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ropy. The single-ion anisotropy due to the low sym-
metry of the crystal1ine fields at the Fe'+ sites is also
probably large.

In regard to the linewidth, the large anisotropy is
not readily understood. The observed behavior is
similar to that expected from a "polycrystalline"
sample in which all the crystallographic axes of the
individual crystallites are nearly parallel. In this case,
the narrowest linewidths would be observed for an
external field direction in which the internal fields
contributed least to the resonance field, i.e., the a
direction for gallium iron oxide. The linewidth maxima
in the b and c directions at 270'K are perhaps associated
with spin Quctuations due to the nearness in tempera-
ture of the broad ferrimagnetic-paramagnetic transi-
tion. Here again, one would expect the smallest eGect
for the a direction.

As to the various mechanisms which contribute to
the magnitude of a ferrimagnetic resonance linewidth,
many may be ruled out as being too small to explain

the large observed linewidths. These include surface
pit scattering and scattering due to random atomic
disorder. The magnitude of dP is, however, not
inconsistent with two-magnon scattering if there are
long-wavelength fluctuations of the internal fields. '4

This is a result of the fact that Quctuations which
correspond to the wavelengths of magnons degenerate
with the k=o magnons give rise to a greatly enhanced
scattering. Such 6elds may arise from strains in the
vicinity of dislocation lines and impurity atom clusters
via magnetostriction. For Ga2,Fe,03 in particular, it
is conceivable that the value of x itself varies over
distances of the order of several hundred lattice spac-
ings.
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The rate of change of Curie temperature with pressure is calculated for Ni and ¹i-Cu alloys by con-
sidering the pressure-induced shift of the pole in the uniform static spin susceptibility. The short;range
Hamiltonian of Hubbard, Kanamori, and Gutzwiller is employed to describe the interactions among
4 electrons and, following Kanamori, these interactions are treated in the t approximation. The spin sus-
ceptibility is calculated using the Green s-function technique of Martin and Schwinger; the density-of
states curve for paramagnetic Ni computed by Hodges et al. is employed in making numerical evaluations.
Account is taken of inter-d-band interactions, and of the effect on the number of d holes of changes in the
conduction band due to compression. Good agreement with experiment is obtained for Ni. For Ni-Cu alloys,
calculations based on the rigid-band model yield poor results; but the use of an almost equally simple
model in which a fg hole is assumed never to enter a Cu site leads to substantial improvement,

I. PERSPECTIVE COMMENTS

t lHE eGects of pressure on magnetic properties in
the 3d tlansition metals have been studied experi-

mentally for some years. ' ~ However, theoretical e6orts
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directed at explaining these results using quantum-
statistical rather than thermodynamic~" approaches
have lagged considerably behind. The basic physical
ingredients necessary to a more fundamental theory
have not in fact been available until recently, and are,
even at the present time, reasonably well established
only for metals such as Ni, which have nearly filled 3d
bands. ' The most important of these are a Hamiltonian
which gives correctly the quasiparticle energy levels of
the paramagnetic state and a procedure for describing
approximately the interactions among the particles via
the Coulomb forces in a way which is both tractable
and justifiable, and which, because of the strength of
these forces, transcends perturbation theory.
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A suitable model Hamiltonian has been introduced
by Hubbard, ~ Kanamori, ~ and Gutzwiller. ~ Correla-
tion eGects are regarded in this formulation to be of
importance only among the 3d electrons, and, because
Of screening by the conduction electrons, are assumed
to be confined to carriers at the same atomic site. In
a case such as that of Ni, in which the density of d
carriers is reasonably small, these interactions may,
for arbitrary strengths be treated using the t approxi-
mation. The single-particle excitation spectrum of the
Hamiltonian is taken to be identical to that of a "first-
principles" band calculation which, insofar as com-
parison is possible, provides reasonable agreement with
the results of experiment. The validity of a band pic-
ture, "according to which the d electrons are regarded
as itinerant, has been amply demonstrated experi-
mentally for Ni.""

The dependence of the Curie temperature T~ on
pressure I' is analyzed in this paper"" by studying
the pressure-induced shift of the pole in the uniform
static spin susceptibility, since this pole marks the
second-order phase transition between paramagnetic
and ferromagnetic states. This approach to the problem
has the great advantage that only the paramagnetic
band structure need be considered. In addition to pro-
viding an adequate theory of this effect, the present
calculations may also be regarded as offering one sort
of test of the approximations made in passing from the
exact to the model Hamiltonian. For example, accord-
ing to the t approximation, the intra-atomic Coulomb
interaction among d electrons is replaced by an effec-
tive interaction which changes in a definitely specified,
albeit complicated manner with volume. A sensitive

"J.Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963);
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balance involving this variation, that associated with
the density of states of the d electrons, and that related
to the transfer of electrons between d and conduction
bands, determines the movement of the pole in the
susceptibility. Accordingly, one might expect failures
of the t approximation and the quasiparticle model to
be refiected in values of de/dP which are in gross con-
Qict with experimental results. The incompleteness of
this test, however, is evident from the fact that the
omission in the present treatment of paramagnon
effects, "' which might be expected to play some role,
does not appear to spoil the generally good agreement
between theory and experiment. Nevertheless, the
present test of the model Hamiltonian is more sensitive
than that previously given by Hodges et al. ,'8 who made
a band-structure calculation for ferromagnetic Ni in
which the effective electron-interaction parameters
were considered to be adjustable, and found reasonable
values for these parameters upon demanding that the
calculation reproduce such experimental features as
the observed magneton number. In contrast to the
present situation, it was not necessary in that case to
assume any specific functional dependence of the
effective interactions.

Since the present paper deals with a number of
topics, all of which are essential to the development
of the theory for the pressure variation of Tz, it may
be helpful to provide at this point an overview of the
material. Section II gives explicit expressions for the
model Hamiltonians, and presents in schematic form
a proper derivation of the spin susceptibility in the
t approximation, using the Martin-Schwinger Green s-
function technique" " as described by Baym and
Kadano6, 3i and Fedders and Martin. "The treatment
(although it leads to almost the same results) is some-
what more complete than that of Herring, "which is
based on Fermi-liquid theory. 3 Section III considers
a particularly simp1e version of the model Hamiltonian
in which the intra-atomic Coulomb forces between
electrons in the same orbital are taken to be infinite,
and interorbital interactions and eGects of the conduc-
tion band on the number of d carriers are neglected.
It is assumed that the d band widens uniformly with
pressure. Under these circumstances, the entire theory
is seen to involve only a single energy parameter, the
bandwidth lV. Accordingly, one finds on dimensional
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for the susceptibility may omit this section and turn to the re-
mainder of the paper.
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grounds the extremely simple relation d lnT&=d lnt/I/',

which is notable in that it is independent of the actual
form of the band. A physical discussion based on a
rectangular-band model, and an exact analytic treat-
ment (which turns out to be useful in connection with
later generalizations), show that de/dP is the sum
of largely cancelling contributions due to the increase
of the eGective electron interaction and the decrease
of the density of states with pressure. The considera-
tion of either effect alone permits the establishment
of reasonable upper and lower bounds on dTo/dI'
(which are respectively positive and negative in sign),
and hence of a scale which provides quantitative cri-
teria concerning the extent of agreement between the
results of theory and those of experiment. Because this
simple theory is independent of the band structure, it
can be applied to both Ni and ferromagnetic Ni —Cu
alloys, fairly successfully, as it turns out.

Section IV considers a series of generalizations in
which the model is made more realistic by including
additional physical effects at each stage. It introduces
successively finite intra-orbital interactions, the con-
duction band insofar as it infIuences the position of the
Fermi level, and interactions between diGerent orbitals.
Each effect (even that due to the conduction band) is
seen to give rise to an appreciable change in the mag-
nitude of de/dI', but the most complicated model, in
which all eGects are considered together, again pro-
vides good agreement with experiment. Since the re-
sults now do depend on the model taken for the band
structure, the application of the theory to Ni —Cu alloys
is no longer so straightforward. The grossly oversimpli-
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FIG. 1. Contributions of the three g, and two eg bands to the
density of states of paramagnetic ¹i,Origin of energy for holes is
taken to be the X5 level (the top of the electron d band). The
state density is assumed to be zero at this point, implying the
neglect of hybridization between fg and conduction bands in the
immediate vicinity.

»N. F. Mott and H. Jones, The Theory of the ProPerties of
Metals artd Alloys (Clarendon Press, Oxford, England, 1936),
196; N. F. Mott, Proc. Phys. Soc. (London) 47, 571 (1935 .

6ed rigid-band model, " which has been used exten-
sively to describe the simpler properties of these alloys,
is seen in Sec. V to predict that the pole in the suscepti-
bility occurs at O'K for concentrations of Cu much
below the experimentally established 57%, and to lead
to a qualitatively incorrect dependence on concentra-
tion of de/dI' (as well as to an electronic specilc heat
that decreases much too rapidly). Because of these
difFiculties, an equally simple alternative model is pro-
posed according to which the number of d holes per Ni
atom stays constant at all concentrations. The under-
lying assumption is that each of the two constituents
enters the alloy with the atomic configuration charac-
teristic of the pure metal (approximately 3d'4s for Ni
and 3d's4s for Cu) . This implies the neutrality, or more
precisely "minimum polarity, '"6 of each site, as well as
a nearly uniform distribution of conduction electrons
over the entire crystal. Use of a particularly simple
version of this model is shown largely to eliminate the
above-mentioned discrepancies with the results of ex-
periment, but it should be emphasized that the real
justification of this description in terms of band theory
for nonperiodic systems~ "remains to be given.

