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sequence during cooling. The I~p state is not found in
the Mn2 Cr Sb system. An explanation of why the
I~p state is found in one system and not in the other
would require a detailed knowledge of how the exchange
integrals vary with interatomic distances in the Mn2Sb
structure. It is relevant to note that in the course of
the present studies, negative uniaxial anisotropy was
found to exist up to 245'K in Mn2Sb~ „As„but pre-
vious studies' have shown that it exists only below
200 K in Mn2 Cr,Sb. Both the Ip and Ip,p states are

energetically favored only if negative unaxial anisot-
ropy confines the moments to the basal plane. The
wider range of negative anisotropy in Mn2Sb~ „As„ is
undoubtedly interrelated with the existance of the
I~F state.
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Using spin-wave theory, including spin-wave interactions to leading order in 1/2S, the temperature
dependence of the critical magnetic field curves between the antiferromagnetic, the Qop, and the para-
magnetic phases have been calculated for a Heisenberg antiferromagnet with both uniaxial single-ion
anisotropy and anisotropic exchange interaction. The free energy has been obtained for all three phases,
and the behavior of the specific heat and the susceptibility in the neighborhood of these phase boundaries
as a function of magnetic Geld for a fixed temperature is discussed in detail.

I. IHTRODUCTIOÃ
" "N this paper we discuss the low-temperature proper-
. „ ties of a uniaxial Heisenberg antiferromagnet. In
particular we determine the temperature dependence
of the several phase transition boundaries, and discuss
the behavior of thermodynamic properties such as the
specific heat, the magnetization, and the susceptibility
in the neighborhood of these phase boundaries.

The model we consider consists of a simple cubic
array of magnetic ions of spin 8, interacting by a
negative nearest-neighbor exchange interaction. The
exchange interaction is assumed to be anisotropic
favoring alignment along the crystalline s axis. In
addition we assume the presence of a uniaxial single-ion
anisotropy and an external magnetic Geld, both parallel
to the crystalline s axis. In this model calculation we
consider only a simple cubic structure but the results
are trivially extended to any other crystal structure
which can also be resolved into two sublattices such
that the nearest neighbors of an ion on one sublattice
lie only on the other sublattice.

In the low-temperature region T&&T~, where T~ is
the Neel temperature, the spins will be antiferromag-
netically ordered for suKciently small magnetic fields.
As the Geld is increased, a phase transition occurs to
the Qop phase with the spins in a generally transverse
direction to the Geld. As the field is increased further,

the average direction of the individual spins will
eventually become parallel to the external held. The
particular value of the Geld for which this occurs
deGnes a second phase transition to the paramagnetic
(ferromagnetic) phase. About these average directions
there will be thermal Quctuations in the form of spin
waves.

In the transition from the spin-Qop to the paramag-
netic phase, the two phases are indistinguishable at
the transition and it is therefore of the second order.
At the antiferromagnetic spin-Rop phase boundary, the
phases are clearly distinct and the transition is of Grst
order. Near a first-order transition, metastable super-
heated and supercooled states will usually be possible.

The general properties of the system described by
the Hamiltonian PEq. (1)1 are most simply appreci-
ated by performing a simple molecular-Geld calculation
at zero temperature. We assume that all the spins on
the same sublattice n point in the same direction. Then
if we call the angles that 8 and Sp make with the s
axis, 8 and Hz, respectively, and P the angle between
the projections of 8 and Sp onto the xy plane, the
energy in molecular-field theory takes the form

E(8„8z,Q) =~~PS'zJC sinH sinHz cosQ+ cosH„cosHp

+(X/J) cosH cosHz —(L/zJ) (cos'8 + cos'Hz)

—(p&/SzJ) (cos8 + cosHz) $.
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Here, Ã is the number of lattice sites, S the magnitude
of the spin, and s the number of nearest neighbors.
J, E, and I. are the exchange constant and the anisot-
ropy constants defined in the discussion following
Eq. (1).

The equilibrium values for the angles are obtained
by minimizing the energy with respect to the angles
e, ep, and p. We find that Z is always minimized by
p=m independent of the magnetic field such that the
magnetic 6eld and the magnetization vectors for the
two sublattices are coplanar. For magnetic fields H
smaller than a particular value H, i the antiferromag-
netic state with 0 =0 and op=a niinimizes E. For
Gelds satisfying the inequality H,&&H&H,2, where H,2

is the upper critical 6eld, the spin-Qop state with 0 =|tp
and 8 &0 minimizes the energy, while for 6elds B)H,2

the paramagnetic state with 0 =0 and op=0 is the
stable configuration.

However, when the 6eld H,& is reached, the energy
surface described by E(e, ep) still has a local minimum
at the point 0 =0, op=a corresponding to an antiferro-
magnetic alignment, and this minimum persists up to a
somewhat higher superheating 6eld H,p at which point
the local minimum has developed into a saddle point.
Similarly for the Qop phase when the field is decreased
below H, ~ a local minimum at 8 =Op and 0 WO persists
down to a lower supercooling Geld H, j~. At the thermo-
dynamic critical 6eld H,& the local minima at the points
8 =0, 8p ——x and 0 =Op, 8 /0 have the same value,
and H, z is obtained by equating the free energies of the
two phases. At H=B,2 the energy surface will have a
saddle point at 0 =0 and op=0 corresponding to the
paramagnetic state which then for higher 6elds develops
into a true minimum.

When the energy surface is locally Qat this means
that some generalized coordinate finds a vanishing
restoring force and the natural frequency of the corre-
sponding dynamical mode vanishes. Thus at the critical
Geld H,&', one of the spin-wave frequencies of the
antiferromagnetic phase vanishes. Similarly at B,&,
one of the spin-wave frequencies in the Qop phase
vanishes. For H&H, ~~, this mode becomes purely
imaginary. At the upper critical field H,2, the spin-wave
frequency in the paramagnetic phase and one of the
spin-wave modes in the flop phase both vanish (al-
though for different k values) and become negative,
respectively, for 6elds smaller and larger than H,&. The
behavior of the spin-wave frequencies as a function of
magnetic 6eld is shown in Fig. 1.

In the simple molecular-field calculation described
above, it turns out that if we consider anisotropic
exchange only, then H,& =H,&~. This would mean that
there would be a Grst-order phase transition at this
Geld but no superheating or supercooling. However, in
the spin-wave calculation a splitting of H, ~ results,
when spin-wave interactions are taken into account
due to zero-point motion of the spin waves such that

B,»H, &~. In this case the hysteresis is entirely dut.'to
quantum-mechanical eGects.

The present calculation is restricted to the low-
temperature region. We use the Holstein-Primako6'
transformation to rewrite the Hamiltonian in terms of
spin-deviation operators. Spin-wave interactions will
be included to the lowest order in an expansion in 1/2S.
The critical-field boundaries will be calculated from the
vanishing of the renormalized spin-wave frequencies,
and the partition function will be obtained to the oeder
indicated for all three phases. From the partition
function all the thermodynamic properties can theri be
obtained by the standard rules.

