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The nonlinearity parameters, which are combinations of third-order elastic constants, of neutron-irradiated
copper single crystals were determined at room temperature by measuring quantitatively the harmonic
distortion of pulsed MHz ultrasonic waves propagating in three crystallographic directions. For th&s purpose.
a capacitive detector was used with which ultrasonic displacement amplitudes of the order of 10 ' cm can
be detected and measured absolutely. Using the nonlinearity parameters in combination with other data, a
complete set of third-order elastic constants for copper is calculated. The experiments represent a new
technique for determining third-order elastic constants which is of special interest for measurements on
easily deformed metal crystals.

INTRODUCTION

~~ROM the symmetry properties of a crystal lattice,
relations can be found between the coupling

parameters of microscopic lattice theory and the elastic
constants of macroscopic elasticity theory. For example,
the second- and third-order coupling parameters of
face-centered cubic crystals have been expressed in
terms of the second- and third-order elastic constants,
assuming only nearest-neighbor interactions between
the atoms. ' ' Corresponding relations for body-centered
cubic lattices with nearest- and next-nearest-neighbor
interactions have been obtained, and the case of central
forces in the two types of lattices have been investi-
gated. 2 Thus, measurements of elastic constants can
yield information about lattice forces.

If only the second-order terms are retained in the
elastic energy density and linear elasticity theory is
used, a linear relationship between stress and strain
results (Hooke's law). This approximation can be used
for "infinitesimal" deformations, i.e., when the space
derivatives of the displacement vector of a point in the
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body are small enough that their products and squares
may be neglected in relation to the terms themselves.
Similarly, lattice dynamics in the harmonic approxi-
mation can be used as a first step to describe the
mechanical behavior of solids.

However, a large number of important properties
depend on the anharmonicity of the lattice potential. '
For this reason, there has been much interest recently
in the experimental determination of third-order elastic
constants.

The most precise measurements of elastic constants
have been made by dynamic techniques. From the
equations of motion for an elastic medium in the linear
approximation, one finds the relations between the
adiabatic second-order elastic constants and the veloci-
ties of ultrasonic waves of different polarizations
traveling in various crystallographic directions. Simi-
larly, by extending the calculations to include finite
deformations, one obtains relations between the third-
order elastic constants and nonlinear sects in sound
propagation.

Specifically, there have been a number of measure-
ments of the sound velocity, i.e., of the effective second-
order elastic constants, as a function of hydrostatic
pressure. Such measurements can be made readily for
many solids, even for soft materials which would deform
plastically under correspondingly large shear stresses.
They cannot, however, yield the complete set of third-

' G. Leibfried and W. Ludwig, Solid State Phys. 12, 275 (1961).
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order elastic constants. In the case of cubic crystals, for
example, three combinations of the six third-order
constants can be obtained. Thus other techniques are
required to isolate all of the constants.

For this purpose the change of sound velocity with
uniaxial stress has been measured. Bateman, Mason
and McSkimin' carried out such experiments on ger-
manium and determined for the first time a complete
set of all six third-order elastic constants of a cubic
crystal. A similar experiment was done on germanium
by Drabble and Gluyas. ' McSkimin and Andreatch
determined the germanium constants with increased
accuracy and made measurements on silicon. Using
essentially the same technique, Bogardus~ obtained the
third-order elastic constants of germanium, magnesium
oxide, and fused silica; Chang' obtained those of sodium
chloride and potassium chloride crystals; and Thurston,
McSkimin, and Andreatch' obtained those of quartz.

Until very recently there have been no results for
metals because the above technique is dificult to apply
to them. Pure metal single crystals are soft and are
easily deformed plastically, so that only very small
shear stresses can be applied if only elastic deformation
is to be obtained. Hiki and Granato" have carried out
experiments on prestressed single crystals of copper,
silver, and gold, using small stresses and a sensitive
method of determining ultrasonic velocity changes.
Salama and Alers" measured the change of sound
velocity in neutron-irradiated copper crystals resulting
from the application of uniaxial stress.