II. SPIN SUSCEPTIBILITY

This section is devoted to deriving explicit expres-
sions for the uniform static spin susceptibility p. For
this purpose, knowledge of the density-of-states func-
tion and the Hamiltonian, as well as of the procedure
for treating particle interactions in the t approximation,
is necessary. The quantity x may be obtained from
the nonlocal spin susceptibility, which bears a simple
relation, via the spin-Quctuation propagator, to an
electron-hole correlation function. The latter may be
written in terms of the 3 matrix and the density of
states.

A. State Density; Harniltonian; Use of the
t Approximation

This subsection introduces the density of states and
Hamiltonian to be employed, and describes the treat-
ment of the latter in terms of the t approximation.
The state-density function for paramagnetic Ni will
be taken to be that computed by Hodges et al." ' using
an interpolation scheme, with parameters adjusted to Gt
the results of an augmented plane wave (APW) calcula-
tion. While explicit knowledge of the wave functions is
not necessary to this procedure, the assumption of a par-
ticular functional form is required in discussing the
interaction part of the Hamiltonian. The d-band wave

3' J. H. Van Vleck, Rev. Mod. Phys. 25, 220 (1953).
sr P. Soven, Phys. Rev. 151, 539 (1966); 156, 809 (1967)."P.W. Anderson and W. L. McMillan, in Proceedilgs of the

Irsterlatiolat School of Physics Emrico Fermi, " Cossrse 37,
edited by W. Marshall (Academic Press Inc. , New York, 1967),
p. 50.

39 E. A. Stern, Physics 1, 255 (1965)."L.Hodges, Ph, D. thesis, Harvard University, 1966 (unpub-
lished).
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functions are taken to have tight-binding form, 4'4'

with the corresponding 3d orbitals divided into the
t2, group, composed of functions of angular symmetries
xy, ys, and zx, and the e, group, with symmetries x' —y'
and 32."—r'. An examination of the squares of the inter-
polation-scheme eigenvector components permits a
simple separation of the density of states into e, and
t2, (as well as conduction-band) components. This de-
composition is shown in Fig. 1.

Even though the Fermi surface of paramagnetic Ni
contains a number of electron sheets having mixed d
and conduction-band character, it is possible in the
present analysis to think of the band structure in some-
what simpler terms. The density of states will always
be taken to have its correct form, in which both e,
and t» contributions, as well as the eGects of hybridi-
zation with the conduction band, are included. In the
calculation of the t matrix, however, this hybridiza-
tion, except insofar as it changes the state density, will
be neglected, as will the relatively small e, contribu-
tion in the case in which interorbital effects are con-
sidered explicitly. Under these circumstances, it is
valid to regard the d carriers as holes which contain
no conduction-band component, and which are located
in pockets centered about the points X in the Brillouin
zone. In this form, the model represents a slight gen-
eralization of that originally proposed by Kanamori"
and subsequently discussed by Herring. 33

The simplest case to be considered of the short-range
Hamiltonian introduced in Sec. I, referred to here-
after as Case I, will be that in which all interorbital
interactions are neglected. In this instance, the Hamil-
tonian may be written

X=Xo+g U„n;„~n;„4 (Case I), (2.1)

where

I's= Z s; ~s;„.f 4'rp„~(r —R&)
ij,tmp~a

XL
—&'/2m+ V(r) jy„.(r—R;)

with the sums on t4, t4' extending over all (t~, and e,)
orbitals, and with

U.=(tt
I ~Itt) (2.2)

Here y„(r) is an orbital of symmetry t4 centered at the
origin, R; is a lattice vector, V(r) is the periodic po-
tential of the rare-gas cores, and A, is taken to be unity.
The operator c;~ destroys an electron of spin a. at site
i in orbital p,' the number operator e;~ is dined as

ipse ciao' Flnallyp

(»» I
~

I »t 4)

d'«'r' q „, (r) y„,*(r') u ( I
r—r' I) q „,(r) q „,(r'),3 I

~I
~

~2~ I ~ I ~

~3 ~4
I

r

where n(I r—r' I) is the Coulomb potential.

"V.Heine, Phys. Rev. 153, 673 (1967).
42 J. Hubbard, Proc. Phys. Soc. 92, 921 (1967).

The second case to be considered, designated Case II,
is that in which interorbital interactions are included,
but the presence of e, orbitals is neglected. " This ap-
proximation is based on the observation already made
that the d-hole states in Ni are largely t» in character.
The corresponding Hamiltonian may be written as

X=XO+U Qn, „)n,„4 J—Q S,„S,„
+-', ( O' —-,'I) Q n;„.n;„;

i,p&tLt~, tro ~

iut iI't ie'h (Case II), (2.3)

where p, and p,
' range only over the three t» symmetries,

and where S;„is the spin operator for electrons in or-
bital p on site i. The Coulomb matrix elements in-
volved in Eq. (2.3) are

(tt I~Itt)=U,

(t t
'

I
~

I t t ') = U',

(t t
'

I
~

I t 't ) =J
(t t I

~
I t 't ') =~', (J'=J).

(2.4a)

(2.4b)

(2.4c)

(2 4d)

The subscripts p have been omitted from U, O', J, and
J' for convenience, since the three t» orbitals are equiv-
alent. Equation (2.4a) gives the Coulomb self-energy
of an atomic orbital Las does Eq. (2.2)). The matrix
element in Eq. (2.4b) corresponds to a process in which
the electrons remain in the original orbitals after
scattering (interorbital Coulomb interaction), that in
Eq. (2.4c) to one in which they exchange orbitals
(Hund's-rule coupling), and that in Eq. (2.4d) to one
in which they transfer from one orbital to another"
(an interaction that is found to be relatively unim-

portant). The matrix elements of Eqs. (2.4c) and

(2.4d) are equal by virtue of the reality of the y„.
Possible dependences of the quantities in Eqs. (2.4)
on the relative spins of the orbitals are neglected.

Following Kanamori, " the particle interactions in-

volved in these Hamiltonians will be treated using the
t approximation, which is appropriate for cases in which

the density of particles is low and the range of the inter-
action short. The quantitative criterion for the validity
of this approximation is simply that the interaction
range a be much smaller than the interparticle dis-

tance; i.e., m'~3a((1, where e is the particle density.
For Ni, e~t'a 0.3, which may hardly be characterized
as "much less than unity, "but which is at least smaller

than the value for other transition metals.
The t approximation is most conveniently described

in terms of a propagator formalism. "The single-particle
Green's function g(11') —= (Tg (1)P~ (1')]) represents
an extension into the complex time domain of the func-
tion (TQ„(r~t~)f„.~(r~t~. ) j). Arguments such as 1

refer to space-time-spin coordinates (ri, iPsq, aq),—
with P the inverse temperature in energy units, and
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0&s1&1. In addition, T is Wick s time-ordering opera-
tor and

(tt. (rt) =expLi(x —tdx) t]P.(r) exp) i—(K td—x) t](,

where p, is the chemical potential, E the total number
operator, and (fd, (r) an operator that destroys a par-
ticle of spin r at the point r. Angular brackets indicate
averages over a grand canonical ensemble: (X)=
trpX/trp, with p= exp/ —p(K —)(2$) j.

The integral equation that defines the I, matrix is

t(13, 1'3') =B(11')~(33')—4)(13')i)(31')jr)(1'3')

—tr f dld3 t(13, 13)S(Ir')S(33')r(r'3'), (2.5)

-P t ()2,34)

-P v {l2)

3 3'

3, 1

I
I
I

3

{b)

3
t

2 4

I
I

2'

3I

in which use is made of the abbreviations

t)(12)—= r (~ r,—r, ~)8(s,—s,),
1

d1= d f1 d$1
0 &1

{c)

Fro. 2. (a) Diagrammatic representations of the single-particle
Green's function, the t matrix, and the Coulomb potential. (b)
Integral equation for the t matrix. (c) Self-energy function Z in t
approximation.

l)(12) =—i)(r,—r,) I)(s,—s,)b„.,

The t approximation itself consists simply in taking
the self-energy function" to be

are given by

Z(rr') =5f 4344 t(13, 1'4)()(43+). (2.6) 1

y(rr', o)„)= dsds' e~".(4 ")x(rr', s—s'), (2.8)
0

B.Nonlocal Susceptibility and Particle-Hole
Correlation Function

y(rr', o)) =)8 lim lim g(rr', o)„).
6~0+ ol &~t(0+15

(2.9)
The nonlocal paramagnetic spin susceptibility is

given by~ The propagator x is evaluated by considering its
relation to the electron-hole correlation function

3;;(rr r) tf d'(,t 1') r"'t'=r'($34;(—rt), 24;(r t )]), ''
0 &(12, 1'2') = (TL4 (1)if'(1') 4 (2)4'(2') j)

With g, t, and tt represented diagrammatically as in

Fig. 2(a), Eqs. (2.5) and. (2.6) take the forms given where (0,=2r2/ ip, with 2
—an even integer. By repre-

in Figs. 2(b) and 2(c) . senting both the nonlocal susceptibility and the spin-
Quctuation propagator in terms of spectral densities,
it may be seen that

where M is the magnetization density —(TQ (1)it t(1') j)(TI 2)t (2)it t(2') j)
(2 7) =—gs(12, 1'2') —g (11')g (22') . (2.10)

with IM~ the Bohr magneton and 7&') the Pauli spin
matrices (i=x, y, or s). For a cubic crystal, y;2. is pro-
portional to 8;;, and hence only one of the three nonzero
elements of the susceptibility tensor, say x„, need be
considered. Subscripts s will be dropped for convenience.

