumps of a normal lattice atom. Only in a very
pure sample will it be possible for T~' to be su%.ciently
long so that the conditions r;&T~ and r& T~' can be
satisfied simultaneously. For this reason we now extend
our considerations to the region r;(or r,)«Ts.

A. Vacancy Diffusion

Since r„ the mean time a vacancy stays at a lattice
site between jumps, is much less than r, the atomic
jump time, we have the possibility that r,«T&«r and
there will be a trail of "hot" spins left behind the

C. Interstitial Diffusion

In this type of diffusion an interstitial atom jumps
into one of the nearest-neighbor vacant interstitial
sites. If we let r represent the initial site (an interstitial
site) and q represent the 6nal site (also an interstitial
site), we then get for the mean energy change

JI
l,8—

1.6—
FACE-CENTERED CUBIC LATTICE

I

l.4—

I.2-

(28)
l,o-

Vacancy—-—In ter st i ti a Icy t—--- —Interst it ial

Expression (28) can be written in the same form as
Eq. (18c), if each term is multiplied and divided by
Q; A;; where the indices i and j refer to normal lattice
sites. Therefore

/~
q,

I I I I I I I I I I I I I I I

O'
I 0 20 30 40 50 60 70 80 90

FIG. 4. A plot of 1/(1 —p) versus e~rfor r;) T2 in a face-centeredP A rj ~ (29) cubic crystal, assuming (a) vacancy diifusion, (b) interstitialcy
diifusion, and (c) interstitial diffusion.
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B. Interstitialcy Diffusion

For interstitialcy diGusion there is a more serious
error than the neglect of the trail of "hot" spins de-
scribed above. In Sec. III 8, we assumed that both the
interstitial atom and the lattice atom which jump are at
the same temperature 0 prior to the "interstitialcy
jump. " If v-;&T2, this treatment should not apply
since, immediately before a jump, the lattice atom which
will jump should be cool (as it has not jumped for a
time r), but the interstitial atom should be hot as it
just completed a previous jump (on the average a time
r, previously) and has not had time to cool off.

In Eqs. (24) and (25) above, the factor U implicitly
contains the temperature 0 in the denominator. Let

I I I I I t I I I I I I I I I I I

l, 8-

1.6-
SIMPLE CUBIC LATTICE

I.4-

I.2-
I

P IO-

0.8—

0.6-

0.4—

Vacancy

lnterstitlatcy (for 'Pt ( Tz) ——

0.2-

p I

po
t t t I t I t I I I I I I I I

40 50 60 70 80 90
t5'

Fro. 5. A plot of 1/(1 —p) versus 8 for v; &T~ in a simple cubic
crystal, assuming (a) vacancy diffusion and (b) interstitiaicy
diffusion.

vacancy. (This phenomenon is discussed in detail in
Refs. 7 and 8.) These "hot" spins will contribute con-
siderably less to the dipolar energy than "cool" spins
(i.e., spins at the mean dipolar temperature), so that we
will have introduced an error by not distinguishing
these spins from the normal "cool" spins. However, we
can estimate an upper limit of the error introduced by
omitting entirely these spins from the calculation of the
dipolar energy. (This corresponds to assuming that
these spins are at infinite temperature, certainly an
upper limit. ) We then find that the maximum error
introduced by this source into the angular dependence
of 1/(1 —p) is only a few percent, which is very small
compared to the differences exhibited in the curves of
Figs. 2—4, and is even small (though not very small)
compared to the 10% effects shown in Figs. 5—7.
Therefore, we will consider the vacancy calculation
given in Sec. III A of this paper to be essentially valid
even if 7,«T2.