Because of the difhculty of measurements on metal
single crystals, it is of interest to determine their third-
order elastic constants by other techniques, preferably
ones that do not involve the application of external
stresses having shear components. The experiments
described here are of that type. They are based on the
waveform distortion undergone by ultrasound as it
propagates through a solid. After an initially sinusoidal
wave is introduced into a specimen, higher harmonics
of the fundamental frequency are generated because of
the nonlinear properties of the medium. "A study of
these effects was made by Breazeale and Ford."Their
solution of the nonlinear equation for longitudinal
plane waves yields a second harmonic term whose
amplitude is proportional to the square of the funda-
mental amplitude, the square of the fundamental fre-
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3312 {1964).' E. H. Bogardus, J. Appl. Phys. 36, 2504 (1965).' Z. P. Chang, Phys. Rev. 140, A1788 (1965).' R. N. Thurston, H. J. McSkimin, and P. Andreatch, Jr., J.
Appl. Phys. 37, 267 (1966).
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The Langrangian viewpoint is used here, with the initial
coordinates the independent variables.

The equation of motion is written simply in terms of
Murnaghan's modified stress tensor, "T":

where

8
pig= T~Ic ) (2)

p is the mass density of the medium in the unstrained
state, the dots indicate time derivatives, and U is the
elastic-strain energy density. The latter was written by
Birchis for cubic crystals LHermann-Mauguin notation
43nt, 432, (4/rn) 3 (2/nt) j in terms of powers of the strain
components, including third. The expression is given as
Eq. (A1) in Appendix A. The definition of third-order

'4 F. D. Murnaghan, Finite Deformation of an Elastic Solid
Qohn Wiley 8t Sons, Inc. , New York, 1951)."F.D. Murnaghan, Finite Deformation of an Elastic Solid
(John Wiley tk Sons, Inc. , New York, 1951), Chap. 6."F.Birch, Phys. Rev. 71, 809 (1947).

quency, the distance the wave has traveled in the
medium, and a constant factor. For single crystals, that
constant factor consists of second-order elastic con-
stants and of a combination of third-order constants,
designated the nonlinearity parameter, whose exact
form depends on the crystallographic direction of
propagation. Thus, if the absolute amplitudes of both
the fundamental and the second harmonic of a distorted
wave can be determined and if the second-order con-
stants of the material are known, the appropriate
combinations of third-order constants can be calculated.
It turns out that for cubic crystals, experiments with
longitudinal waves propagating in the L1001, L110j,
and $111j directions yield three independent com-
binations of the third-order constants; and that those
combinations are in turn linearly independent of the
three combinations obtained from the measurement of
sound velocity as a function of hydrostatic pressure.

THEORY

The nonlinear equations for particle motion in a
cubic crystal can be derived from Murnaghan's theory
of finite deformation. '4

Let a point have the coordinates (tti, its, as) in the
initial or unstrained state. In the final or strained state,
the same point has the coordinates (xi,xs,xs) and the
components of the displacement are I;=x;—u;. The
reference frame with respect to which x; are measured
need not be the same as that to which a; are referred.
Let J be the jacobian matrix of the transformation
from initial to anal coordinates. For a rigid displace-
ment JJ is the unit matrix E3, where J is the transpose
of J.Thus the strain g, as a measure of the deformation,
can be defined as
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elastic constants used in Appendix A is consistent with
Brugger's thermodynamic deinition. "

Substituting (A1) into (3) yields the general non-
linear equation for wave propagation in a cubic crystal.
The procedure is straightforward but lengthy. Three
coupled equations are obtained, one each for particle
displacements in the Ni, N2, and m3 directions. " The
equation discussed here can be compared directly with
that derived by Seeger and Buck,"who considered the
case of infinitesimal displacements superimposed on a
finite deformation. The two equations are related
through the substitution"

of rt' and the new equation of motion is derived. A
similar procedure is followed to align the ai axis with
the L111)direction.