The nonlocal susceptibility bears a simple relation
to the more easily calculated spin-Quctuation propaga-
tor y(rr', t —t') =—(T)M(rt)M(r't') j). Just as in the
case of the single-particle Green's function, this propa-
gator can be extended to the imaginary time domain,
and written as x(rr', s—s'). The Fourier coeflicients

43 The approach used here follows that of I'edders and Martin
(Ref. 32) and Baym and Kadanoff (Ref. 31).

Using the fact that the single-particle Green's functions
have a 8-function dependence on their spin indices, it
may be shown, with the help of Eq. (2.7), that

y(rrrs, sr —ss) =tddd' g r„„t')r„„(*)Z(12,1+2+). (2.11)

The integral equation" 52 for 2(12, 1'2'), which may
be derived by employing functional-derivative or dia-
gram techniques, is

d(12, V2') = (1 ()) (21())+2f—d3444545 ()('13)g(41')

X (35, 46)2 (62, 52'), (2.12)
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g(r) r2, s)-s2) =
C. Solution of the t-Matrix Equation

2'

2

. 2

+

Cb)

2'

The solution of Eq. (2.5) will be needed in order to
obtain an explicit expression for x. It will be determined
in this subsection by transforming the equation into
frequency-momentum space, in a manner roughly
parallel to that described by Kanamori" and Herring. "
It is convenient for this purpose to introduce the Bloch
function b„(k, r), the solution to the equation

P—P/2)os+'U (r) jb„(k, r) =e„(k)b„(k, r) .

6

6 4
+

4 5

(c)

t
5

2 S'

2
t )

2

{d)

FIG. 3. Diagrammatic representation of equations determining
the spin-fluctuation propagator x using the t approximation. This
quantity is directly related to the spin susceptibility. (a) Connec-
tion between x and the particle-hole correlation function g.
(b) Integral equation for in terms of the effective interaction
function —=bZ/Bg. (c) ™obtained from Fig. 2(c) by taking
4)/88 to correspond to removal of a Green's-function line. (d)
Equation for Z in t approximation, omitting term of O(t ).

where the eAective particle-hole interaction is de-
fined by the relation

=-(35, 46) =bZ(34)/bg(65). (2.13)

Equations (2.11) and (2.12) may be represented
diagrammatically as in Figs. 3(a) and 3(b). In the
former case, the convention is employed of associating
td1)g„r„„&*)and td1)p, sr„„(*) with the left and right
external vertices.

Use of the t approximation for Z in Eq. (2.13) yields

.(35, 46) =Pt (35, 46) +0(ts); (2.14)

the algebraic form of the second term, as well as the
details of its derivation, are given in Ref. 31. It will be
assumed here and elsewhere that the effective inter-
action t is small enough so that terms of order t' may
be neglected. Substitution of this approximation for

into Eq. (2.12) yields the relation

5(12, 1'2') = —tt(12')tt(21')+td f d3ddd5dtl

Xg (18)g(41') t(85, 46)2 (62, 52') . (2.15)

The diagrammatic representations of Eqs. (2.14) and
(2.15) are given in Figs. 3(c) and 3(d) .

Here k is the wave vector (assumed to be in the first
Brillouin zone), td the band index, e„(k) the associated
band energy, and '0 a one-electron potential obtained
in principle by linearizing the Hamiltonian (2.1) or
(2.3) in such a way that a quasiparticle spectrum con-
sistent with experiment is obtained. ~ It will be as-
sumed, with Kanamori, " that the d-band Sloch func-
tions for hole states may be written as linear combina-
tions of the tight-binding orbitals of only one sym-
metry type, i.e., that

b„(k, r) =X 'I' g exp(ik R;)tt„(r—R;) (2.16)

with p equal to xy) ys) sx, x' —y', or 3s' —r') and with
E the number of atoms in the crystal. An examination
of the details of the band calculation (and appropriate
group-theoretical considerations) indicates that the
neglect of mixing of other orbitals into the Bloch eigen-
functions for these states is justified in the case of Ni.

The time transform of the single-particle Green's
function is written as

=
IpL" (k) -e~-~.lI ' (2.17)

with eg the Fermi energy.
It is easily seen that t(13, 1'3') may be written in

the form

t(rto1, r,os,. r1 o1, r, os,. s1—s1 )8(st —ss) 8(st. —s, ),
and hence the time transform of this function involves

44 It should be noted that this potential is not the same as that
in 3'.0. It may be identified with the single-particle potential part
of a linearized version of the term Zb, 5+V„„rt5r~ in Eq. (2.8)
of Ref. 28.

Cr) (rlol rl'o1' (4) ) g (rlrl' 44) )tl

1

dstdst exp[j9(o„(s1—s1.) fg (11'),
0

where o)„=2rt/ ip, wit—h 2 an odd integer. In the cal-
culations to be made below, it will be assumed that
g(rrrt. , (o„) may be replaced by the Hartree-Fock
single-particle propagator g" (rrr1, o)„), whose Bloch
transform is

g„"r(tr, .) fd'r, d'r, '5„*(tr=, r)(t"r(rr, ';,)5„(tr, r, ')
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only the single frequency variable q„=2.v/ —ip, with Here
s an even integer:

1

t(rlol 130'3 rl 01 rs0'3 q„) = dsldsl
0

X expt'pq„(si —sl.)jt(rlo1, rSo3,' rl.ol., rS 03,' sl—sl ).
(1—f„t) (1—f„, l) —f„i f„.~ l

6„(k)+6„(q—k) 26v—q„—
The Bloch transform of the latter, in turn, is just

t(t410lkl t4202k2' t4303kS t4404k4' q )

d'r&d'r 'r3d'r4 5»* k&, r& b„,* k2, r2

Xll(I rl —r2 I) b„,(kS, rl) b„,(k4, r2),

which is seen from Eq. (2.16) to be equal to

(Illlt42 I
0

I t43t44) b&1+122»2+lI4+I

Terms that couple different sites have been neglected
here, in accordance with the fact that only short-range
interactions are included in the Hamiltonians of
interest. lf the symbol v(tllt42t43p4) is used to represent
this expression when kl+k2 ——ks+k4+K, then for
Case I,

&(»») = Uv/» (2.18)

where p, may refer either to e, or t2, bands, and for
Case II,

1'(»») = U/»
v(»'»') = U'/»

&(»'t 'I ) =&(»t 't ') =~/» (2.19)

where p, and t4' refer to t2, bands only, and t4&t4'. Quan-
tities e(plt42t43t44) other than those listed in each of two
cases are zero.

The Fourier transform of Eq. (2.5) may now be
written in terms of the total input 4-momentum to the
t matrix, p—= (q, q„) (with v even), and 66;= (t4;, o;), as

t(433044l310i2j p) 1 (pSt44tlllt42) l1alal~a2a4 1 (144t43t41142) ~ITla4tja2a2

+ p t (438434435436 j p) balal~ala2+(t45146 j p) 1 (t45t46tllt42) ~

a~as

(2.20)

X t(rlo, , r,o2, rSo3, r404, q„)b„,(k3 rS) b„,(k4, r4),

which is nonzero only when kl+k2=ks+k4+K, with
K a reciprocal lattice vector. In spite of the fact that
the crystal volume will later be considered a variable,
it is taken here to be unity for convenience, since the
result of 6nal interest, the criterion for the existence of
a pole in the spin susceptibility, does not explicitly in-
volve the volume.

For the Coulomb potential, the Bloch transform is
given by

pk p, 2k —k

6„(k)+6„(2kx—k)

CO

d6 v„(6) I I 1—f(6) j'/6I,—CO

(2.22)

where e is the carrier energy measured from the energy
of the XS state (chosen as the zero) and v„(6) is the den-
sity of states per atom per spin direction for band p. The
facts that the above approximations imply E(»'; p)
not to be a function of p and to depend on only a single
band index have been used to simplify the notation.

Since Eq. (2.20) indicates that

t (431482433434) = —t (431432434lXS) 2

only one of these two need be mentioned in listing solu-

4'D. Pines, The Many-Body ProMem (W. A. Benjamin, Inc. ,
New York, 1962), p. 66.

46 N. M. Hugenholtz, Physica 23, 533 (1957).

(2.21)

with f„t,=f(6„(—k) ) and f(6) =I expP(6 —6v)+1] l. The
fact that the potential matrix elements are momentum-
independent in the present approximation implies that
the transformed t matrix depends only on p; the argu-
ment list of this function may therefore be simplified
in the manner indicated here. Umklapp processes have
been neglected in obtaining these equations.

If the carriers of interest were electrons, the first
term in the numerator of Eq. (2.21) would correspond
to intermediate-state propagation of the carriers as an
electron-electron pair, while the second would corre-
spond to propagation as a hole-hole pair4'; if they were
holes, as in the present discussion, the meaning of the
terms would be reversed. The second term is of higher
order in the carrier density than the first, 4' and since
the density is considered here to be low, the former
term will be neglected. The further approximation will
be made of replacing the t matrix everywhere by the
real part of its value on the energy shell.