In proceeding to the spin-wave picture, we replace
the 2S-dimensional spin space by an infinite-dimen-
sional vector space for the spin-deviation operators.
For the ferromagnet it has been shown that any error
due to this approximation is exponentially small in the
low-temperature region. ' Unfortunately, no similar
proof exists for the antiferromagnet. In fact, recent
calculations' show that the so-called kinematical inter-
actions for the antiferromagnet yield a small but non-
vanishing contribution to the thermodynamic variables
even at T=O. In particular it was found that for S= 2
the reduction of the sublattice magnetization in the
antiferromagnetic phase (H =0) due to zero-point
motion of the interacting spin waves is substantially
reduced by the kinematical interactions. The correc-
tions due to the kinematical interactions will not be
considered here. In the paramagnetic (ferromagnetic)
phase, these should. again be exponentially small in
the low-temperature region.

The spin-wave theory has been applied to the anti-
ferromagnet (in the antiferromagnetic phase) by
Anderson' and by Kubo. '' This work was later ex-
tended by Oguchir to include spin-wave interactions.
However, in these papers, interest was primarily con-
centrated on the properties of the system for vanishing
external field. No attempt was made to study the
behavior of the system near the Qop phase boundary.
More recently, Wang and Callen applied spin-wave
theory (not including spin-wave interactions) to the
Qop phase and obtained expressions for the critical 6elds
H,~~ and H, 2 at zero temperature in the case of uniaxial
single-ion anisotropy. In the paramagnetic phase the
spin-wave theory is formally identical to the spin-wave
theory in a ferromagnet.

Of other work not based on the spin-wave theory,

'T. Holstein and H. PrimakoB', Phys. Rev. 58, 1908 (1940).' F. J. Dyson, Phys. Rev. 102, 1217 (1956); 102, 1230
(1956).

3 R. P. Kenan, Phys. Rev. 159, 430 (1967).
4 P. W. Anderson, Phys. Rev. 86, 694 (1952).' R. Kubo, Phys. Rev. 87, 568 (1952).
s R. Kubo, Rev. Mod. Phys. 25, 344 (1953).
r T. Oguchi, Phys. Rev. 11'7, 117 (1960).
8 V. L. Wang and H. B.Callen, J. Phys. Chem. Solids 25, 1459

(1964).
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two calculations are particularly relevant. Falk' studied
the phase transitions using a variational method valid
at low temperature for the case of zero anisotropy but
for general spin, and calculated the temperature
dependence H,m(T) of the flop-para transition curve.
Anderson and Callen" used the random-phase approxi-
mation and the Callen decoupling method to study the
antiferromagnetic and the paramagnetic phases. The
Qop-para transition curve was calculated for arbitrary
temperatures, while the antiferromagnetic-Qop critical
6eld H, & was calculated explicitly only at zero tem-
perature. Calculations of thermodynamic properties
such as the sublattice magnetization and susceptibility
were restricted to the case of zero external magnetic
6eld.

When the Callen decoupling method was used the
result for the Qop-para transition curve agreed in the
low-temperature region with the result obtained by
Falk. ' The present spin-wave calculation gives the same
result for the leading temperature correction. In higher-
order terms diGerences would, however, appear. In the
random-phase approximation (RPA) the coefficient for
the leading temperature correction is too small by a
factor of 2.

In the case of the zero-temperature value of H,» the
result obtained using spin-wave theory disagrees both
with RPA and the result of the Callen decoupling
method. ' For H, ~~ the expression obtained in the
present calculation agrees at zero temperature with
the calculation of Wang and Callen, 8 apart from
zero-point motion corrections.

H. Pals, Phys. Rev. 133, A1382 (1964).' F, B. Anderson and H. B. Callen, Phys. Rev. 130, A1068
(1964).

II. HAMILTONIAN

We shall study the following Hamiltonian:

sc=zZ s( ) s(y)+zZ s.( ) s,(y)
(a,P)

-LES.(-)-LES.(I, )
a P

pH QS, ( n) —p—H QS, (g), (1)
A

where the sum (n, g) is taken over all nearest-neighbor
pairs, and n and g are the lattice sites in the n and the
P sublattices, respectively. The E term represents the
anisotropic exchange interaction and the L term the
single-ion uniaxial anisotropy. The external field H is
assumed to be applied along the axis of easy magnetiza-
tion. The form this Hamiltonian takes when rewritten
in terms of the spin-deviation operators using the
Holstein-Primakoff transformation' will be discussed
separately for the three phases.

In the antiferromagnetic phase, we introduce two
different sets of spin-deviation operators.

These are

S (n) =(2S)'"a 'f (S)S+(n) =(2S)"f-(S)a )

S,(n) =S—a ta,
for an up-spin on the n sublattice, and

S+(g) = (2$)'I'bptfp(S)
&

S (g) = (2S)'"fp(S) bp,

S*(g) = S+bp bp

for a down-spin on the P sublattice, where

f-.p(S) = (&—&-,p/2S) '"
and where the choice of the up and the down sublattice
is arbitrary.
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In the Qop phase, we first rotate the coordinate
system about the x axis an angle 8 for sublattice 0; and
an angle —|t for sublattice p,

S,(e) =8,(e),
S„(e)= cos8 8„(e)—sin8 8,(e),
S,(e) = sing 8„(e)+cose 8,(e),
S*(g) =8*(g)

S„(g)= cos98„(g)+ sin S,(g),

S,(g) =—sine 8„. (g)+ cos88, (g).
The choice of the x axis is arbitrary. Any axis in the
x-y plane could be used, as the whole system is free to
rotate about the s axis (but only in such a way that
the z axis and the two sublattice magnetizations are
coplanar) .

For the rotated spin components 8; we now introduce
spin-deviation operators for each of the two sublattices,

8+(e) =(2S)'"f (S)a-, 8 (e) =(2S)"'a 'f-(S)

8,(e) =S—a.ta,
8+(g) =(2S)"'fp(S)bp& 8 (g) =(2S)"bptfp(S)

8,(g) =S bptbp. -
The procedure used for the antiferromagnetic phase is,
of course, equivalent to rotating one of the sublattices
by x and then introducing the spin-deviation operators.

In the paramagnetic phase there is no need to intro-
duce two sublattices and we simply write

S"(v) =( S)'"f (S)a S (V) =( )'"a 'A( )

S,(y) =S—a~ a~,

where y refers to any site on the e or p sublattice. The
operator f„(S) will be approximated by the first few

terms of the binomial expansion

f (S) =1—( ./4S) —'
( '/S')+" .

The Hamiltonian will be written in terms of the
Fourier-transformed spin-deviation operators defined

by

g i1/2
ak ——

(

—
) pa.e-'"'

and the adjoint relations

2 V2

akt =
~

— ga te'k'~ bkt —— —
~

+bete'k'P.
(N

' Xj p

These operators satisfy Bose commutation relations,
such that

Lbk, b"j=&k.k, (2)

while the commutator of all other combinations of
operators is zero.