It turns out that pure longitudinal modes can
propagate in the three directions $100), L110), and
L111); and for all three cases, the procedure outlined
above leads to a wave equation of the same form as (5).
This equation can be written in terms of E2, a com-
bination of second-order elastic constants, and Ee, a
combination of third-order constants called the non-
linearity parameter 3

Bur Bus Busi
P IP=&l&=i (&+ + +

Bar Bas Basi
(4)

82Q BN 82N Bs 82Q

pu=Es +3— +Es-
BQ2 BQ Ba2 BG BQ~

The equation is solved readily by a perturbation tech-
nique. The subscripts can be dropped from I and u. The
solution is written

where

u= ui'&+u&@,

u&'& =A sin(ka —cct)

(6)

(7)
and

u&'& = —(3c11+C111)/8crrA'k'a cos2 (ka —cct) . (8)

Here co is the angular frequency of the sound wave, k is
the magnitude of the wave vector, and A is the initial
displacement amplitude of the fundamental frequency.

To treat the cases of plane longitudinal waves
propagating in other directions, it is best to rotate the
initial coordinate system. For example, for waves
propagating in the $110) direction, the coordinates are
rotated by 45' about the a3 axis, so that the new gi' axis
corresponds to the L110) direction. In the new frame,
the strain matrix is g', it is related to g by g=Eg R ',
where 8 is the rotation matrix and E. ' its inverse. The
strain energy is now written in terms of the components

"K. Brugger, Phys. Rev. 133, A1611 (1964).
'8 W. B. Gauster, Ph.D. dissertation, The University of Ten-

nessee, Oak Ridge National Laboratory Report No. ORNL-
TM-1573, 1966 (unpublished).

'9 A. Seeger and O. Buck, Z. Naturforsch. 15a, 1056 (1960).

where p, is the mass density of the medium in the
strained state.

To bring the equations of motion into a form that is
useful for determining third-order elastic constants
from harmonic generation experiments, they must be
specialized to specific propagation directions and wave
polarizations and solved for the amplitudes of the
fundamental and the second harmonic.

The simplest case to consider is that of a longitudinal
plane wave propagating in the (100)direction. Here the
equation reduces to

8Nr BNi 8 Nq

pu 1 c11 (3c11+Cl 11)
Bai2 Bcq Bci2

By analogy with (7) and (8), the solution of (9) to
second order is

u= A sin(ka —4ct) —$3Es+E,)/8E, A'k'a cos2 (ka —cct).

(10)

TABLE I. Er and If.4 for $1007, $110$, and $111)directions.

Direction

$100]
$110$
I 1113

C11

1(cg1+crr+2c44)
-', (c11+2c12+4c44)

C111

x (C111+3C414+12CM4)

9 (Clll+6C112+ 12C144+24C166)
+ 4 (2C444+ 16C444)

20R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604
(1964).

The specific combinations E2 and E3 for the three
directions under consideration are listed in Table I.&")

The E3 are linearly independent combinations of the
third-order elastic constants. They can be calculated
from absolute measurements of the amplitudes of the
fundamental and the second harmonic components of
longitudinal waves traveling in these three directions.

If such results are to be combined with measurements
of sound velocity as a function of hydrostatic pressure
to isolate all six constants, it Inust be ascertained that
the combinations of constants obtained by the two
techniques are linearly independent. That this is
actually the case can be seen from the analysis of
Thurston and Brugger. " For example, the change of
velocity with pressure of longitudinal waves in the
L100) and $110) directions and of transverse waves in
the L100) direction yields the required additional three
terms.

In the above analysis, no account was taken of the
dissipation of acoustical energy. It is observed, however,
that both the fundamental and the second harmonic are
attenuated as they propagate in the crystal. An approx-
imate correction can be made by assuming that the
attenuation is uniform and that the fundamental and
the second harmonic are damped as if each were the
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FIG. 1. Schematic representation
of capacitive detector.

TO
PREAMPL I FIER

EXPERIMENTAL PROCEDURE

Apparatus

For quantitative measurements of the harmonic
distortion of ultrasonic waves in solids, one requires a
very sensitive detector that can be calibrated for
strain-amplitude determinations over a wide frequency
range. A number of factors must be considered in the
selection of the ultrasonic frequency. First, diffraction
of the sound beam introduces an apparent attenuation;
the magnitude of this effect depends on the dimensions
of the sample in relation to the wavelength of the
vibrations. Calculations of diffraction effects" indicated
that with samples and transducers of convenient size,
it was desirable to work at frequencies above j.0 MHz.
Moreover, Eqs. (10) and (11) indicate that the second
harmonic amplitude increases with the square of the
frequency, so that again higher frequencies are advan-
tageous. On the other hand, the attenuation becomes
greater also. It was verified that in the neutron-
irradiated copper samples used, the attenuation in-
creases approximately with the square of the frequency
from 30 to 60 MHz. The availability and convenience
of handling of fundamental-mode piezoelectric quartz
transducers, which were used to generate the ultrasonic