In accordance with the approximations described
earlier, it will be assumed that the pair of holes which
interact via the t matrix can both be taken to have the
wave vector and energy of the same band-edge X5
state, and that in evaluating Eq. (2.21), tl may be set
equal to p, '. These approximations are equivalent to
ones described by Herring. " The total input wave
vector q in Eq. (2.21) is accordingly 2kx5, and so this
equation becomes finally (with kx—=kx5)
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tions to the equation. The argument p of the t matrix in a Fourier series:
may be omitted in view of the assumptions made above.
For Case I, the nonzero solutions of Eq. (2.20) are @(12& 1 2 )

U„/E
t(po'& po&per'& po) =

+ (2.23)

ZV 1+(U' J)E 1+(U'—J)E '

t(po; p,'o, po, p'a) = I (O' —J)/E)1+(U' J)KjI—.

where o =——o. For Case II, they are found to be (with
p&p')

U+(U+2J) (U —J)E
EL1+(U+2J)El/1+(U J)Ej—'

exp/ —
&9 (co„st+o&„,ss —co„,st.—o&„,ss.)j

Iil ' ' 'P4 Pl ' 'P4

Xb„,(kl, rl) b„,(k2, r2) b„,*(ks, rl.)b„,*(k4, r,.)

XZ(plolpl& ps&sps) pso'1'ps& p4&2'p4) ~

Here p, StandS fOr (k;, &u„,), Where o&„,=sr';/ . ip (W—ith
o; an odd integer) . If the abbreviation

Ie(nlnsnsnq) =lim Q +(ntPlr n2P2r nsPl Pr n4P2+P)
u omu2

is introduced, it is seen that

(2.24)
I Pll f Q rerlr& rrsr2 ~ (nlnsnln2) ' (2.26)

In addition, t(po, p'o, p'o, po) and t(po, po, p'o, p,'o)
are nonzero; but these are of no particular interest
because they do not enter the calculation of the suscep-
tibility. Since only the three equivalent t2, bands are
involved, the subscript p, has been omitted from X.

Fourier analysis of Eq. (2.15) provides a relation that
determines I. (umklapp processes are neglected):

L(nlnsntn2) —Xj9 'F„,i&~,~2

XP&r& Q t( nin4 ntn)sL(nsnsn4ns)
&

(2.27)
a3a4

D. Expressions for the Uniform Static Spin
Susceptibility

For cases in which the wavelength of the applied
field is large compared to a lattice distance (thus per-
mitting averages over a unit cell), it may be shown41 ~
that the macroscopic frequency- and wave-number-de-
pendent susceptibility is

X(qte) fS'rrS'r, e=rpP iq r'r, —r—))X(rrr, e).

This implies, in conjunction with Eqs. (2.9) and (2.11),
that the uniform static spin susceptibility p is given
by the relation

pg i8 llm ~ 7@ltrl 7ggyg
2a 1' M (2) (z)~ &Io'2

d'rjd'r2 exp —i q r&—r2 dsjds2
0

X expgg„(sl —ss) jZ (12, 1+2+), (2.25)

P„=—pS 'lim QB (pt)go (pl —p)
u~o S I

Gc pp 6 8 6 86F ~ (2.28)

yr =Q $2iVpss2F„/(1 U,&lsP„)j, —
",~ III

U,«"=U„/(1+U„—E„),
and (omitting the unnecessary index p, from F),

(2.29)

(2.30)

where

U+(U+2J) (U J)E-
L'1+ (U+2J') E)L1+(U—J)E)

These last equations lnay be used to show (easily for
Case I, and after some manipulation" for Case II)
that the uniform static spin susceptibilities are

where
lim—=lim lim lim lim .

gm ~ 0 .~0+ q

(U»2J2EL1+(U+J) Ej-') (2.32)

In order to evaluate this expression, it is most con-
venient to expand the electron-hole correlation function

1+(U'+J)E 1+(U'—J)E
47 H. Ehrenreicb, in EroceeChrlgs of the International School of

Physics "Ersrico Fermi, " Cogrse 34r edited by J. Ta&lc (Academic
Press Inc. r New York, 1966), p. 106.

42 S. Adler, Phys. Rev. 126, 413 {1962).

J
(1+U'E)' (U'»J). (2.33)
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FIG. 4. Uniform widening under com-
pression of the crystal of a hypothetical
rectangular band having width 8' and
total number of states a. Each plot gives
the density of states versus hole energy;
each shaded region shows the fraction b of
the band occupied by holes (with Fermi
level bW at zero temperature) . The
parameters u and b do not change with
compression.

0/ W)
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The approximate expressions for U, ~~ and J,gg given
here are found generally to be valid for the cases of
interest (see Sec. IV).

III.SIMPLIFIED STRONG-CORRELATION
MODEL

i„(e)=t„(e, W) =W 'g„(eW '), (3.1)

where g„ is a function only of eW' '. Since the integral
over energy of this expression is independent of S', it
is clear that in this picture, the number of states in
each band remains constant under pressure. Figure 4

"The recent KKR calculation done by Davis, Faulkner, and
Joy for Cu at several different lattice constants (Ref. 57) shows
the volume dependence of the over-all fg-band width in this metal
to be given by f= —1.62, in good agreement with the value —5/3.
If lV in the de6nition of & is taken to refer to various energy gaps
(such as j. 1~

—I'~5') in the d band of this calculation, f values that
do not deviate from —1.62 by more than a few percent are ob-
tained. This also supports the assumption made below (ior Ni)
that e, and t2, bands widen at the same rate under compression,
without changing their relative positions.

Under certain restrictive but not too unrealistic as-
sumptions, it is possible to obtain a simple, exact rela-
tion connecting the Curie temperature Tq and the
crystal volume V. The assumptions are as follows: (1)
The quantity U„ is taken to be in6nite, which implies
that U, gp—+E„'. The fact that U, fp becomes inde-
pendent of U„ in this instance, and remains finite, may
be interpreted by assuming that for large U„, a carrier
is excluded from a site already occupied by another
of antiparallel spin in the same orbital, and because of
the existence of this excluded volume, the kinetic
energy of the carrier is increased by an amount ~ E„'.
(2) The quantities F„and E„ilwl be considered to be
functionals only of v„(e), and functions only of ep

and P. In particular, they will be taken to have the
forms given in Eqs. (2.28) and. (2.22). (3) The pres-
sence of the conduction band, insofar as it acts to change
the number of d holes with compression, will be neg-
lected. (4) The bandwidth W will be assumed to de-

pend only on R, the interatomic distance. Heine's"
result for the transition metals that 8'~R ', derived
using scattering theory, will be employed; this implies
that 1'=dlnW/d—lnV= —3/3.4s (3) The d band will

be taken to widen uniformly when the crystal is com-
pressed. The density of states in each (hole) band will

be assumed to have the form

shows a rectangular band widening in accordance with
Eq. (3.1); the equation may, of course, refer to a band
of any shape. Implicit also in taking all state densities
to have the above form are the assumptions that e,
and ts, bands widen at the same rate, without changing
their relative positions, and that the bottom of the
band, taken initially to be the zero of energy, remains
the zero. The latter is necessary to accord with the
definition of E.

If the sample temperature in the actual experiment
is taken to be Tg, then, given these assumptions, it
is clear that TV and Tz are the only energy parameters
in the problem (the Fermi energy may be seen from its
definition to depend only on W and T=To). This
implies" that

d lnTc=d lnW=fd lnV. (3.2)

In order to see the way in which this result comes
about and to exhibit its physical significance, the very
simple case of the nondegenerate, rectangular band
will be considered, with ei and E taken to have their
zero-temperature forms for simplicity (the band
index p, which takes only one value, is everywhere
omitted). The density of states in this instance is
given by

i(e) =aW 't8(eW ') —8(eW ' —1)j,
where 8 is the Heaviside step function and u is a con-
stant, in accordance with assumption (5). The be-
havior of such a band under compression is shown in
Fig. 4. In view of assumption (3) and the fact that
ep is evaluated at T=0, it is evident that e~ ——bR', with
b a constant.

The pole in the susceptibility yr occurs at the point
U ffP —1, with U,« IC by assum—p—tion (1) . The
functions P and E for this special case may be written
Pcf. assumption (2)j

Ii = —alV ' de B Be=—lV '5 8', 3 3a
0

W

E=~~aS' ' e 'de=—cS' ',
bW'

(3.3b)

where c is a constant. The position of the pole is then
50%'e are indebted to J. R. Schrieffer for pointing out that this

result, obtained in the analytical treatment to be presented below,
is for dimensional reasons an immediate consequence of the as-
sumptions listed.
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determined by the relation

FE '=c 'S(PW) =1,
with the corresponding differential condition

d(FE ') =c zdS(PW) =0,

specifying lines of constant F/E in the V Tplan-e LW is
related to V by assumption (4)). For S'(pW) &0, the
latter implies that along these lines, dpW=O, i.e.,
d InT=dlnS". On the particular line determined by
F/E =1,T is equal to Tc(V), and hence ()t lnTc= 8 lnW.

At constant temperature, the magnitudes of
U «(~E ) and F in general shift in opposite direc-
tions under pressure, since the primary dependences
of these quantities are given by U,«S' and F 5' '
Pcf. Eqs. (3.3)). This fact, and. the influence of these
shifts on Tz, may be understood in a simple way. Be-
cause F is just an effective state density at the Fermi
level, it is evident that it should decrease as the band
widens with compression. The effect of this is to lower
Tg, since spin reversal, and hence ferromagnetism,
becomes energetically less favorable. The fact that U, ff

increases under pressure is seen most readily by using
the excluded-volume picture introduced earlier, in
which a carrier is considered to be excluded from a site
already occupied by another of antiparallel spin, with
U ff proportional to the consequent increase of kinetic
energy. If it is assumed that the volume of exclusion e,
which is determined by the size of the atomic d shell,
does not change as the crystal is compressed, then v

must become a larger fraction of the total volume avail-
able, leading to an enhanced value of U,«. The effect
of this is to raise Tg, since U,«characterizes the strength
of the interaction tending toward a parallel-spin con-
6guration and hence its increase means that a larger
thermal energy is required to disorder the spins.