2.0 -—
y I I I l [ I

l.6 BODY- CENTERED CUBIC LATTICE

l.4

I I2
I
—

p

l.p

0,8—

0.6-
Vacancy

04 lnterstitialcy (for 7 ( Tz )———
I

Q2-

us de6ne a constant E by

U=E/8. (32)

Then a correct expression replacing Eq. (25) would be

2E Q;3,,'—Q;A;„A;,
((»))=

GG' 0

Q; A;„'—A,„'—Q; A;„A;,—
(33)

The 6rst term represents the energy change of the
initially normal lattice atom with respect to all atoms
other than the neighboring interstitial, whereas the
second term represents the energy change of the initially
interstitial atom with respect to all lattice atoms other
than the lattice atom which moves. 0 is the initial
temperature of the lattice atom (presumably the spin
temperature of the entire system), whereas 8' is the
initial temperature of the interstitial atom.

In order to derive a formula for p, we must first
calculate 0' in terms of 0. This can be done by recogniz-
ing that the interstitial atom has been a lattice atom a
time r; earlier, on the average, so that 0' also represents
the peal temperature of a jumping lattice atom LWe
note that if we replace 8' by 8 in Eq. (33) we get Eq.
(25) 1

If we consider an atom at a lattice site q which jumps
into an interstitial site r, we can calculate the mean
energy ((Ef)) of the atom in the final site.

((Ef))=»(pr3'-dr)
2E

Q (Q;A,„'—A,„')
GG'

8'. (34)

P I I I I I I I I I I I I I t I I I

0'
I 0 20' 50 40' 50 60 70 80 90

I9

FIG. 6. A plot of 1/(1 —p) versus 8 for r; & T2 in a body-centered
cubic crystal, assuming (a) vacancy di8usion and (b) interstitiaicy
diffusion.
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TAsLz I. Results for vacancy diffusion.

Z. A» '

P;A;„'

Pc, , A'rAiq

Simple cubic

(1OO)

(y4A'/a') (3 0 .2—25 .sin'28)

(~444/o6) (3.33902—2.0'/366 sin'20)

(~4&4/o') (3.65865 —1.68193 sin'28)

Body-centered cubic
jump direction

(111)
(y4A4/o') (0.0+4.74074 sin'28)

(y4A4/a') (3.'/3129+2. 59580 sin»28)

(y4A4/a') (6.99067+1.97785 sin'28)

Face-centered cubic

(11o)

(y'II4/o') (12.0+9 sin'28)

(~4it4/o') (17.2327+7.36236 sin'28)

(y'II'/o») (29.2149+14.76/9 sin'28)

I/I —p

1.109775—0.655322 sin'28

3.33902—2.07366 sin'28

3.33902—2.07366 sin'28

2.229245 —1.418338 sin'28

6.99067+6.71859 sin'28

29.85032+20.76640 sin'20

29.85032+20.76640 sin'28

22.85965+14.04781 sin'28

41.2149+23.7679 sin'2tI

206.7924+88.34832 sin~2g

206.7924+88.34832 sin'28

165.5775+64.5084 sin'28

((g,))=Tr(pp(.„,)=— P P A;„A;,
GG', q '

e. (35)

Qy equating Eqs. (34) and (35), we get

P, ,qQ;A;, A;q

g' 0 P„,(Q; A;„'—A,„')
Thus

(36)

((&E))= Q A, q
—Q A;„A;,

GG' i,r, q 7 ~7'~q

Q;,„qA,„A;,

Z'...q A'. '—Z..q A"'

However, a fundamental assumption of our theory is
that the spin orientation of the jumping atom is the
same immediately after the jump as it was immediately
before. This means that py= p;. So, if we substitute into
the above formula, we get

C. Interstitial Diffusion

It should be observed that there is a fundamental
difference between interstitial diffusion and the other
two types of diffusion considered in this paper (vacancy
and interstitialcy). In interstitial diffusion only the inter-
stitial atoms jump and the normal stitial atoms do not
jump, whereas in the other cases the normal atoms
eventually jump. This means that, in the case of inter-
stitial diffusion, there is the possibility of a "thermal
bottleneck" in which the "hot" interstitial atom jumps
again before it has had a chance to cool down. Never-
theless, if r;, the mean time between interstitial jumps,
is long compared to T~, then the interstitial atom can
"cool down" between jumps in which case each new
jump will result in the energy change predicted in Eqs.