21 A. L. Thuras, R. T. Jenkins, and H. T. O' Neil, J. Acoust. Soc.
Am. 6, 173 (1935).

"H. Seki, A. Granato, and R. Truell, J. Acoust. Soc. Am. 28,
230 (1956).

only wave present. "Then the particle displacement is
found to be

u =2 pe
—~" sin (ka —pi/) —[3' p+ Ep]/8E2A p'k'

&& [e ~"—e ~"]/n2 —2ni cos2(ku —pit), (11)

where A 0= wave amplitude at a= 0, n~= measured
attenuation factor for the fundamental frequency f,,
and n~ ——measured attenuation factor for a wave of
frequency f2 2fi tra——veling alone in the medium.

It is shown in Appendix B that for the samples used,
the measured values of o,~ and n2 were small enough that
the error introduced by using Eq. (10) rather than Eq.
(11) to analyze the data was smaller than the experi-
mental uncertainty.

waves, provide an upper limit of about 60 MHz. These
considerations, together with the ready availability of
tuned amplifiers with pass-bands about 30 and 60 MHz,
determined the choice of 30 MHz for the fundamental
frequency.

The largest ultrasonic displacement amplitudes
attained at 30 MHz are on the order of 10A. From
Eq. (10), using estimated values of third-order elastic
constants, it can be calculated that the second harmonic
amplitude should then be about 1%of the fundamental.
Thus, a detector is needed of sensitivity sufficient to
measure displacement amplitudes below 10 ' cm.

The capacitive detector developed for that purpose
has been described in detail elsewhere. "Figure 1 shows
schematically the experimental arrangement. Pulses of
longitudinal waves at 30 MHz are produced by the
piezoelectric quartz transducer that is bonded to the
top of the sample. The detector at the bottom is a
calibrated capacitance microphone. The preamplifier
has a constant response over the frequency range from
5 to 90 MHz. The ultrasonic waves are distorted as they
propagate through the sample, so that the detector
senses a second harmonic component in addition to the
signal at the fundamental frequency. By feeding the
signal to high-gain amplifiers with pass-bands about
30 and 60 MHz, respectively (and of width sufficient
to amplify the pulsed signals without distortion), it is
possible to measure the fundamental and second har-
monic components of the ultrasonic displacement
amplitude independently.

Sample Preparation

The copper single crystals used in the present experi-
rnent were furnished by Young, Jr. , Solid State Divi-
sion, Oak Ridge National Laboratory. They were grown
from American Smelting and Refining Company
99.999% copper by a Bridgman technique and were cut
to different lengths with an acid saw. Measurements
were made on crystals whose faces were perpendicular
to the [100],[110],and [111]directions, respectively.
One sample each of the first two orientations was used,
and three samples of different lengths with faces
perpendicular to the [111]direction were available. It
was desirable to make measurements on several different
specimens of the same orientation in order to check the
predicted growth of second harmonic with path length,
as expressed by Eq. (10), and to investigate the eRect
on our results of other length-dependent propagation
effects (such as diRraction and attenuation). Further,
it could be ascertained in this way that the techniques
of sample preparation and handling did not cause
noticeable differences in the measurement results from
one sample to the next.

To reduce the attenuation of the ultrasonic waves,
the copper specimens were irradiated with fast neutrons

2'%'. B. Gauster and M. A. Breazeale, Rev. Sci. Instr. 31, i544
(1966).
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Propagation
direction

Sample
length
(cm)

K3 Standard error
(10 dyn/cm ) (10 dyn/cm )

TABLE II. Nonlinearity parameters of copper. 0. 15 I

I

tl I I] 9.00 cm

fI IO] 2.72 cm

o 1100] 2.86 cm

(100$
P top
$1117

2.86
2.72

9.00
3.97
1.38

—14.27
—32.54
—26.01
—24.92

26.84

~0.44
&1.30
+0.50
~0.30
&0.70

O. 10—
V)

O
KI-
V)
C9

CV~ oo5

which "pin" the dislocations. ""The irradiations were
carried out in the Bulk Shielding Reactor at Oak Ridge
National Laboratory. The samples were wrapped in
cadmium sheet about 1 mm thick to reduce the Aux of
thermal neutrons. The fast flux was about 4X10"
e/cm' sec. First the crystals were given a total dose of
approximately 4&&10" n/cm'. Then, after the faces of
the specimens were lapped Rat, they were irradiated
again, to a total dose of from 10' to 10"e/cm'.