It will be convenient to introduce the dimensionless

variables

K=K/J, L=L/sJ, h =I4H/SzJ, P = 1—1/2S,

where z is the number of nearest neighbors.
To further simplify the expressions we also define a

set of numerical constants,

q, =1+ag+b,X',

where a; and b; are constants of order unity. That is,
all the g s are equal to 1 except for different small
corrections frozn the anisotropy constants K and L.
The explicit expressions for all the g s are tabulated in
Appendix B. In terms of these variables the Hamil-
tonian for the antiferromagnetic phase can be written

X=Eo+Xp+Xz, (3)
where

(4)~0——2&&ZJg3,

xp ——SsJ Qy(k) (akb k+aktb kt)

+SsJeZ(ak'uk+ bk'bk)+v&Z(ak'ak —bk'bk),

Xz ————,'(SJ) (2/E) gp(1) (a2 aoa2 —3 ibi+b2 bpb2 —3—1ai
1,2,3

+a2 ap a2+3+1bl +al b2 b3 bi+2+3)

—sJzn (2/X) Qy (1)ai+2tbptaobi+3
1,2,3

L(2/E) Q(a, t—a 'aoaz+2 3+bi'b2'bpbi+2, ). (6)
1,2,3

Here we have introduced

+(h) —s—1 geik p (7)
P

where y denotes the vectors to the z nearest neighbors
of a given atom. In BCz, k1, k2, k3 have been replaced
by the numerical indices 1, 2, 3.

For the Bop phase we write similarly,

X=Eo+Xo+Xz+Xiz,
where

Eo=12XS22J/U4 2zzloQ2 2h(—1—I )'I j (9)

Xp ——SsJI A Q (aktak+ bktbk)
k

+28 +(aka k+ak a k +bkb k+bk b k )
k

+ Qdk(akb —k+ak b—k )+ Qek(akbk +ak bk) j
k k

(10)
and where in turn,

A =—
qp+ 2zZog2+h (1—I') '"

8=I&N2,

dk =q2N'y(k),

ek= (1—2z2N2) y(lr),
and I—= sin9.
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Xrr =28(XS)"2SzJu[ Lh —2ztm(1 —u') '")
X (ao aoz bo—+boz—)+ (1/4S) L(h —2ztn(1 —u') '")
X (2/+) Q(al G2 G1+2 al G2al—2

1,2

—
blzb2 "bi~2+ blzbobl 2) gzt2 (1 u'—)'~'—

X (2/E) Qy(1) (alzbozblp2 —albozb2 1+aoza2 lbl
1,2

—G2'al+2bl') )I. (13)

The terms linear and cubic in the spin-deviation
operators are introduced in the Qop phase as a conse-
quence of the rotation of the coordinate system. Finally
for the paramagnetic phase we write

where
BC=Ep+Xp+Xl,

Ep = -,'ES'»Jgzt4 —2h),

Xo——pep(k) G2zag,
k

Kl ——( 1/1V) g f(1, 2, 3) al a2 Goal+2 8,
1,2,3

(14)

(1~)

(16)

and where
4p(k) =tlH SsJfgo y—(k)), —

while

f(1, 2, 3) = ——4'(2J) Py(1)+y(3) —2zt17(2 —3)+4L).

For all three phases only the leading terms in the 1/2S
expansion have been kept.

For the paramagnetic phase the k summation runs
over the whole crystallographic Brillouin zone, while
for the Qop and the antiferromagnetic phases the sum
is over the smaller Brillouin zone corresponding to the
magnetic sublattices. We should also remark that in
the case of the L term we have somewhat arbitrarily
included in Xp, through the factor $, part of the next-

Furthermore,

Kr = —4»(1—ztou') (2/&) gy(1) (G2'G3'G2+8 lbl
1,2,3

+al b2 bobl+2 —8+bi G2 Goal+2 —8+alb2 bs b—1+243)

+sJ(zeal 2—ztou') (2/1V) Qy(1) a1~2 b8 a2bl+8
1,2,3

—-', (sJ)~u'(2/lV) Qy(1) (alb2 bob 1+2 8
1,2,3

+bla2 G3G—1+2—8+al b2 b3 bi+24.8+bi G2 G8 al+2+3)

4+u (2/+) Q(al G2 G8 al+2+8+al G2G3al —2—8
1,2,3

+blzbotbozbl+2+3+blzbobobl —2—8) L(1 2u') (2/&)

X Q(al G2 Goal+2 —8+bi b2 b3bl+2-3) p (12)
1,2,3

order correction in the 1/2S expansion. We have done
this in order to be able to compare our results directly
with those obtained by Wang and Callen. ' These
authors replaced the spin operators by Holstein-
Primako6 boson operators in such a way that the
matrix elements among the lowest three states of each
spin were correctly reproduced. This method introduced
the factor $, while the usual lowest-order spin-wave
theory, which has the matrix elements among the
lowest two states correct, would have /=1.

III. CALCULATION OF THE CRITICAL FIELDS

As already discussed in the Introduction, the phase
boundaries will be obtained by determining the mag-
netic 6eld values for which appropriate spin-wave
frequencies go to zero and then become complex or
negative. The spin-wave frequencies are obtained by
calculating the equation of motion for the spin-devia-
tion operators. The quadratic terms in the Hami1. tonian
Xo will give the temperature-independent spin-wave
modes from which (apart from small zero-point motion
corrections) the critical fields at zero temperature can
be determined. The temperature dependence of the
phase boundaries, as well as the zero-point motion
correction, is obtained by including the interaction
Hamiltonian X1 in calculating the equations of motion.
When these equations are linearized by replacing pairs
of spin-deviation operators by their thermal expecta-
tion values, we obtain the correctly renormalized
spin-wave spectra in the low-temperature region.

In the Qop phase we have, in addition, terms which
are linear and cubic in the spin-deviation operators.
The linear terms will contribute a static part to the
equations of motion for the spin-deviation operators.
Requiring that the static part be zero determines the
equilibrium position of the spins, that is, setting the
static parts equal to zero determines the value of the
angle 8 for a given external magnetic field. When the
cubic terms are included, the static part will be re-
normalized, and the angle 8 will be temperature-
dependent. In the Qop phase, therefore, the 3Ciz part
of the Hamiltonian determines the average spin orien-
tation as a function of temperature and magnetic Geld,
while Xo and Xi describe the behavior of the spin
waves about these equilibrium positions.