It might be mentioned that this picture can be
analyzed in a crude way to provide an estimate of
d lnU, gg. In the free-electron model, an electron occupy-
ing a given k state has a kinetic energy E~ k'~ V 'I'.
Since the interaction strength U,« is proportional to
the kinetic energy associated with exclusion of an
electron from a volume v,

U,«~ E(V—z)) E(V) z)dE/dV ~ V—"'. —

Under compression of the crystal, therefore, d InU, ff=—(5/3) czlnV, since z) is regarded as pressure-inde-
pendent. This result is coincidentally identical to that
which would be obtained from Eq. (3.3b) (taking U,«=
E 'and f= —5/3) . —

It is convenient for purposes of the subsequent de-
velopment to present a general derivation of Eq. (3.2)
based on an examination of the susceptibility expression
pz, with no restrictions except the five made originally.
While the dimensional argument given earlier is ade-
quate in the present case, it is no longer valid when

other energies, such as U„, are present in the problem.
The formalism necessary to treat these kinds of situa-
tions, which are discussed in Secs. IV and V, represents
a simple generalization of the analysis given below.

The poles of xz are seen, in view of assumption (1), to
occur at the points where F„E„'=1.It is found nu-
merically that F(„ is much larger than F,, (subscripts
refer to only one band of the given type), while E„,is
approximately equal to E,, Thus, as the temperature
is lowered in the paramagnetic state, the first pole to
occur in x& is given by F&„E&„=1; it is this condition
that determines Tg. Succeeding poles are meaningless,
since for T&T& the system is no longer in the ground
state for which x& was originally calculated. The fact
that the condition for the 6rst pole seems to imply that
the transition takes place in only one group of bands
is an artifact produced by assuming a one-to-one orbital-
band correspondence and no interorbital interactions.

Since the e, bands are clearly not of any direct interest
(except insofar as they help to determine e&), the dis-
tinguishing subscripts t2, on F and E t as well as on
) (~), U, and U, zz) will be omitted. The equations im-
plicitly determining d 1nTc/d lnV are then

F/E= 1,

d lnF —d lnE=O.

(3.4a)

(3.4b)

If X is taken to be either F or E, then by assumption
(2), X=X)z (e); p, e~); and hence

dX= bX bv p, ,~be e de Xpd X,dip, 3.5

where the subscripts p and e indicate partial derivatives
with respect to P and e~. The differential dX will be
computed subject to the requirement that the number
of holes be kept constant Lcf. assumption (3)), which
leads to the elimination of dc~.

In order to evaluate the 6rst term in Eq. (3.5), an
expression for Bz (e) consistent with assumption (5) is
required. Differentiation of Eq. (3.1) leads immediately
to the result

8) (e) = —L) (e) +e) '(e) )()) lnW, (3.6)

from which it follows, for an arbitrary function Y(e),
that

X= d6 p 6 Z 6~ 6@~

Account has been taken here of the fact that the d-band
density of states is nonzero only over a Gnite range.

Both F and E may be written in the form
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and therefore, using Eq. (3.7),

(6X/bv) p, v,bv(e)de=d lnW de v(e)e(BZ/ag).

Iy adding and subtracting the expression

X+evX, —PXp

de v(e) I Z+ev (BZ/Bev) P—(BZ/BP) 7,

XqdP. Combining these two expressions for dX leads im-
mediately to the relation

dev ——(~v PIF—') d 1nW+PIF 'd lnT. (3.13)

If the above form for dev is substituted into Eq. (3.10),
it is seen that

d lnX= —(1 Ax) d—lnW —Axd lnT, (3.14)
where

this may be recast as
Ax PX —'—(Xp IF '—X.). (3.15)

(8X/5v) p„,bv(e) de= —d lnWLX+evX, —PXp]

+d lnW de v(e)

Use of these equations along the lines of constant F/E
in the V Tplane d-efined by Eq. (3.4b) yields

—(1—Av) d lnW —Avd lnT+ (1—Ax) d lnW

+Axd lnT=O. (3.16)

Xr Z+ev(BZ/Bev) —P(8Z/BP) +e(BZ/8g) 5 (3..8)

For functions of the general form

de v(e)Py(Pev, Pe), (3.9)

the quantity Z=Pp is such that the second term of
Eq. (3.8) vanishes. It is clear then, referring to Eq.
(3.5), that any X satisfying this requirement, which
includes I' and E, obeys the differential relation

dX= —d 1nW/X+g X,—PXp]+XpdP+X, de. (3.10)

In order to discuss the condition that the number
of d holes be kept constant, it is necessary to introduce
into the analysis the total d-band density of states per
atom per spin direction,

v(e) —=3v(e)+2v, , (g) =—W 'g(gW i),

in terms of which the number of holes per atom of one
spin is

Eg= 86v 6

It will be convenient to use the definitions F=BcVq/Bev-
and I=BItIp,/BP; i.e., —

dtv(f) Bf//BE. v, (3.12a)

de v(e) Bf/BP. (3.12b)

The quantity F is the total effective d-band density
of states per atom per spin direction at the Fermi level.

It is evident that Eqs. (3.5)—(3.10) apply to func-
tionals X in which v(e) is replaced by v(e). Since
X=PE& has the form given by the analog of Eq. (3.9),
its differential may be written as in Eq. (3.10) . On the
other hand, the fact that dlVi, =O implies that d(PNq) =

de/dP= ]&Tc(1 (n—Te) ', —(3.17)

obtained under the assumption that the sample is
always at Tz. Here ~—= —(8 1nV/BP) & is the compres-
sibility, and n= (8 lnV/B—T)p the volume thermal-
expansion coefficient. In evaluating Eq. (3.17), To
will be taken to have its experimental value, rather than
that which could in principle be obtained by solving
the equation for the susceptibility pole." The term
$nTo will be neglected in cases in which it introduces
a correction &S%%uo.

If the value f= —5/3 taken for Ni is unchanged as
Cu is added, and if the preceding formalism, based on
the assumption of a periodic structure, is deemed still
to be applicable, then the relation $=t, in conjunction
with Eq. (3.17), may be used to provide an estimate
of dT&/dP for Ni—Cu alloys. It should be noted that
the distortion of the density-of-states curve consequent
upon alloying is not in itself important: it is required
only that the band, whatever its shape, widen uni-
formly with pressure. The thermal-expansion contribu-
tion is not significant in the present case, and hence

de/dP (5/3) ~Tg. (3.18)

~' A completely self-contained theory would, of course, begin by
calculating U from first principles and then find Tg from the con-
dition U,ffF=i. This procedure could in principle be followed
here. The reasons for not doing so are given in Sec. 0|'.

The terms —d lnt/t/", which provide the major contribu-
tions to d lnF and d InE (see Sec. IV), cancel in this
relation, implying that d lnT=d lnW(A+&A&). For
the particular line speciffed by Eq. (3.4a), T is equal
to Tz, and hence Eq. (3.2) follows immediately.

In terms of the abbreviation $—=d 1nTo/d lnV, Eq.
(3.2) implies simply that $=f'. Both in this section and
the ones following, values of $ must be converted to
de/dP values in order to permit comparison with
the results of experiment. For this purpose, use may
be made of the relation
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FIG. 5. Comparison for Ni —Cu alloys of dTo/dP values ob-
tained using the simplified strong-correlation model discussed in
the text with those determined by Okamoto et at. (Ref. 5).

"S. A. Ahern, M. J. C. Martin, and W. Sucksmith, Proc. Roy.
Soc. 248A, 145 (1958).

"An estimate of the quantity g as a function of Cu content, at
T just above T~ in every case, may be obtained by correcting the
paramagnetic extrapolation of the plot in Ref. 4 of a versus Cu
concentration at room temperature, according to the plot of ~
versus T for a given Cu concentration, assuming the latter to be
approximately true for all Cu contents and temperatures of inter-
est. The compressibility is seen in this way to decrease from 6.7)&
10 '/bar for pure Ni to 6.0&&10 r/bar for 43 Ni—57 Cu. For
simplicity, this variation will be neglected, and a taken to have
the mean value given in the text.

Ahern, Martin, and Sucksmith" have shown experi-
mentally that the Curie temperature of Ni decreases
linearly with the addition of Cu at the rate of 11'/at. %%uo

Cu, reaching zero at 57 at. %%uoCu . Thu s, if x is inde-
pendent of Cu content, Eq. (3.18) predicts a linear
decrease of dTc/dP to zero at this concentration. The
value x=6.4X10 '/bar will be used for both Ni and
all Ni —Cu alloy mixtures of interest, in this and suc-
ceeding sections. "Figure 5 compares the experimental
results of Okamoto, Fujii, Tsurui, Fujiwara, and
Tatsumoto' for Ni —Cu alloys with those obtained from
Eq. (3.18). It should be noted that any relation of the
form ding/dlnV=const will, if thermal expansion
effects are neglected, lead to a theoretical curve which
decreases linearly fo zero at the same point as that
presented.

In order to assess the quality of the agreement ob-
tained between theory and experiment, it is most con-
venient to consider only the case of pure Ni. The ex-
perimental values for dTo/dJ' in Ni show considerable
variation, frequently beyond quoted errors (this point
is discussed in Ref. 7). In addition to the result 3.7
(units of 10 4 deg/bar) found by Okamoto et al. , other
experimenters give 3.5+0.3 (Ref. 6), 3.2&0.2 (Ref. 2),
3.5+0.2 (Ref. 3), and 4.2+0.7 (Ref. 7); Eq. (3.18)
yields the theoretical value 6.8.