It is important to have the end faces of the samples
accurately Qat in order to be able to define precisely the
small gap width in the capacitive detector. For this
reason, the sample faces were lapped until deviations
from Qatness were less than an optical wavelength.

For the attenuation measurements discussed in
Appendix B it was necessary to make the sample faces
closely parallel and to be able to measure deviations
from parallelism. To measure the angle between the
faces an autocollimator was used, with which angles as
small as 4 sec of arc could be resolved.

The orientations of the crystals were checked by
taking Laue back-reAection x-ray patterns. The orien-
tations of the faces were accurate to better than one
degree.

RESULTS AND DISCUSSION

Nonlinearity Parameters

In the harmonic generation experiments, a set of
fifteen data points was taken for each sample. The
generating transducer was reapplied and the specimen
aligned in the sample holder assembly three times; each
time measurements were taken for Ave different wave
amplitudes. In Fig. 2, the second harmonic is plotted
as a function of the square of the fundamental amplitude
for two runs on each of three samples. The square
dependence is demonstrated clearly.

The nonlinearity parameters E3 were calculated from
the fundamental and second harmonic amplitudes,
using the relation indicated in Eq. (10). The values of
E2 used were calculated from the second-order con-
stants given by Hiki and Granato" which differ by only
about 1 percent from earlier measurements. "Table II

'4 D. O. Thompson and V. K. Pare, in Physica/ Acoustics, edited
by W. P. Mason (Academic Press Inc. , Neve York, 1966), Vol. III."G. L. Pearson, W. T. Read, and W. I . Feldman, Acta Met.
5, 181 (1957).

26 W. C. Overton and J. GaKney, Phys. Rev. 98, 969 (1955).
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FIG. 2. The second harmonic amplitude versus the square of the
fundamental amplitude for measurements on copper crystals in
three crystallographic directions.

TABLE III. Comparison of calculated and directly measured
nonlinearity parameters of copper in units of 10"dyn/cm'.

Direction Present result

t 100/
t 110]
$111)

—14.3
—32.5
—25.9

Calculated from data of
Hiki and Salama and
Gran ato' Ale rsb

—12.7
—32.7
—29.5

& Reference 10. b Reference 11.

contains the values of the nonlinearity parameters
calculated from the data, together with the root-mean-
square deviation or standard error of each set.

The principal sources of error are in determining the
gap spacing of the detector and in calibrating the
detector and amplifier. The uncertainty of E3 is less
than the inaccuracy of the ratio of the second harmonic
amplitude to the square of the fundamental, since E3
is calculated from that ratio and from values of E2. The
final experimental error of E3 is estimated to be about
10%, which is considerably more than the standard
error.

Another possible source of error is in the effect of
attenuation. If this were noticeable, the values of I&3

calculated from measurements on shorter samples
(without corrections for attenuation) should be greater
than those obtained from longer ones. No such trend is
seen in the set of three L111j samples; therefore, no
correction for attenuation is applied. (See Appendix 3.)

The agreement among the values of E3 obtained from
the three L111j samples of different lengths indicates
that the sample preparation and handling did not cause
a change in the measured properties from one sample
to the next. It also verifies the linear growth of the
second harmonic with propagation distance.

The present results can be compared with those of
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Tmxx IV. Pressure derivatives of effective second-order
elastic constants of copper and combinations of third-order
constants calculated from them.