A. Antif erromagnetic Phase

In the antiferromagnetic phase the renormalized
spin-wave modes are obtained from the coupled set of
equations

8(B/R) G2 SsJ(ztz+h tel ) a——l, —

+SsJ(y(k) —62'(k) )b 1,2, (20)

8(8/Bt) b 1," SsJ(ztz h =5—3') b gz— —
—SsJ(y(k) —62 (k) )aj„(21)
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where

~"=(1/25) (2/~) Z.(1)(( f-)+("'f '))
1

+S '2n(2/1V) Q(b)tb))

+ (4/5) X(2/X) Q(a2ta2), (22)

AP(k) = (1/2S) y(k) (2/Ã) Q((a2tag)+ (b2tf)) ))
1

+5 '2n(2/Ã) Qy(k —1) (a2b g), (23)
1

and where 23 (H) =62 (—H).
These equations follow directly from the Hamiltonian

[Eq. (3)7 using the Bose commutation relations (2)
when the interaction term is linearized by replacing
pairs of spin-d. eviation operators, in all possible combi-
nations, by their thermal expectation values. Equat-
ing the secular determinant to zero, we then obtain the
two spin-wave branches

o)i,o(k)

= ( ~'(k) —(SsJ) '[n3(~~ +~3') —»(k) ~3'(k) 7l'"

~[~H—35sJ(~2' —~3 ) 7 (2

where
o2(k) = ssJ[q73—p3(k) 7'". (25)

Neglecting the contribution of 8Ci, we obtain the
familiar result

(26)

This expression could, of course, also be obtained by
diagonalizing the Hamiltonian Ko by means of a
canonical transformation. ~

The transition from the antiferromagnetic phase to
the Qop phase occurs at that field for which the fre-
quency of the lower spin-wave branch o))(k) becomes
zero. This first occurs for k=0, and the temperature-
dependent critical field is given by

&P~&'= SsJt [()t2' 1) 03(~2'+ ~3~—) —2~3'(0) J~'

The effect of the interaction Hamiltonian 3Ci is
contained in the functions 6; . They are given in terms
of the expectation values of pairs of spin-deviation
operators. Because we are performing a perturbation
expansion in 1/2S these expectation values will be
taken with respect to X~. Instead of diagonalizing 3C0

by means of a canonical transformation and then
rewriting 3C, in terms of the new spin-wave variables,
we have chosen to determine the expectation values
occurring in the 6's directly by calculating the equa-
tions of motion for time-ordered products of pairs of
spin-deviation operators. From these Green's functions
we then obtain the required equal-time expectation
values. The details of the calculation are contained in
Appendix A. We 6nd

(~"~~)= —[1/2~(k) 7{[~(k) —Ss F77[1+n2(k) 7
—[o)(k)+SsJ)t77n3(k) J, (30)

(a),b ),) = [—ssJy(k)/2oo(k) 7[1+n)(k)+no(k) 7

(31)

The corresponding expressions for (b),tb), ) and (g),tf) ),t)
are obtained by interchanging n& and n3 in (a),tg), ) and
(a),b ),), respectively (replacing H by H) . Here n(—k)
is the Bose occupation number factor

n2, 3 ——[exp(Po)3,3') —17-'.

From Eqs. (27), (30), and (31) the expression for the
critical field can now be written

pH, g
——SsJ gv' —1 5 '

geg5
—1

X 1—(2/X) g, , „,(1+n (k)+ n (k) )
k '93 'rk

2—2I"8 '(2/Ã)g —P1+g,,(3)+~(k)]j

+oslo(2/N) g[nr(k) —n3(k) 7. (32)

+3 (~2. —~3') } (27)
To the order in 1/2S to which we are working, the
critical field can be writtenWhen we neglect the contribution from BC', the critical

fields are given by
pHo2 (T) =pH y, o f 1+(1/2S) 8o+ (1/25) or j (33)

&H.,.;=25sJ[R(1+'&)3')3-
yH, 2,o~ ——2ssJ[LP(1+LE)7'",

where bo represents the contribution of the zero-point
(29) motion. Explicit calculations for (kT/pH, q o') «1 give

for the X- and J-type anisotropy, respectively.
Equation (29) agrees with the result obtained in

Ref. 8. The correct leading order in the 1/2S expansion
is obtained by setting /=1. It should be emphasized,
however, that by setting @=1—1/25 in Eq. (29) only
part of the next-order correction is obtained. There
will be additional contributions to this order in 1/25
even at zero temperature.

8o ———0.156+c2, (34)

5,= (s3)3/~3) gq,q3(kT/) H., ;)3)3f (5/2) I (5/2),

for the E-type anisotropy, while

~o
———(1+L) '[(1+2L)(0.156—c3) —3 (0.097—c,) 7,

(36)
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br ———(8s313/lr')Lp(1+X) I'(3/2) f(3/2) (kT/tCH, l 0 )313

+4(s3~3/prp) Xi'(5/2) f'(5/2) (kT/tcH, l,p~) '" (37)

for L-type anisotropy. Here t' and I' are, respectively,
the Riemann-zeta function and the gamma function.
The constants c1 and c2 are zero in the absence of
anisotropy and are given by

el ——(2/N) g {1/[1,—yp(k) yp —lt33/(Xtpp —ykp) i&XI (38)

cp (2/——N) P{[xtp' —y'(k) $'I' —[1—y'(k) Ji I. (39)

The summations4

(2/N) +[1—yp(k) j'"=1—0.097, (40)

(2/N) +{1/[1—7'(k) ]'~3I =1.156 (41)

de6ne the numerical factors occurring in Kqs. (34) and
(36). We recall that for the L-type anisotropy, part of
the 1/2S correction is contained in tCH l,p through its
dependence on $.

B.Flop Phase

Similarly, from the Hamiltonian (8) we calculate
the equations of motion for the spin-deviation operators
in the Qop phase. In linearized form we obtain

i (8/Bt) ak 33i (N———S) '~'u {ICH (1 60~)—

—2sJS(1—u ) [pip 'gll+ +'g2Cp0 jIbk 0

+SsJ{(A+Dl) ak+ (ek+L4(k) )bk

+(~+t4) a—k + (cd+ ~4(~) )b-k (42)

(44)
t4=C, (2/N) Qy(1) &al'bl)

1

+(C.+C)(2/N) Z& ")
1

+Cp(2/N) z&(1)&alb-l)+C4(2/N) z&ala-l»

(45)
~(k) =Ca(k)(2/N)Z& ")

I

+-,'C,~(k) (2/N) 2&a,a,)
1

+C,(2/N) Z~(k-1) &"».),
1

t4 ———',Cl(2/N) Qy(1) &alb l)
1

+-,'C, (2/N) Qy(1) &a tbl)
1

+C4(2/N) Z&al'al)+3CQ(2/N) 2&ala-l)

(46)

(47)

where

+~= (4S) '(2/N) Q(2&altal) —&ala l)), (43)
1

~o =S '(2/N)Z[ (-1)(& 'b) —
& b-)) —

&
' )j

64(k) =-',Cly(k) (2/N) +&ala l)
1

+CD(k) (2/N) Q&altal)
1

+C3(2/N) +7(k—1) (g,b, ),

and where
Cl ———(1/S) (1—Xtpu'),

Cp =—( 1/S) Xtpupl

Cp = ( 1/S) (ln —23tpup),

C4= —(1/S) —,'Lu'

Cp
———(4/S) L(1—pup) .