Two different theoretical estimates which correspond
to reasonable upper and lower limits on dTo/dP, and
which therefore provide a scale on which the above
values may be compared, are made as follows: For

Uef f~ j.
p

d 1nU, ~r+d lnF =G.

(3.19a)

(3.19b)

Here, as before, the t2, bands determine the position
of the pole in the susceptibility, and so the index p, is
again omitted. In computing changes in U,~~, it will
be assumed that U is independent of V (and T as well).
(If U were an interatomic, rather than intra-atomic,
matrix element, this assumption would not be justified. )
In the Hartree-Pock approximation, U,gg= U is volume-
independent. Accordingly, Eq. (3.19b) becomes

d lnF = —(1 Ar )—t d ln V—As d inTc =0.

Use of Eq. (3.17) (with n=5.2X10 '/deg)'4 shows
dTo/dI' in this instance to be —19X10 deg/bar,
where Ap is taken to have the value given in Sec. IV.
Just as the case in which U, qr is assumed not to change
with compression sets a lower limit, that in which F
does not vary with compression (but only with tem-
perature) sets an upper limit. It is assumed that the
bandwidth is t/"-independent and that U,«may be
viewed solely as an excluded-volume effect in the
manner described earlier, implying that d lnF =
—Asd lnT and 0 lnU, r~= —(5/3)d lnV." These rela-
tions, in conjunction with Eqs. (3.17) and (3.19b),
lead to the value +19X10 4 deg/bar for de/dP.
Viewed on a scale with limits at +19X10 4 deg/bar,
the differences between the theoretical and experi-
mental values of de/dI' for Ni cited above are not
large.

IV. MORE REALISTIC MODELS FOR Hi

In this section, the restrictions previously imposed
that U be in6nite and that inter-d-band interactions
and changes in the number of d holes resulting from
pressure-induced conduction-band variations vanish,
are removed in stages. Since knowledge of the form
of the state-density curve is necessary to evaluate
the expressions that arise, it is convenient to examine
only the case of Ni here, and to defer consideration of
Ni—Cu alloys to Sec. V. The required band-structure-
dependent parameters are computed using the density
of states of Refs. 28 and 40 for paramagnetic Ni and
the experimentally measured value of the Curie tem-
perature; the results of these computations are included
in Table I.

The values of dTo/dP obtained in the various cases
analyzed below are given in Table II.The results cluster
in a range small compared with that which might

~ M. P. Arbuzov and M. I. Gitgarts, Fiz. Metal. i Metalloved.
12, 693 (1961) LEnglish transl. : Phys. Metals Metallog. (USSR)
12, 61 (1962)g.

'5 This simplified physical analysis yields results approximately
the same as those which would be obtained from Eq. (3.4b)
using dint= —h.FdlnT and dlnK= —(1—Ax)f'dlnV —AxdlnT.

finite U„, the equations that implicitly give d lnTo/d In V
are
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reasonably be expected (—19 to +19X10 s deg/bar-
see Sec. III) because the cancellation discussed earlier
of the primary band-widening terms occurs to some
degree in all instances. The fact that dT&/dP may be
of either sign has in itself no particular physical sig-
nificance. Values of the product U,fbi, computed at
the experimentally measured Curie temperature, are
also given in the Table. This product should of course
be unity LEq. (3.19a)); its deviation from this value
is a partial measure of the correctness of the band and
interaction-strength parameters used to obtain U, g~

and F. It should be noted that Eq. (3.19a) is not a
useful relation for determining Tg accurately, because
U ffP is a fairly insensitive function of temperature.
For example, in Sec. IV D, interaction parameters are
so chosen that I,rfF (the analogous product for the
case in which inter-d-band interactions are included)
is exactly unity at T=Tz, but at T=O, this product is
increased by only 15'P&. Thus, small errors in P or U, ff

would lead to large errors in a computed value of Tg.

A. U—+ao; U', J=O; No Conduction-Band EBects

This is the case already considered in Sec. III for
which de/dP=6. 8X10 ' deg/bar.

B. U(~; U', J=O; No Conduction-Band Effects

The case to be discussed here is identical to that
described above except for removal of the restriction

TAnLz II. Values of d To/dP and U,grF computed for Ni.

U
(eV)

Conduction-
band d To/dP U,f&F

U' J elfects (10 ' (I,gfF when
(eV) (eV) included P deg/bar) U', 1& 0)

5

7.6
5

7.6
5

7.6
3.9

0

0
0
0

0

5

3

0
0
0
0
0

1

0 ' 6

1

no

no

no

yes

yes

yes

yes

yes

6.8

0.3

5.3
4.9
6.4
3.8

1.36

0.87

0.99
0.87

0.99
1.09
1.06

1.00

Hartree-Pock approximation for U,ff., —19

Excluded-volume picture for U, ff, no 19
d-band widening

Experimental range 3.2-4.2

U~~. EGects of inter-d-band interactions and the
inQuence of variations in the conduction band with
compression on the number of d holes are neglected.
The equations implicitly determining dT&/dP in this
instance are (3.19a) and (3.19b). If

E= —d lnU, H/—d lnK= UK(1+UK) ', (4.1)

d lnP —2M lnE=O, (4 2)

then Eq. 3.19b becomes
TABLE I. Parameters for ¹ required in calculating d2o/dP,

evaluated using the paramagnetic state-density curve computed
by Hodges et al.~ and the experimentally measured value of Tp.

Es
Ep

~C

&c

I
Jf

Ap.

~z
A'g

h, '~

II@

Dx
Qg

~x.

633'K
0.0137 Ry
6.64(Ry '/atom)/spin

94.8(Ry '/atom)/spin

(0.00748/atom) /spin

4.90(Ry '/atom) /spin
—230 (Ry '/atom) /spin

(0.00142/atom) /spin

1.45(Ry '/atom) /spin

(0.589/atom) /spin
—0.000108 (Ry/atom) /spin

23.8(Ry '/atom) /spin

0.297

0.0191

0.296

0.0222

0.334
—1.10

0.0113
—0.0371

assuming U to be independent of t/' and T. Since
0(U(~ and E&0, it is evident that 0(X&1.Equa-
tions (3.14) and (4.2) imply that

d in'/d lnV= L1—(1—E)(hs —RA~) 'jf (4.3)

with the second term vanishing as U~. If Ag-
RAz ——0, which can be seen from Eq. (3.14) to be equiv-
alent to the condition ci(U,ffF)/ciT=O (at T=Tc),
then dTc/dP~& ro. This might produce a cusp in the
Tc(P) curve.

There has been considerable dispute" as to the size
of the parameter U. Its value depends on the role
played by processes such as screening by the conduc-
tion electrons in the transfer of a d carrier from one
atom to another in the solid Lthe form given in Eq.
(2.2) is really an oversimpli6cationj. Herring' has
estimated that U 5 eV, and Kanamori, " referring to
work of Van Vleck," that U 7.6 eV. Neither writer,
it should be noted, considered these values in the con-
text of the case in which interorbital interactions were
neglected from the start. Taking U to be 5 eV in Eq.
(4.3) implies Dn conjunction with Eq. (3.17)j that
dTc/dP= —1.9X10 ' deg/bar; the choice U=7.6 eV

f' See Refs. 28 and 40, "Reference 14, Chap. 9, 10.
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yields 0.3)&10 4 deg/bar. Both of these values of
de/dP are somewhat too low.

C. U& ~; O', J=O; Conduction-Band EBects Included

In the absence of a conduction band, the Fermi level
maintains its relative position within the d band as 8'
increases (temperature effects are neglected for pur-
poses of discussion). This sort of behavior is depicted
in Fig. 4. When account is taken of the presence of the
conduction band, this simple picture breaks down, since
in general compression of the crystal. causes carriers to
be transferred between d and conduction bands. Two
distinct eGects produce this transfer. As the lattice
constant decreases, the spacing between conduction
levels increases, and so if the bottom of the conduction
band (marked by I'r) were to remain Axed relative to
the top of the d band, conduction states would move up
through this region, emptying electrons into the d band
as they passed through the Fermi level. However,
compression leads in fact to a downward movement
of I'~, which in itself implies a transfer of carriers in
the opposite direction. This increase in separation
between F~ and the d band has been demonstrated for
Cu in the Korringa-Kohn-Rostoker (KKR) calculation
of Davis, Faulkner, and Joy, done at different lattice
constants, '~ and rn.ay be taken to be characteristic of
the entire transition series. It occurs because under
compression, the mean d-band energy stays roughly
constant relative to the atomic zero, while the muffin-
tin zero, which gives the approximate position of F~,
moves down with respect to this point as the distance
between ionic potentials decreases. "

It is seen below that of the two opposing mechanisms
of carrier transfer, the second is somewhat more im-

portant in the present case, and thus changes in the
conduction band with compression in themselves cause
the Fermi level to move down with respect to X5. Even
though the variations in ep induced by conduction-band
changes are small, they have a substantial effect on the
Curie temperature, since the Fermi level lies in a region
of steep descent of the v~„(e) curve near the point
a=0 (see Fig. 1), and the thermal distribution of
carriers is such that appreciable portions of this region
are sampled. Because of this steepness, movement of
the Fermi level can be expected to modify significantly
the value of Ii&„, the effective t2, state density at e&,

because of the closeness of eg to zero, these changes will
also have a strong inhuence on the value of E, since
the integral of Eq. (2.22) has an integrand. that di-

verges as ~—+0 and an effective lower limit at ~g. It is
clear that the downward movement of the Fermi level

'r H. L. Davis, J. S. Faulkner, and H. W. Joy, phys. Rev. (to
be published). We are grateful to Dr. Davis for sending us a
preliminary report of this work.