Daniels Hiki Salama
and and and

Lazarus~ Smith Gran ato' Ale rs

—C44

dp
0.83 2.35 2.63 2.5

1
(Cl1 C12)

dp2
0.566 0.580 0.375 0.45

1
(~11+2~12)

dp3
3.91 5.59 5.8

C144+2C166'
CI11 C123

C111+6C112+2Cl 23

—8.18
—13.18
—47.71

—14.35 —15.49 —14.25
—13.29 —11.62 —12.5
—68.17 —66.24 —71.0

a D. Lazarus, Phys. Rev. M, 545 (1949).
h W. B.Daniels and C. S. Smith, Phys. Rev. 111, 713 (1958).
& See Ref. 10.
d Calculated from uniaxial stress data of Ref. 11.
e In units of 10» dyn/cm2.

other experiments. Two sets of measurements of the
third-order elastic constants are available. ""In Table
III the nonlinearity parameters calculated from the
results of Hiki and Granato and of Salama and Alers
are given, and it is seen that the agreement with the
harmonic generation values is within the experimental
uncertainty.

Third-Order Elastic Constants

The nonlinearity parameters can be used together
with the pressure derivatives of eRective second-order
constants to evaluate all six third-order elastic con-
stants. In Table IV, the three sets of pressure deriva-
tives available in the literature are listed, together with
the hydrostatic pressure derivatives calculated from the
uniaxial stress data of Salama and Alers; and the values
of the three combinations of third-order elastic con-
stants calculated from the pressure derivatives are
indicated. The terms obtained from the three most
recent sets of data are consistent to within 7, 14 and
3%, which is on the order of the experimental uncer-

tainty of the X3's. Using these numbers and the values
of the nonlinearity parameters, the constants listed in
Table V are calculated. Each of the constants is ex-
pressed in terms of the six measured quantities; and the
final error is calculated from the propagation of the
experimental uncertainties in evaluating the constants.
Rather than the small standard deviations, more
realistic measurement uncertainties of 10% for the
nonlinearity parameters and of 5% for the pressure
derivatives are used. This results in greater percentage-
estimated errors, especially for C123, C144, and C456, since
the latter are small quantities determined from the
diGerences of large numbers.

For comparison, the complete sets of constants
measured by Hiki and Granato and by Salama and
Alers are given also in Table V. There is agreement
within experimental error among all the sets, with the
exception of the constants C11~, C144 and C456 calculated
from the data of Lazarus and the present experiments,
indicating that the more recent determinations of
pressure derivatives are more accurate.

The present results, obtained by a diRerent technique,
support the conclusion of Ref. 10 that the closed-shell
repulsive interaction between nearest-neighbor atoms
is the dominant contribution to the higher-order elastic
constants of the noble metals. In that case, the con-
stants should obey approximately the relations

C111 2C112 2C166 )

C123=C456= C144=0.
If these equalities are taken to hold exactly, the E3's
can all be expressed in terms of C»1 and they become

L100j:Es——Crrr ———14.3X10"dyn/cm',

(110j:Es (17/8) C»& —————30.4X 10"dyn/cm',

$111j:Es= (16/9)Crrr = —25.4X 10"dyn/cm'.

From Table II it is seen that the measured values obey
the relations very well.

SUMMARY

The experiments described here indicate that mean-
ingful measurements of the amplitudes of the funda-
mental and the second harmonic of a distorted ultra-

TAsLE V. Third-order elastic constants of copper calculated from pressure derivatives and nonlinearity parameters.

Lazarus
(1949)

and present
experiment

From pressure derivatives and nonlinearity
parameters (10"dya/cm')

Daniels and Smith Hiki and Granato Salama and Alers
(1958) (1966) (1967)

and present and present and present
experiment experiment experiment

Hiki and Granato
(1966)

Salama and Alers
(1967)

From hydrostatic and uniaxial stress
derivatives (10"dya/cm')

C111
C112
C123
C144
C166
C456

—14.27&1.4—5.21&0.7—1.09&1.5
+8.54&2.2—8.36a1.1—5.47+1.6

—14.27&1.4—8.66&0.8—0.98&1.5
+0.64&2.3—7.49&1.1
+0.44&1.6

—14.27&1.4—7.78&0.8—2.65&1.5—0.06&2.3—7.71%1.1
+1.17&1.6

—14.27~1.4—8.87&0.8—1.77&1,5—0.63&23—7.44%1.1
+0.66&1.6

—12.71&0.22—8.14&0.09—0.50&0.18—0.03&0.09—7.80&0.05—0.95&0.87

—15.0 a1.5—8.5 &1.0—2.5 &1.0—1.35&0.15—6.45&0.1—0.16+0.1
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sonic wave can be made. For copper, the harmonic
generation experiments yield values of the nonlinearity
parameters that agree within experimental accuracy
with values of third-order elastic constants obtained by
other techniques.
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APPENDIX A: ELASTIC ENERGY DENSITY