(48)

(49)

cxl =SsJ[A+Alp,

cxp(k) =SsJ[ek+h, (k) j,
exp= SsJ[B+t4$,

cx4(k) =SsJ[dk+54(k) g. (58)

From the static part of Eq. (42) the relationship
between the angle 8 (or u) and the field H is deter-
mined,

tcH =2SsJ(1 u') '~3[—lt,p+xt, /pic+ 4Lgplg (50).

With 60 =60 ——0 this agrees with the result obtained
by Wang and Callen for the L,-type anisotropy they
considered.

In the equation of motion for the other spin-devia-
tion operators the vanishing of the static parts leads
to the identical condition as given above, and we need
consider only the dynamic parts of these equations.
If we write the dynamic part of the equation for a& in
the abbreviated form

i (8/Bt) ak

=cxl(k) ak+cxp(k) bk+cxp(k) a kt+cx4(k) b kt, (51)

then the remaining equations required to form a com-
plete set of coupled equations take the form

i(8/cjt) bk

cxp( k) ak+cxl( k) bk+cx4(k) a-k'+exp( k) b-kt, (52)

i ((3/Bt) a k—t

cxp(k=) ak+cx4(k) bk+cxl(k) a kt+cxp(k) b kt, (53)

i(ct/Bt) b kt-
=cx4(k) ak+cxp(k) bk+cxp(k) a k'+cxl(k) b kt) (54)

when we note that cx;(k) =cx,~(k) and cx;(k) =cx;(—k).
The secular determinant can be written in the form

D= (CP CPl ) (CO
—

CP3 ) (55)
where the two spin-wave branches ~1 and co2 are given
by

CPl =[(al CX3+CX3
—

CX4) (CXl
——

CXX
—CX3+CX4) g p (56)

Cpp [cXl+cX2+CX3+cX4) (CXl+cX3 CX3 CX4) Ji, (57)
with
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Substituting for A, B, ek, dk from Eqs. (11) and
making use of the relation between the angle and the
magnetic Geld Eq. (50), these spin-wave spectra can
be rewritten

~,p
——SzJ[1wy(k) +Xu'&(1—

&)

+&p+ ~i~~p+~p~~4J"

)&[1wy(k) (1—2g,u')

—Lu'((1+$)+Q+hy&h2 —Ap&54]'I', (59)
where

hp =2 (1—I') [rnQ~+4Xhpz]. (60)

The Qop-antiferromagnetic phase boundary is deter-
mined by setting pp&(k =0) equal to zero. This gives the
following condition on the angle |I:

I'=(1+~)/[e+z@(1+$)7, (61)
where

z[+p+~1+~2(0) ~8 ~4(0) 7 (62)

which, when substituted in the relation between the
angle and the magnetic 6eld Eq. (50), yields the
expression for the critical field

Kx~ =2SzJLnio+e~p +4I ~p 7

2(rn —1)+Lt(1+$)—2A '~'&

2np+ I$(1+5)
63

where bP(N),

dpi'(u),

and 6(N) are to be evaluated for

u'=[g, +-',Lt(1+])]-& and )=1.
To leading order in 1/2S (apart from the correction
contained in t), we obtain

pH. ~,pf = 2SzJ[2K(1+-,'E) ]'" (64)

pH, g,p~ 2SsJ(1 LP) {——L$(1+$)—/[2+5)(1+$)]}'"
(65)

respectively, for the IC- and L-type anisotropy. Equa-
tion (65) agrees with the result obtained in Ref. 8.

When we compare these expressions with the corre-
sponding values for pH, &,p~ given by Eqs. (28) and (29),
we note that in the case of anisotropic exchange
p+~y, p =pH&yp. This would mean that the transition
between the antiferromagnetic phase and the Bop phase,
although of first order, would have no superheating or
supercooling associated with it. This is identical with
the result obtained in the simple molecular-field calcu-
lation discussed in the Introduction.

For the L-type anisotropy, on the other hand, we
find that pa, p, p QpH &,p~ which will give the kind of
hysteresis eBects we expect at a first-order phase
transition. For a discussion of the typical size of this
hysteresis and its experimental observation we refer
to Ref. 10. The upper critical field H,2f is most simply
obtained by determining the field for which the angle 8
becomes equal to zero. Setting N=O in the relation
between the angle and the magnetic 6eld Eq. (50), we

where
arP(k) =SzJ[1—y'(k) 7'I'.

(74)

(75)

For L-type anisotropy a similar but somewhat more
complicated expression obtains. The upper critical fmld

including both types of anisotropies may be written

II,g~ ——2S2J

X {geo—(2S) '(2/N) g[(gp(1+») —2L) ns(k)

+ (~p(1—») —2L)np(k) ]} (76)

Explicit evaluation for the lower critical field yields
the following expressions:

H, ~ H,g,pr[1+bp/2S+br/2——S], (77)
with

and
bp = —0.156 (78)

pr —(3PI'/2z') F(2) |'(2——) (2kT/S J)z' (79)

obtain
pH, /=2SsJ/vno+YJ2+p +4EAzj, (66)

where AP(N) and hpz(N) are now to be evaluated for
N=O. Alternatively the upper critical field can be
obtained by determining the field at which the spin-
wave mode co&(k =0) becomes negative. From Eq. (59),
we then obtain the same result as that just given.

The expectation values of the pairs of spin-deviation
operators which occur in the 5's are calculated in

Appendix A. We obtain

( )=—-'+-'S J{[(A— )/ '(k) ]L (k)+-'7

y[(A+ek)/~ '(k) ][np(k)+ l]} (67)

(~k'bk) =—
z SzJ{L(A —ek) /~~'(k) ][n~(k)+ p]

—L(A+ek) /~'(k) ][n (k)+z]} (68)

(+k+—k) zSzJ{[(B dk)/~1 (k)][n&(k)+2]

+[(B+dk)/~'(k)][np(k)+z]} (69)

(akb k) =-', SsJ{[(B—dk) /ppl (k) ][n&(k)+-',]
[(B+d,)/, o(k)][ (k)+-,]}, (70)

where

cogpP(k) =SsJ[1~y(k)+LN't(1 —()]'IP

&&[1&y(k) (1—2gpN') —Lu'$(1+$) J" (71)

Aaek= (1—apl') ~ (1—gpN') y(k), (72)

Badk ——[I&agpy(k) ]I'. (73)

By means of these relations the expressions for the
critical fields can be written in rather simple forms.
Consider lrst the lower critical Geld given by Eq. (63)
for E-type anisotropy,

pH, g~=pH, g,pf{1+ (2S) '

)& [1—(2/N) g2/[1 —y'(k)]'I [n(cup (k) )+—7]},
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for the E anisotropy, while