2qo I I I I I I I I I I I I I I I I 1

l.8

&i 7'iq i, t', q

2U t' Z r, iA»'rA'q
(ZA ')I&—

QG i, r, » g', r," Aiq'

Q, „,A;„A.;,x '', I. (»)
Therefore

X(g A '—A,'—P A;,A; ) (37)

l.6

l.4

l, 2—
I-p

l.o

0,8-

0.6—

FACE- CENTERED CUBlC LATTlCE

Vacancy

lnterstitialcy tfor 7'; (Tp ) ———
Z;.r, q AirAiq Z'. q Ai'rA'q

P;.„»A*»' Z', .»A" Z». q'— ,

(39)
0.4-

0.2-

I'his is the formula for p which should apply to the
case of interstitialcy diffusion when r;& Tq. (Of course,
we have neglected the fact that one of the neighbors
of the interstitial atom is hot from previous jumping, as
discussed above in Sec. IV A.)

I q I I I I I I ««» i

20' mO' 40 5O' 6O 7O' SO' 9O'

9
FIG. 7. A plot of I/(I —p) versus S for r;(Tz in a face-centered

cubic crystal, assuming (a) vacancy diffusion and (b) interstitialcy
diffusion.
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TABLE II. Results for interstitialcy diffusion for v; & T&.

Simple cubic Body-centered cubic
jump direction

(100)

Face-centered cubic

(100)

(1/GG') Z, e As. ' (y4P4/as) (0.0+0.592512 sin'28) (p4A4/a') (32.0—24 sin'28) (y4A'/a') (32.0—24 sin'28)

(1/GG') P;..., A;„A;~ (y'A'/a') (0.437010+0.123607 sin'28) (y'A'/a') (5.87674—0.891858 sin'28) (y'A'/a') (19.5129—8.97069 sin'28)

(1/G') 2*,.A'.'

(1/G) 2'.e A'a'

(y'A'/a') (0.392/72+4. 66933 sin'28) (y'A'/a') (69.9881—45.1034 sin'28) (y'A'/a') (196458 .140 0—77 sin. '28)

(y A'/ae)(3 33902—2 07366 sin'28) (y'A'/a')(3. 73129+2 59580 sin'28) (y'A'/a')(17 2327+7 36236 sin'28)

1/1 —p

0.481248—3.829604 sin'28

3.33902—2.07366 sin'28

3.33902—2.07366 sin'28

2.857772+1.755944 sin'28

-26.234620+19.319684 sin'28

3.73129+2.59580 sin'28

3.73129+2.59580 sin'28

29.965910—16.723884 sin'28

—125.432+98.136 sin'28

17.2327+7.36236 sin~28

17.2327+7.36236 sin'28

142.665—90.774 sin'28

TABLE III. Results for interstitialcy diffusion for r; &T&.

Simple cubic Body-centered cubic Face-centered cubic

0.190978+0.108035 sin&28 10.015279 sin428 34.53607 -10.48244 sin228+0. 79541 sin420 380.7533 -350.0884 sin&20+80.4733 sin42g

1.311474+12.798101 sin22tt -8.453934 sin428 141.7446+19.8666 sin'28 -54.7802 sin428 2834.055 -789.521 sin220 —854.601 sin42g

1.311474+12.798101sixP28 —8.453934 sin428 141.7446+19.8666 sin228 —54.7802 sin428

1.120497+12.690066 sin228 —8.469213 sin42tt 107.2085 +30.3490 sin220 —55.5756 sin428

2834.055 —789.521 sin&28 —854.601 sin420

2453.302 —439.433 sin228 —935.074 sin420

0.8936$ 0.9611a 0 9527a

a The minimum value of 1/(1 —p3 occurs at (5) =25' for the sc and bcc lattices and at tt =35' for the fcc lattice.