'8 The implications of this point are currently being developed
in collaboration with R. E. Watson. See also J. M. Ziman, Proc.
Phys. Soc. {London) 91, 701 (1967).

with pressure increases both P and U, gg, and hence
raises Tg, in contrast to the widening of the d band,
whose effects on these quantities tend not to reinforce
but to cancel each other.

In order to obtain forms for d lnF and d lnE which
include the conduction-band contribution, it is neces-
sary only to modify expression (3.13) for de+. For this
purpose, it is convenient to designate hole energies,
with the zero taken at the top of the electron d band,
by the letter e (as before), and electron energies, with
the zero set at a fixed distance from &=0, by the letter
E (see Fig. 6). The quantity de~ is then determined

by the requirement

de~(e)L1 —f(e) j+ dEv. (E)f(E) =const,

where p, (E) is the conduction-band-state density per
atom for one spin direction. With the definitions

dE v. (E)f(E), (4.4)

where E, is the number of conduction electrons per
atom of one spin,

f(E)ou.(E)dE

and

Fg= dE pg E 8 BE@~ (4.5)

HOLE ENERGIES
I

W

E=O IS ARBITRARY BUT
FIXED ON THIS SCALE

I I

ciao

CO

LLI
O

BAND

ELECTRON FNERGIES

FIG. 6. Schematic representations of fE- and conduction-band-
state densities, with abscissa marked for both hole and electron
energies. Hole energies e are referred to top of electron d band;
electron energies B are referred to a point set at a 6xed distance
from e =0. Under compression of the crystal, bottom of conduction
band (at Ei) moves down, while conduction-band-state density
decreases. These two efFects tend to move the Fermi level in oppo-
site directions; net result is found to be a lowering of the Fermi
energy Eg.

it is seen that

epF PI—I—Ic
des = (F+F,) '8N, + d 1nW+P d InT.

F+P F+F,
(4.6)
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The quantity

dE v. (E)Bf/BP

is found numerically to be very small, and will be
neglected. If X is taken to be either F or E, and the
definition

g—= (8 InN, /8 ln V) p,~,
is introduced, then it may be shown that

d lnX =L
—(1—A»'+0») 1 +II»q)d ln V —A»'d lnT,

(4.7)
where

describes the effect of changes in the conduction band
on the relative location of the Fermi level within the
d band, while $2 arises from the fact that even if, as the
lattice is compressed, the conduction band were to stay
fixed in position without changing its state density
(i.e., g=0), there would still be a transfer of carriers
between it and the d band.

Evaluations of the ];may be made using the U values
5 eV and 7.6 eV discussed earlier, and the sums P$;
converted to dT&/dP values term by term (since ther-
mal expansion effects, which introduce a nonlinearity
into the relation between dTg/dP and d in'/d lnV,
are small enough to be neglected in the present case).
The results are

and

~»'= pX i/—X, -X I/(—F+F )j
0»= X,F.ev/X (F+F.),

(4.8)

(4.9)
d To/dP = —1.9—0.9+5.4 =2.6

0.3—0.9+5.9=5.3

(U=5 eV)

(U=7.6 eV).
II»=X,N,/X—(F+F,) . (4.10)

t'The function v.(E) has been taken to be independent
of Ev and p.j

In this part of the analysis, hybridization effects
between d and conduction bands are neglected to lowest
order. The conduction band is regarded as essentially
free-electron-like over the energy range of interest, with
the higher plane waves having a relatively small inQu-
ence on the values of the integrals that appear and on
their volume dependence. Results for F, and E, com-
puted using the free-electron model are included in
Table I. Since

v. (E) ~ V(E—Er)'i'8(E —Er)

in this model, with Ez the energy of the I'& level, it is
seen from Eq. (4.4) that

q = 1—(Fc/Nc) dEr/d ln V. (4.11)

Units of 10 ' deg/bar are employed here, and terms
are placed in the same order as that of Eq. (4.12).
The third term is comparable to the first because, as
noted above, compression-induced conduction-band
effects on U, ff and F tend to reinforce each other in
determining de, while the effects of d-band widening
tend largely to cancel. The second term does not repre-
sent a physically important process, and need not be
considered in any detail.

D. U( ~; U', J/0; Conduction-Band EGects Included

The effects of inter-d-band interactions will now be
introduced, completing removal of the restrictions dis-
cussed at the beginning of the section. This is done
simply by replacing the expression for xz in the pre-
ceding discussion by that for y» fEq. (2.31)). The
equations which now implicitly determine d 1nT&/d ln V
are

For Cu, it was found by Davis et al." that

dEr/d lnV =0.55 Ry.

IeffP —j.
p

d 1nI,«+d lnF =0,

(4.13a)

(4.13b)

Assuming this value to be correct also for Ni leads to
the result g = —0.36.The fact that g(0 shows the down-
ward movement of Ez under pressure to outweigh the
decrease of v, (E) in determining tv

From Eqs. (4.2) and (4.7), it may be seen that

d lnTg 1—R Qp —EQ~

d lnU Ap' —RA~' Ap' —RA~'

b+b+ks—

II@—XII~+
Ap —RA~

(4.12)

The presence of the term $i in this equation is due solely
to widening of the d band: it would appear even if the
conduction band were absent (with i1»' replaced by
the numerically nearly identical A»). The term (3

where I,«=U «+25,«, It is convenient here to re-
define R as d lnI, «/d lnE—. With this definition, Eq.
(4.13b) leads to a relation identical to that of Eq. (4.2)
(assuming U, U', and I to be independent of V and T),
which implies that the equations of Sec. IV C may be
applied to the present case.

The fact that I is reduced by the square of (1+UX )
LEq. (2.33)j, rather than by the first power, means
that J,« is a relatively more sensitive function of pres-
sure than V,ff, and hence that the inclusion of interband
interactions will in general enhance the value of R. It
is found in the present calculation that the numerically
most important result of this enhancement is to reduce
the numerator 1 E in term fi of Eq. (4.1—2), which
decreases the value of this term, and hence increases
the computed result for de/dP.

In addition to his estimate that U=S eV, Herring
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0
0 o
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FIG. 7. Comparison for Ni —Cu alloys of dT&/dI values deter-
mined experimentally by Okamoto e$ al (Ref. .5) with those
computed using the rigid-band and minimum-polarity models.

takes U'=3 eV and J=1 eV."These values are found
to give dTc/dP=4. 9X10 4 deg/bar. Kanamori as-
sumes U to be 2.6 eV and J to be 0.6 eV, ' but makes
no numerical estimate of U'. Taking it to be 5 eV in
this instance yields 6.4X10 ' deg/bar for dT~/dp.
Neither of these sets of values for U, U', and J leads
to results satisfying Eq. (4.13a) at the experimentally
measured Curie temperature (see Table II). It is of
course possible to find an arbitrarily large number of
such sets of values for which the product I,«Ii is exactly
unity at this temperature. If, for example, U' and J
are taken to be 3 eV and 1 eV as assumed by Herring,
then the choice U=3.9 eV completes such a set. These
particular values for the interaction parameters lead
to the result de/dP=3. 8X10 4 deg/bar.

V. ¹i-Cu ALLOYS

In Sec. III, a simplified strong-correlation analysis
was applied not only to Ni but to Ni —Cu alloys as well.
The use in the Ni—Cu case of a formalism based on the
t approximation would seem in fact, apart from effects
of disorder, to be more justified than its application
to pure Ni, since insofar as the additional electrons
associated with Cu atoms tend to fill the d band, the
assumption of low carrier density should have greater
validity. In order to apply the more realistic treatment
of Sec. IV to Ni—Cu alloys, it is necessary to have a
model for this system which permits computation of the
various band-structure-dependent quantities involved.
One widely used picture, in which filling of the d band
is in fact the sole effect, is the rigid-band model, intro-
duced by Mott" in 1935. It is assumed in this model
that the density of states of a given pure crystal re-
mains unchanged as another component is added to
form an alloy. The electrons are considered to be dis-
tributed equally among both types of sites, and thus
the only significant effect of alloying is to change the
position of the Fermi level. In Ni, there is about 0.6
of an unfilled state below the top of the d band (Xs),

and so this band should be just completely filled when
the concentration of Cu (which has one additional
electron per atoni) reaches 60 at.%. The fact that both
the Curie temperature and magnetization in the Ni —Cu
system are found experimentally to vanish at about this
concentration" has been taken to support the rigid-band
hypothesis for these alloys. An examination of other
effects, however, particularly the pressure dependence
of the Curie temperature, shows the model to be
seriously at fault. Figure 7 indicates that de/dP
calculated using the rigid-band description exhibits a
qualitatively incorrect dependence on Cu concentra-
tion, its magnitude showing an increase rather than
the decrease which is experimentally observed. The
analysis of Sec. III could not reveal such a failure
because, as emphasized there, the results were inde-
pendent of the explicit form of the density-of-states
function. In addition, it will be seen in the following
discussion that the criterion for the existence of ferro-
magnetism in these alloys is violated at Cu concentra-
tions far lower than those for which the alloy is known
to be ferromagnetic. Finally, the computed density of
states at the Fermi level in ferromagnetic Ni—Cu alloys
(the only instance in this paper in which parameters
of the ferromagnetic state are considered) decreases
much too rapidly in comparison with the observed
electronic specific-heat coefficient as the concentration
of Cu increases.