(j—2L 3 1+-
&1 L— 81+5

IV. FREE ENERGY

of second order, the critical Gelds as calculated from the
Qop side and the paramagnetic side of the phase
boundary are identical. The expression for the critical

1—I,' &1 L—i Geld Eq. (82) agrees with the results previously ob-

0.903
tained by Falk and. by Anderson and Callen'0 (for zero

X (1+3K)+1156.(1 4I—X'—), (80) an&sot»Py) .
2

pH, 2,p
——25sJggp. (83)

C. Paramagnetic Phase

In the paramagnetic phase we need consider only a
single equation of motion. When linearized this has
the form

'(a/a~), = I H-S.Jt .— (k) -~ (k) jI.„(84)
where

Ai'(k) =S-i/V-igni(k')

XI:ni(1+v(k' —k) )—v(k') —v(k) —4P.
(85)

As the magnetic Geld is lowered the spin-wave mode
given by Eq. (84) first becomes zero at the point Ez'
(~/a) (1, 1, 1) in reciprocal space. Setting co(E0) =0,
we obtain

/IH, p=2SzJIr/I (2S) '(2//V)—
XZi"(1-v(k))-2~j (k) t (86)

for the critical Geld, Explicit evaluation gives the result
given by Eq. (82). As expected for a phase transition

for the L-type anisotropy. The numerical factors in Sp

are de6ned by Eqs. (40) and (41).
Comparing Eqs. (34) and P8) we see that for the E
anisotropy, the zero-temperature values of the critical
Gelds H,p and H,~~ will differ due to the zero-point
motion contributions. Because the constant c~ in Eq,
(34) is positive, H, i will be lower than H, i . At finite
temperature this splitting is further increased as pa.~'

increases as (kT//iH„N)'/' while /iH, ir decreases as
(kT/SzJ)'.

For the L-type anisotropy H, & will, in the extremely
low-temperature region L(kT//iH, i )((1j,decrease more
rapidly than H,&~ and thus decrease the splitting be-
tween the superheating and supercooling Gelds.

For the upper critical Geld we find, including both
types of anisotropy,

P+c2 =P+c2,p

X/1 —(2S) '(33/'/z') F(3/2) t (3/2) (2kT/SzJ) 3/' j,
(82)

where

The free energy is deGned by

Ii =—kT lnZ,

where Z is the partition function

(87)

+P &PIing1 —e z"&&"&j+ inL1 —e ~~2&"&jl. (92)

Eo and A are defined in Eqs. (9) and (11),respectively,
and ~,g by Eq. (59). The G term has its origin in 3'.z
and is of one order higher in 1/2S as compared to the
leading contribution from ~ in the two preceding
terms. Because the expression for G is rather lengthy,
we have chosen to give the explicit expression in
Appendix B.

In the Qop phase there is an additional term 3'.~z in
the Hamiltonian as compared to the other phases.
From this term the angle of the magnetization with
the anisotropy axis could be determined. When the
angle satisfies the equilibrium condition, Eq. (50), the

Z= Tr exp( —PX). (88)

To the order in 1/2S that we are working, the free

energy can conveniently be expressed in terms of the
renormalized spin-wave frequencies discussed in the
previous section.

For the antiferromagnetic phase we obtain

F=ED+ SzJQ(p/ii' —v'(k) j'/' —»3I

—-', zJ(2/1V) QIA(k, k')+»5 —28(k) I
k,kI

+P-'QI in/i —e z"'&"&j+ in[1—e ~ -''"-'j}, (89)
k

where

l3' l~
—l3I:v'(k) +v'(k') j+ liv'(k) v'(k')

P~
2 v2(k) jl/2L~ 2 v2(k&) ji/2

(9o)
and

&(k) =LV3n~ —v'(k) j/Le' —v'(k) j'" (91)

Eo is given by Eq. (4) and cubi, z by Eq. (24) .
The free energy as given by Eq. (89) agrees with

the result previously obtained by Oguchi~ in the limit
of zero anisotropy, p;=1, when the last term is ex-
panded about the temperature-independent part of the
renormalized spin-wave frequencies. Both expressions
are correct to the same order in 1/2S.

In the Qop phase we obtain similarly,

F=ED 21&t SzJA+—',-Q$(oi'(k)-+cv2'(k) j+G
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are functions of both temperature and magnetic field
and will contribute both to the specific heat and the
susceptibility.

For the paramagnetic phase we obtain

F=Es+P 'g inL1 —e z"+~], (94)

where from Eq. (84),

o~(k) =p,P—SzJLgs —y(h) —5&(k) j,
and where Zz is given by Eq. (15).

V. SPECIFIC HEAT

(95)

From the free energy the speci6c heat at constant B
is obtained in the usual way

CIr T(a'P/8Ts) ——Irr—.
We consider first the leading term in the 1/2S expan-
sion. The results are given in Table I.

For a fixed temperature as a function of the magnetic
field, the speci6c heat peaks at each of the three
critical fields. For Pp,

~

II H, j &&1 it falls o8—linearly as
a function of this parameter. In the opposite limit

Pp ~
H H,

~
)&1 the specific h—eat falls off exponentially

on the paramagnetic side of H, 2 and on the antiferro-
magnetic side of H,~ . The exponential behavior is a
consequence of the gaps that develop in the low-lying
spin-wave modes for H/H, in these phases. In the
Qop phase one of the modes remains fixed at zero
frequency for k=0. This results in a more complicated
behavior of the specific heat in the limit Pp ~

H H,
~
&)1—

as shown in the table. At the critical 6elds H, 2 and B,~
the specific heat is proportional to (kT/SzJ)s~s as a
consequence of quadratic dispersion laws for these
values of the magnetic field. In the Qop phase both
spin-wave modes become linear at B=H,~~ giving a
specific heat proportional to (kT/Sz j)'. However, the
coeKcient at H,& is smaller than that at H,&~ by the
factor (H,t/H, s)s~' and which of the two peaks is the

Xii term will not contribute directly to the partition
function to the order in 1/2S to which we are working.
This term will, however, contribute to Ii through the
dependence of I on the magnetic 6eld and the tempera-
ture. From Eq. (50) we have

Pgg= 2SzJ(1—gP) irs/gis+gsQ ir+4$Q r'j

where the terms involving 60, 60~ are of one order
higher in 1/2S compared to the leading term in ttts.
For the terms in P due to Xi we can eliminate I in
terms of the magnetic 6eld simply using

pP =2Szjtns(1 —I') '"
However, in the remaining terms we need to include
the correction terms 60~ and 60~. For instance, the
terms

Es(u) ——',NSzJA (I)+-', +$o~i'(k) +(os'(lr) j (93)

larger will depend on the particular values of the anisot-
ropy constants and the temperature being considered.
In either case the peak at H, 2 will in general be con-
siderably larger than the peaks at H,&.