The elastic strain energy density, to third-order in
the strain components, for the most symmetrical classes
of cubic crystals, is written in terms of three second-
and six third-order elastic constants. %ith Brugger's
deinition of the constants, " the expression is

U scil(2)ll +r)22 +'f88 )+c12('gllr122+g22r1$8+2)33911)

+c44(r112 +rj21 +ll28 +2)32 +rj81~+gl$ )
+6clll (2)ll +'g22~+r188 )
+K112L2ill (r122+'988)+2)22 (2)88+2111)

+2) 83 (li 11+2122)g
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+'f83('f12 +'f21 )j

+C166L(2)12 +li21 ) (2)11+rl22)+ (4)2$ +2)32 ) (r)22+'f38)

+(n81'+n1$')(n$$+nll) j (A1)

The relations between Brugger's constants C;,~ and
Birch's C;,I,

B are as follows:

C111 6C111 y C123 C123 7 C166 2 C166

C112 2C112 p C144 &C144 p C456 4LC456 ~
B 1 B 1

APPENDIX B: MEASUREMENT
OF ATTENUATION

In Sec. II a simplified analysis was given of the effect
of attenuation in harmonic generation experiments. If
the attenuation is low enough, its effect on the values
of the nonlinearity parameters calculated from ampli-
tude measurements is smaller than the experimental
uncertainty and may be neglected.

The attenuation of longitudinal ultrasonic waves at
30 and 60 MHz was measured in a set of

I 111$ Cu
crystals irradiated to a fast neutron dose of 10'8 28/cm2.
The sample lengths were 9.0, 4.0, 1.4, and 0.65 cm. The
measurements were made by the pulse-echo technique.
An X-cut quartz transducer was bonded to a sample
face with polystyrene Quid, and the echo pattern was
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~ 60 MHz3.0 C ...-- MEASURED VALUES .—CORRECTED FOR ANGLE
BETWEEN SAMPLE FACES ——,~
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FIG. 3. Attenuation of 30 and 60 MHz ultrasonic waves in the
f111) direction of neutron-irradiated Cu crystals of diiferent
lengths.

received at the other end of the specimen by the
capacitive detector. An attenuator was inserted between
the detector and a tuned amplifier. The amplified pulse-
echo pattern was displayed on an oscilloscope screen.
The attenuator was set such that the eth pulse produced
a given deQection on the oscilloscope screen. Then the
attenuation was increased until the first detected pulse
produced the reference deQection. The difference in
decibels between the two attenuator settings indicated
the loss for m —1 round trips through the sample.

In Fig. 3 the results are indicated. The loss in decibels
for one transit and one reQection is plotted as a function
of sample length. The fact that the points lie on a
straight line indicates that the loss per unit length was
very nearly the same in all samples. The slope of the
line is the value of the attenuation in decibels per
centimeter, and the intercept on the vertical axis gives
the loss per reQection.

An approximate correction for one of the reQection
sects can be applied. The solid line indicates the
damping after subtraction of the contribution due to
the nonparallelism of the sample faces, calculated from
the analysis of Granato and Truell. 2~

The slopes of the lines indicate values of o.1=0.096
dB/cm for 30 MHz and a2 ——0.32 dB/cm for 60 MHz
attenuation.

Comparing Eqs. (10) and (11), one sees that values
of (3E2+E$)/SE2 calculated without considering
attenuation are to be multiplied by a factor which turns
out to be 1.035 for the values of e1 and n2 given above
and a path length of 5 cm. Since the estimated maxi-
mum uncertainty of (3E2+E$)/SE2 is 20% the cor-
rection was not applied.

21 A. Granato and R. Truell, j.Appl. Phys. 27, 1219 (1956).