In order to help resolve these discrepancies with the
results of experiment, a simple alternative model,
based on the recognition that the rigid-band model
is deficient in failing to take into account the repulsive
interaction between d holes and Cu atoms, will be
proposed. " It will be assumed that in Ni—Cu alloys,
the two constituents retain the atomic configurations
characteristic of the pure crystals: approximately"
3d'4s and 3d"4s. As a consequence, each site remains
neutral, and the concentration of conduction electrons
stays roughly constant over the entire solid. This as-
sumption undoubtedly represents an oversimplification,
since there is probably at least some charge transfer
between Ni and Cu sites. It should be emphasized in
this connection that by contrast, the rigid-band hy-
pothesis constrains each site to have an appreciable
ionic character. The proposed model is the simplest
of a class of what might be called "minimum-polarity"
models, recalling the use of this term by Van Vleck
in describing correlations among the d electrons in
transition metals. "It will be seen to yield considerably
more satisfactory agreement with experiment than that
obtained using the rigid-band model in the three in-
stances mentioned above.

"Since the completion of this work, W. M. Lomer has kindly
informed us that a similar model was introduced by J.H. 0.Varley,
Phil. Mag. 45, 887 (1954), to account for the heats of formation of
binary alloys.

O' L. F. Mattheiss, Phys. Rev. 134, A970 (1964).
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In quantitative terms, the difference between the
two models may be stated as follows: Whereas in the
rigid-band picture, the number of d holes per atom
in Ni—Cu alloys is 0.6—x for @&0.6 and zero for x&0.6
(with x the atomic Cu concentration), the rninimum-
polarity hypothesis (in the simple form employed
here) implies that this number is 1—x, since a d hole
is considered never to enter a Cu site. Because the
portion of the density-of-states curve that is of primary
interest lies in the energy region about Ep, the Cu
d band, which undoubtedly appears as a virtual level
below this region, will be ignored in discussing the
minimum-polarity model. The additional assumption
will be made that per Ni atom, the paramagnetic d-band
state density remains unchanged as Cu is added, im-

plying that the density for the alloy may be written

PN; c (e) =(1—x)vN;(e),

with a similar relation for t2, states alone. The assump-
tion that the d band does not narrow appreciably with
alloying, contrary to the behavior which might be
characteristic of a virtual-crystal model, may not be
unreasonable for low Cu concentrations, since statis-
tical clustering of Ni atoms is expected to replace the
sharp d-band edges of the pure crystal by appreciably
broadened tails.

The analysis of Sec. IV may now be immediately
applied to the Ni—Cu case, using the rigid-band and
minimum-polarity descriptions of these alloys, and the
set of values U=3.9 eV, U'=3 eV, and J= j. eV in-
troduced at the end of Sec. IV. It is convenient for
purposes of discussion to write Eq. (4.12) in the ap-
proximate form

d 1~To/d lnV —5/3+(5/3)(1+UE) '(hp' —Rhine') '

+$s+fs (5.1).
The two initial terms in this equation correspond to
that denoted $r in Eq. (4.12). The first of these gives
d 1nTc/d ln V in the strong-correlation limit, with
inter-d-band and conduction-band eGects neglected,
while the second represents, in approximate form (exact
when O', 1=0) the correction arising when U is taken
to be finite. The $s term is never of primary importance,
and need not be discussed further, while $s is found to
be roughly the same for the two models under considera-
tion."It is, therefore, the second term that is responsible
for the sharp diGerences in the behavior of the two
computed de/dI' curves shown in Fig. 7.

From Fig. 8 it is seen that Ap' —EA~' decreases with
x in roughly the same way for both rigid-band and
minimum-polarity models. The quantity E, however,
and hence (1+UE) ', changes in exactly opposite
ways in the two instances (Fig. 8). In the rigid-band
case, the increase of 1+UK is suKciently rapid largely
to compensate the decrease in h~' —RA~', and as a
result, the second term of the above equation is found

always to be subordinate in importance to the conduc-
tion-band term $s, a strongly negative quantity whose
magnitude increases with x. The associated de/dI'
( Kid lnT&/d lnV), therefore, rises with increasing
Cu concentration, in contrast to the behavior found
experimentally. In the minimum-polarity case, on the
other hand, the decrease of AJ' —EA~' is reinforced
by that of 1+UE, and thus the second term in Eq.
(5.1) becomes more and more positive as the level of
Cu concentration is raised. This increase is found
largely to counterbalance the decrease of $s, and good
agreement is obtained with the results of experiment
(Fig. 7).

It is possible to give a simple physical interpretation
for the diGerence in behavior of E in the two models
which leads to such a dissimilarity in the results for
dTo/dI'. The higher the Cu concentration in the rigid-
band case, the smaller the number of d holes, and
hence the more easily they avoid each other. For this
reason E, whose magnitude determines the effective-
ness of this correlation Lcf. Eqs. (2.32) and (2.33)7,
increases with x. In the minimum-polarity model, on
the other hand, Cu sites are completely unavailable to
d holes, and thus this avoidance becomes more difFicult

as Cu is added, implying a decrease of E with x.
A second failure of the rigid-band model is its in-

ability to satisfy properly the criterion for the occur-
rence of a phase transition LEq. (4.13a)7, a deficiency
alluded to by Kanamori. '6 According to the rigid-band
model, I,ff decreases as Cu is added, since E increases.
In addition, because ep moves toward a region of lower
state density (see Fig. 1), F decreases as well. Thus,
for a suSciently large Cu concentration, though one
short of the approximately 60% which would just fill

the d band, it must be impossible to satisfy Eq. (4.13a)
at any temperature. " Kirkpatrick in fact has found,
using the above procedures, that this relation implies
Tc to be zero at only 10% Cu.s' Figure 9 shows I,ffF
at the experimental value of the Curie temperature (as
a function of x), evaluated for the rigid-band model.
A correct theory of course would yield a horizontal
curve of ordinate unity.

The minimum-polarity model, on the other hand,
yields an I,rr that increases with x (since E J, ). This
means that though Ii is found to decrease here even a
little more rapidly as Cu is added. than it did in the
rigid-band case," the product I,gfF computed at the
experimental Curie temperature remains closer to
unity (Fig. 9) . The value of 2'o implicitly determined

by Eq. (4.13a) for this model decreases to zero at
about 35% Cu, s' which represents a decided improve-
ment over the rigid-band result.

It is instructive 6nally to examine the way in which
the minimum-polarity model improves the agreement

6~ It should again be noted that paramagnon effects have not
been included in the present treatment.

ss E. S. Kirkpatrick (unpublished).
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spin band is higher in the ferromagnetic than the para-
magnetic case was taken into account by scaling the
peak height linearly between @=0 and @=0,6. The
curve rises initially because the Fermi level is on the
ascending rather than the descending side of this peak
in ferromagnetic Ni. For the minimum-polarity case,
the contributions of both minority- and majority-spin
bands must be included. The effects of the concentra-
tion dependence of the splitting between these bands
in the ferromagnetic region were incorporated in an
approximate way, " and the peak heights were scaled
as before. The experimental curve in Fig. 10 strongly
suggests that d holes are present even at large Cu con-
centrations. This fact stands in sharp disagreement
with the predictions of the rigid-band picture, but ac-
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FIG. 8. The quantities h.p' EArr' (solid —lines) and P (dashed
lines) for Ni—Cu alioys, evaluated at the experimentally measured
Curie temperatures using the rigid-band and minimum-polarity
models. It is the diGerence in behavior of the two E curves that
leads to the dissimilarity of the computed results for dTc/dP
shown in Fig. 7.

with the results of low-temperature specific-heat ex-
periments. Figure 10 compares, as functions of x, the
electronic specific-heat coefficients for Xi—Cu alloys,
measured by Gupta, Cheng, and Beck,"with the zero-
temperature Fermi-level state densities computed for
these alloys using the rigid-band and minimum-polarity
models. All curves in the figure are normalized to the
same value at @=0. In graphing the specific-heat re-
sults, the proportional contribution of dressing effects
was assumed to be independent of x. The curve for the
rigid-band case was obtained using the density of states
for the minority-spin band of ferromagnetic Ni cal-
culated by Hodges et ul.""The fact that in these cal-
culations the state-density peak near the top of each
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FIG. 10. A comparison for Ni—Cu alloys of the electronic
specific-heat coeKcients measured by Gupta et al. (Ref. 63) with
the zero-temperature Fermi-level-state densities computed using
the rigid-band and minimum-polarity models. All curves have been
normalized to the same value at zero Cu concentration. In graph-
ing the specific-heat curve, it was assumed that the proportional
contribution of dressing sects is independent of concentration
level.

cords well with those of the minimum-polarity model.
It should be emphasized in conclusion that while a
formal theory for this model (and the associated re-
finements) remains to be given, the fact that it is able
to account in a reasonable way for a variety of experi-
mental results shows it to be worthy of further con-
sideration.
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FIG. 9. The product I,«F for Ni—Cu alloys, computed at the
experimentally measured Curie temperatures using the rigid-band
and minimum-polarity models. Its value should be unity at all Cu
concentrations for which the mixture is ferromagnetic (dashed
line).

63 K. P. Gupta, C. H. Cheng, and P. A. Beck, Phys. Rev. 133,
A203 (1964).
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'4 The splitting was decreased to zero at x=0.6 in such a way
as to change the number of electrons in each spin band linearly
with x.