In the absence of spin-wave interactions, the speci6c
heat at the upper phase boundary is continuous. How-
ever, when the spin-wave interactions are included, a
finite discontinuity is obtained as one would expect at
a second-order phase transition. The reason for this is
simple. The expression for the free energy in the Qop
phase goes continuously into the expression for the
free energy in the paramagnetic phase when the angle tI

goes to zero. However, when spin-wave interactions
are included, this angle is temperature-dependent and
will give an additional contribution to the speci6c heat.
More specifically, the discontinuity is obtained because

limpN/BT jwO.
u-+0

The speci6c heat for constant I on the other hand, that
is along the phase boundary, is continuous.

From the paramagnetic side of the phase boundary
the contribution of the spin-wave interactions to the
speci6c heat at H =H,2 is given by

Co)"=—(2S) 'Nk3gy4

&&i('"/-') (/)f(/)7( kT/ ~ )' (96)

From the Qop side, we obtain

C&ii
=C o&"+6C,

where the discontinuity hC is given by

BC=(2S) 'N+gi;

)&P(3'~'/m') 1'(3/2) f(3/2) j'(2kT/Sz/)'. (97)

The specific heat is seen to be largest on the Rop side of
the boundary.

We note that the effect of the spin-wave interactions
in the paramagnetic phase of the antiferromagnet is
more important than in the ferromagnet where the
contribution of the spin-wave interactions to the
specific heat is proportional to (2kT/SzJ)'''" This
is a consequence of the fact that in the antiferromagnet
the low-lying excitations occur at the edge of the
Brillouin zone whereas for the ferromagnet these occur
for k 0.

It is reasonable to assume that the discontinuity in
the speci6c heat will persist along the whole phase
boundary, indicating a true second-order phase transi-
tion, except possibly at the critical point H=0, 7=T~,
where experimental and theoretical evidence suggest
singular behavior when this point is approached along
the temperature axis from both sides of T~.

VL SUSCEPTIBILITY

From the free energy, the magnetization and the
static longitudinal susceptibility are obtained by means

rr M. Wortis, Phys. Rev. 138, A1126 (1956).
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For the Bop phase we obtain

Mor ——2 (1—I') '"M„

where M, is the sublattice magnetization,

(99)

M, =p-', 1V S+-,'—SsJ
~

—
~ Q (ei(k)+-', )

(2 ) (A —eg)

kÃi g orio (h)

+, (mg(k)+-', ), (100)
(A+eg)
M2 k

with cubi& and (A&e&) as defined by Eqs. (71) and
(72). This agrees with the result obtained in Ref. 8
for the case of L-type anisotropy. Already to this order
in the 1/2S expansion it is necessary to take into
account the corrections 60~ and 60~ in the relationship
between the angle and the magnetic field Eq. (50) to
obtain the correct expression for the magnetization
from the free energy Eq. (92). For the antiferromag-
netic phase we obtain from Eq. (89) the simple expres-
sion

M; =uZEn, (lr) —e,(h) j, (101)

while the sublattice magnetizations are given by much
more complicated expressions.

The explicit evaluations for Mo and xo are given in
Tables II and III, respectively.

We note that xo has the form

xo=A(2') /P~ I
H—H.

I
j"' (»2)

in the neighborhood of each of the three critical 6elds,
giving a square-root singularity at the phase boundaries.
However, when we proceed to the next order in the
1/2S expansion, we find that the leading contribution
to the susceptibility x& is of the form

»=a(r)/y& (
H-H. ~y2. (103)

This suggests that the spin-wave result xo is only the
first term in a divergent series. Corresponding to the

Pp (
H H, (7

'I' divergent ter—m in xi the contribution
of F~ to the magnetization includes a term with a
square-root divergence. Thus, while straightforward
perturbation theory is suRicient to study the eGect of
spin-wave interactions on the specific heat in the
neighborhood of the phase boundaries, for the magnet-
ization and the susceptibility more sophisticated tech-
niques will be necessary. This will presumably involve
a direct resummation of the divergent series or the
construction of suitable integral equations.

To pursue this point a little further, we write down

of the relations

M = 8F—/BH ip, x= O'F—/BIP ip.

We consider first only the leading terms in the 1/2S
expansion. For the paramagnetic phase we obtain the
familiar result for noninteracting spin waves,

Mo =I.x&S g—e&7 (98)
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explicitly the expression for x obtained in the paramagnetic phase for y, (H—H,2,0)((kT((2SzJ,

xo=&~ 4, I, S,J&l ( (H H )/~Tj», +0(1/2)+oL~(H H—. o)l,

p,
' 1 f 3 't' 2kT&'

kT 2S i2~j SzJj

f (3/2) 1'(1/2) 61'(1/2) f(1/2)

Because the anisotropy plays no essential role at the
upper phase boundary, both L and E have been set
equal to zero.

In a ferromagnet the susceptibility has a square-root
singularity" x~H '~' for T&T,. In this temperature
region H=O represents the phase boundary between
two oppositely aligned magnetic phases, and the square-
root singularity is a consequence of the critical Quctua-
tions near the phase boundary. In view of the formal
similarity between the ferromagnet and the paramag-
netic phase of the antiferromagnet, it might be expected
that the susceptibility for H&H, 2 would be of the form

x"L~(H —H.2(T) )/&T3 "',
where H,~,o in xo has been replaced by the temperature-
dependent critical Geld. The first few terms of the
perturbation expansion do not, however, appear com-
patible with this simple form

In the random-phase approximation (or self-consist-
ent-field approximation), the susceptibility, which in a
low-temperature expansion can be represented by a
similarly divergent series, goes to a constant value as
H-+H, 2(T). That is, in this case the (divergent) series
can easily be summed. It is by no means certain,
however, that the series obtained using spin-wave
theory will sum to a similar finite result.
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APPENDIX A

The zero-order expectation values of pairs of spin-
deviation operators will be calculated by means of
Green's functions for noninteracting spin waves.

I. Antiferromagnetic Phase

We define the Green's functions

G-(k, ~-~) =-'(("(~)"'(~))+), (»)
G (» ~—~) = ((&— (") (&) )+) (A2)

Ri(k, ~—~') =—i((~ '(~) &~'(~ ) )+) (A3)

Here the + denotes the Wick time-ordering operation.
We shall calculate the Green's functions to lowest order
in 1/2S only. The thermal expectation value is therefore

to be taken with respect to 3'.0, and the time develop-
ment of the operators in the Green's functions is
governed by Xo only. That is, the operators are to be
taken in the interaction representation.