(18c) and (31).'~ However, in a real solid it may be
dBBcult to satisfy r;& T2 at temperatures high enough
for the motion to have an appreciable e6ect on the
relaxation time. In that case the strong-collision —type
calculation described in Sec. III C of this paper would
not be valid. Nevertheless, if the mean time v that a
lattice atones must wait between successive encounters
with interstitial atoms is long compared to T2, then the
lattice atoms will achieve a common spin temperature
prior to each encounter. Ke will thus get a narrowing of
the resonance linewidth. However, the mean energy
change of a lattice atom resulting from an encounter with
an interstitial atom should be very much smaller than
the energy change for vacancy or interstitialcy diffusion,
since most of the atom's dipolar energy is not changed
in the former case. Thus more encounters would be
required to relax the magnetization, with the result
that the rotating-frame relaxation time will be much
longer than wouM be predicted for the strong collision

~~ This would be valid only for spin-& nuclei. For larger spins
quadrupolar interactions should be taken into account. However,
if r;Ruz«1, where Ro, is the quadrupolar splitting, then the quad-
rupolar coupling will result in weak collisions for the jumping
nuclei. These will be small compared to the strong effects of the
dipolar coupling in the case of vacancy or interstitialcy diffusion.

V. CALCULATION OF (1/G') Q;,„A;,s
AND (1/GG') Q; „,sA;„A;s

As we saw in Eq. (5),

1—3 cos2t)t
4+2h2 (5')

where t)j;, is the angle between the applied field and the
internuclear vector R;,.

» The dependence of the mean time v between encounters upon
the measured relaxation time could be calculated by a method
similar to that described in Ref. 5.

cases. ' Also, more encounters would be required before
motional narrowing could set in with the result that the
"neck" of the T2 curve will occur at a higher tempera-
ture. The rotating-frame relaxation-time minimum will
still occur at the onset of motional narrowing, but this
should occur at a higher temperature for interstitial
di6usion than would be expected for vacancy or inter-
stitialcy diGusion. Hence, it wouM be possible to dis-
tinguish interstitial diffusion from vacancy or inter-
stitialcy diRusion only if the jump time v. can be
measured by an independent technique (like radioactive
tracers).
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Now let us assume a rectangular coordinate system
with axes parallel to the crystal's (100) direction. Sup-
pose the applied Geld IIO lay in the xs plane and made
an angle 0 with respect to the s axis. Then

cosa;„=
sin8 X;„+cos8Z,„

R;„
(40)

where I;, and Z,„are the x and s components of R,,
If we restrict ourselves to cubic crystals for which terms
linear in X;„and Z;„sum to zero, we get

~, r 4R;„'

tX;„'
1—6 sin'8~

Z;,~' X,, '
—6 cos'8

I
+9 sin'8

z,,i
Z;„4 X,„Z,„i'-+9 cos48 +54 sin'8 cos'8

~
. (41)

R'. z,„ i

This is equivalent to formula (A4) of Ref. 8. Because
of the cubic symmetry, we have that

Ke then get

X,„2 Z;„'
=Z

j,r Emir

X,„4 Z,„4

R;„4

(42a)

(42b)

1 y4h' 1 ' Z, , ' tZ,„~'-
1—6 +9~

G' a, r 4G' ~, r R,„R,„kE,,)
X;„Z;„' Z;,q'-

+-,'sin'28 3 —
~

. (43)
z,, z, ,i
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Similarly for (1/GG')P;, „,, A;„A;, we get

y4h4
—Q A,„A,,=

G' s, r, a 4'
(Z;, ' (Z,,Z;~ ' 9 sin'28—

3/ +9/
kz, ,R,,

&& Ll'(Z;„'—X;,')(X;,'—Z;,')+X,„X;,Z,„Z,qj . (44)

For noncubic crystals, there would be an extra term
proportional to sin'8 in both Eqs. (43) and (44).

Vt. RESULTS

We have calculated p versus 8 for bcc, fcc, and sc
lattices for vacancy, interstitialcy, and interstitial dif-
fusion using the UNIVAC 1108 digital computer at the
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TABLE V. [1/(1—p)gg, 14/$1/(1 p)]g —p for di6'erent mechanisms
in different lattices for v; &T2.