If we let

G»(t f) =——i((A (t)B(f) )+), (A5)

the equation of motion for the Green's function has,
quite generally, the form

i (a/at) G»(f t') =a(t——&') (LA, Ilj)
—i((LiaA(~)/a~]&(~') )+) (A6)

where
iaA/at= $A, xj. (A7)

From Xo as given by Eq. (5) we obtain trivially the
equations of motion for the Green's functions,

i(a/at)G„(k, f—t') =a(t t')+(SzJ~,—+~H)
XG»(k, & t')—+SzJ~(k) G (k, ~ f), —

i(a/at) G»(k, t—&') =—SzJq(k) G»(k, & t')—
—(SzJgv pH) Gi2—(k, t t'), —

i(a/at) G2z(k, t—t') =b(t t')+ (SzJq7 —pH)—
XG»(k, f—f)+SzJ7(k) G»(k, f f), —

i(a/at) G»(k, ~—t') =—SzJ~(k) G»(k, t f)—
—(SzJg7+pH) Gmi(k, t—t'). (A8)

Introducing the Fourier series"

G(k, ~—~') =(—'P) 'Z '""" '"G(k, .), (A9)

where ar„=zv/( —iP) and where v is an even integer,
then (A8) gives

(~„pH+ SzJgz)—
I
(o„—cv2'(k) $I ~„+curio(k) j

SzJy(k)
Gi2(k, cu„=—

I:~ —~'(k) X~.+~i'(k) 3
'

SzJy(k)
t:~.+»'(k) jl:~.—»'(k) 3

'

ar „+pH+ SzJgy

I:~.+~'(k) 3L~.—~i'(k) j '

"See, for example, L. P. Kadanoff and G. Baym, Quantum
Statistical Mechanics (W. A. Benjamin Inc. , Neer York, 1962),
Chap. 1.
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Here where we have made use of the summation formulas

and
ggg, g'(k) =a)(k) +tgP (A11)

~(k) = SsJLgtvg —yg(k) Ji . (A12)

From the deinitions of the Green's function (A1) to
(A4) it follows that

limp-'Q (e+'""'/gg„—a&) =n(gg),
&~0 v

hmp-'Q(e-'""'/~, —~) =n(~) +1,
eM

p g(Gl„—co) =n(G7)+s ~ (A16)

(apts) =iG»&(k, t=t'),

(agtb t)=iG &(k, t=t') =iG»&(k, t=t'),

(bgtbj, )=iGgg& (k, t=t'),
where

G&(k, t =t') = lim(G(k, tw~, t) j.

(A13)

(A14)

We note that all the expectation values are even in k,
and that because the a and b operators commute, the
order in which they appear is irrelevant. For instance,
we have

("-'b-")=(b."")

Sy inverting the Fourier series and evaluating the v

summations we obtain

iG»&(k, t=t') = —(1/2(vg) L(gg(k) Ss—Jg7)(1+ng(k) )
—(co(k) +SsJrt7)ng(k) j,

iG„(k, t=t') =iG»(k, t=t')
=—L»A(k)/2 (k) X1+n,(k)+n, (k) 3,

iG„&(k, t = t') =$1/2(v(k) jP(~(k) +SsJgtv)nl(k)
—(gg(k) SsJgt—7)(1+ng(k) )$, (A15)

II. Flay Phase

We define the Green's functions

G'(k, t—t) =—(( (t) '(t))+),
G (»t—t)= —(( —'(t) '(t))+),
G"(k, t-t) =-'((b.(t)" «)),&,

Gg (k, t—t') =—i((b gt(t)a], t(t')) ). (A18)

From the Hamiltonian (10) we obtain the equations of
motion for the Green's functions. These are con-
veniently written in the matrix form

i

co„/SsJ—A IQ+(k, (u„)
'

I
1/SsJ

co„/SsJ—A

gg„/SsJ+A

Gg+(k, or„)

Q;(k, I„)

0
(A19)

co„/SsJ+A, iGg (k, (o„), 0

with A, 8, dq, and eq as defined in the text.
Solving this set of equations for the Green s functions and performing the s summations we obtain the required

expectation values given by Eqs. (6/) to (/0) in the text.
Furthermore we note that

(a&'a, &
= (b, b,t),

(ada gt)=(b~'b d)= (a wag) = (b ybj, &,

(a"b )=(b a")=(b"a.)= (a.b '),
(a tb t)=(b "a ')=(b a )=(a b ),

and that all these expectation values are even in k.

(A20)

APPENDIX B

For completeness we list here the constants q; appearing in the text:

gtg ——1+K, rtg=1+-', K, gg ——1+K+2X, gag = 1+K—2L,

gag = 1+%+4L,

gtg = 1+-',K——,'XP,

gtgg=1+-,'K+X,

gtg
——1+K—4X,

gtgg = 1+-,'K—XP gn= 1+-,'K—5X,

gtyg = 1+-,'K——,'X.

ggg=1+KI, ' —
gt7

——1+K+2+/ qg
—1+K—2$p
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We give here also the explicit expression for the term G in Eq. (92),

s+zJI ('gl 2'g2N )$1 (p+Pl)+ g(gl+p2) +4 (p4+p2) +g(&2 &2) ) 4~(1 2+ )

X[1 (+1+@1)+4 (++pl) + s (vl Pl) 7+ (1 'g2N ) P (+2+@2)+z (@1++1)(p2+p2) +g(&1+vi) (&2+&2) j+g2s

XL(v2+vz) +2 (pl+pl) (&2+vR) 4 (vl+Pl) (p2+Jtl2) g+$LN L (&1+vi)+ z (pl+pl) (Pl+vl) gI )

vrhere

2 SzJ(A —eg)
Pl =

X g Mg(k)

SzJ(A+eg)
(og(k)

2 SzJ(A —eq)

1V g cog(k)

2 SzJ(A+eg)
N g ~(k)

2
V1 X k

SzJ(B—dg)

cog(k)

2 SzJ(B+dy)
eve(k)

2 SzJ(B dg)—

X g cog(k)

2 Szf (B+dg)
Po =—— 'YkE g a&2(k)

Paramagnetic-Resonance Study of Crystal-Field and
Exchange Effects in an Excited State of TmN,
BERNARD R. COOPER, R. C. FEDDER, AND D. P.
SCHUMACHER t Phys. Rev. 163, 506 (1967)].The nu-
merical values found for 8' and x in the point-charge
calculation as given at the top of p. 515 are incorrect.
This resulted from using an incorrect value for d,
the experimental distance from a Tm site to nearest-
neighbor nitrogen sites. The relationship between t/V

and e should be W/k= 0.786n, rath—er than that
given by Eq. (48) on p. 515. Thus, the experimental
value of 8' would require a charge of 4.4 electronic
charges on the surrounding nitrogen sites. The correct

value of x for the point-charge calculation is —0.929,
only slightly diGerent from that previously given on

p. 515. We are grateful to Dr. S. K. Malik for bringing
this error to our attention.

Electric Field Gradients in Dilute Alloys of
Copper with Nonmagnetic Transition Impurities,
M. T. BEAN.-MoNoD LPhys. Rev. 164, 360 (1967)).A
misprint was introduced in Eq. (4), which should read
as follows:

hp= (4vrc/Zokr;) Ql sin'(q( g
—g() s, .

l