Simple
cubic

Body-centered Face-centered
cubic cubic

Vacancy
Interstitialcy
Interstitial

(nearest neighbors)
Interstitial

(next-nearest
neighbors)

1.0409
0.23472
0.012603

1.05032
3.8372
4.4509

4.9797

1.0267
3.9240
5.0365

University of Utah computer laboratory to perform the
lattice sums. Each of the programs was checked by hand
calculation out to at least one atomic shell. The inter-
stitial results have been calculated for v;&T2 only,
whereas the interstitialcy results have been calculated
for both cases: r;&T2 and v, &T2.

B. Interstitialcy Diffusion

For the sc lattice we assumed that the interstitial
atom sits in the center of the primative cell. For both
the fcc and bcc lattices we assumed that the interstitial
sites are at the center of the cube edges. Our results are
contained in Table II (for r;) Ts) and in Table III
(for r;(T,).

C. Interstitial Diffusion

For interstitial di6usion, we calculated our parame-
ters for jumps to the nearest vacant interstitial site.
In the bcc case, we also performed a calculation as-

suming jumps to the next-nearest interstitial site. These
results are summarized in Table IV.

The ratio of the maximum value of 1/1 —p (at 0= res)

to the minimum (at 8=0) for r;&Ps is plotted in
Table V.

VII. CONCLUSIONS

In Figs. 2-4, we have plotted 1/1 —p versus 8 for
each type of mechanism considered in each of our

'9 Ke note that, in zero Geld, the angular dependence of T in
Eq. (22) is identical to that of 1/(1 —p). (We should bear in mind
that this is not the case if H~ is nonzero, for in that case we would
have to correct for the angular dependence of the local Geld.
Alternatively, it is easy to perform an adiabatic demagnetization of
H& Lsee F. M. Lurie, thesis, University of Illinois (unpublished) j
so that the relaxation is indeed observed in zero Geld. )

A. Vacancy Diffusion

For vacancy diffusion we assumed jumps to nearest-
neighbor positions only. The results are summarized
in TaMe I.

crystals. As we can see, in each crystal there are very
striking differences among the results for the diBerent
mechanisms. These suggest a method for discriminating
between di8erent diGusion mechanisms for crystals
with very long Tj. The low-field relaxation time" for
a single crystal can be measured as a function of angle
and compared with calculated results like the ones in
Figs. 2-4. In this way incompatible mechanisms can
be eliminated. (Of course, these results are valid only
for spin-s nuclei. 'r)

The results for vacancy and interstitialcy diffusion,
valid for 7,&T2, are plotted in Figs. 5—7. To distinguish
these mechanisms from each other would require
experimental precision of the order of 10%%uz which is not
too diKcult to achieve. For v;&T2, a measurement of
the temperature dependence of the rotating-frame
relaxation time may distinguish interstitial diffusion
from the other two mechanisms as discussed in Sec.
IV C.

Experimental departures from the results described
above may suggest mechanisms other than the ones
considered here, "in which case additional calculations
similar to those described in this paper would be neces-
sary for these mechanisms.

Further calculations appropriate to other types of
crystal structure are planned at the present time. In
addition, experiments designed to verify these calcu-
lations are in progress in our laboratory.
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'o In a Fe, for instance, which is bcc, there is some evidence,
based on radiation damage experiments (C. Erginsoy, G. H.
Vinyard, and A. Englert, Phys. Rev. 133, A595 (1964)j and Born-
Mayer-type calculations LR. A. Johnson, Phys. Rev. 134, A1329
(1964)j that the stable interstitial configuration could be a split
interstitial aligned along the (110) direction. The calculations oj
H. B. Huntington LPhys. Rev. 91, 1092 (1953)j and of R. A.
Johnson and E. Brown LPhys. Rev. 127, 446 (1962)g indicate
that for Cu, which is fcc, a (100) split interstitial would have
formation energy comparable to that of the so-called "body-
centered interstitial" which we have considered here.


