
H. N. OK AND J. G. MULLEN 168

are 6tted very closely by those determined by crystal-
Geld theory under the assumption of the spin-orbit
coupling, Heisenberg exchange interaction, and tetrag-
onal crystalline field (see Figs. 4 through 7). Points
with error bars are determined by diagonalizing the
4&4 interaction matrix to fit Mossbauer spectra, and
represent the estimated confidence in this fitting. The
solid curves are determined from crystal-field theory.
In this fitting, we adjusted various parameters, which
turned out to be in reasonable agreement with those
reported by others: (r ') =4.4 a.u. and Q=0.21 b are
essentially the same as those reported by others. ""

8,= —488 kG is also nearly the same as —500 kG
reported by Okiji and Kanamori. "The covalency fac-
tor cP for many ferrous compounds" is reported to be
between 0.6 and 0.8, and our adjusted covalency factor
of 0.69 is also in this region. This implies a spin-orbit
coupling constant A. =+90=102.3'K. The spin direction
of L113j (that is, 25' from the c axis) is nearly the
same as the 27.3' value reported by van Laar, ' even
though a comparison with these results is of limited
value, because most samples of cobaltous oxides used
by people in the past were probably CoO(I, II) in-
stead of pure CoO(I).
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The change in the free energy that occurs when electric and magnetic fields are simultaneously applied
to a magnetoelectric medium is calculated. It is shown that a quadratic form related to this change in the
free energy is positive definite, from which it follows that all elements of the magnetoelectric-susceptibility
tensor must be smaller than the geometric mean of appropriate elements of the magnetic- and electric-
susceptibility tensors. It is pointed out that the diamagnetic contribution to the magnetic-susceptibility
tensor is negligible in materials in which the magnetoelectric eGect is allowed. It is concluded that the
magnetoelectric susceptibility should be small compared with unity, except possibly in ferroelectric or
ferromagnetic materials.

INTRODUCTION

MAGNETOELKCTRIC medium is one in which
.g there exists a linear relationship between an elec-

tric 6eld and the medium's magnetic polarization and
between a magnetic Geld and the medium's electric
polarization. The possibility of such an effect was
Grst pointed out by Landau and Lifshitz. ' Subsequently,
Dzyaloshinskii' predicted that the magnetoelectric
eGect should occur in Cr203. Experimentally, the eGect
was first seen by Astrov' in Cr203, and additional ob-
servations have been made on this and other materials
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The purpose of this paper is to show that the ordinary
electric and magnetic susceptibilities provide an upper
bound on the magnitude of the magnetoelectric effect.
This is done by calculating the change in the free
energy that occurs when electric and magnetic Gelds

are simultaneously applied to a magnetoelectric me-
dium. An expression for this energy change is obtained
by using the method of "thermodynamic perturbation
theory. " It is shown that a quadratic form related
to this change in the free energy is positive definite,
from which it follows that all elements of the magneto-
electric-susceptibility tensor must be smaller than the
geometric mean of appropriate elements of the mag-
netic- and electric-susceptibility tensors.
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MAGNETOKLECTRIC SUSCEPTIBILITY

Here e, sl, p, and p, are, respectively, the (magnitude
of the) electron charge, the electron mass, the electron
momentum, and the electron-spin magnetic-moment
operator and c is the speed of light. The summation is
over all electrons in the system, which we take to be
of unit volume. The scalar and vector potentials P and
A are related to the uniform fields E and H that would
be present in the absence of the magnetoelectric ma-
terial by

P= —E r,

A= —,'(HXr).
(2a)

(2b)

Note that Coulomb gauge is being used throughout;
thus V A=O. By use of Eq. (2), Eq. (1) becomes

V=+ [—(pr, +y,) H+er E+(e'/Strtc')r 'H'sj

(3)
where

pz, = —(e/2mc) rXp (&)

is the electron-orbital magnetic-moment operator, and
rs. =r—r HH/Hs is the comPonent of r PerPendicular
to H. Note that pl. is not gauge-independent.

Now, for the 56 magnetic classes of interest, it is
possible to obtain individual upper bounds on all the

"R.R. Birss, Rept. Progr. Phys. 26, 30'7 (1963).
'2 S. Shagavantam, Crystal Symmetry aed Physical Properties

(Academic Press Inc. , London, 1966), p. 171.

CALCULATION OF THE UPPER BOUND

Let us apply uniform electric and magnetic Gelds
to a magnetoelectric material. The material will be
considered to have the form of a Rat oblate ellipsoid,
and to be positioned in the Geld region in such a manner
that the fields are perpendicular to the ellipsoid's axis
of revolution. Then the applicable electric and mag-
netic demagnetizing factors can be made arbitrarily
close to zero, and we shall not have to introduce any
demagnetizing corrections to our calculated suscepti-
bilities.

In fact, this is possible only when there are no oG-
diagonal elements of the various susceptibility tensors
connecting fields in the plane of the disk with polariza-
tions perpendicular to the disk. In the case of the 58
magnetic classes in which the magnetoelectric effect
is allowed, this requirement can be met in 56 by using
materials cut suitably with respect to the crystalline
reference axes.""Only in the triclinic classes, 1 and
1, wherein the magnetoelectric-susceptibility tensor
has no crystalline symmetry, do the above considera-
tions not apply.

We show in the Appendix that the perturbation in
the Hamiltonian in the presence of the external fields
may be taken as

V=+ [(e/srtc)p A+(e'/2mc')A' —ep —p, V&(Aj.

elements of the magnetoelectric-susceptibility tensor

by considering only cases in which the external electric
and magnetic fields are perpendicular or parallel to
each other. The fields must, of course, be suitably
positioned with respect to the crystalline axes of any
particular material. Thus we will have, in any particular
case, only one component of E, namely, Et ()=1, 2,
or 3), and only one component of H, namely, H„
(rt =1, 2, or 3), with either )=i)(E ~~ H) or $/rt(EJ H).

We can now write Eq. (3) as

V=a"H„+b&Et+ ',d"H„',- (5)

where the superscripts on the operators u&, b&, and d&

indicate that they depend on the directions in which
the electric and magnetic fields are applied. (Super-
scripts are used for convenience only, and no summation
is implied. )

We now calculate the free energy of the magneto-
electric medium, using the method of "thermodynamic
perturbation theory. '" This method gives

where
co„=exp[(Fp —E„&'&)/Jt Tj. (7b)

Let us denote by F2 that portion of F which consists
of terms second-order in the Geld components. Then,
upon subsituting Eq. (5) into Eq. (6), we obtain

(2&T) ([(tt " (a")Av) He+ (b&J—(b&)av) EQ )Av

+-', (d ).„H„. (S)

Note here that the terms in F2 proportional to H„'
are not individually gauge invariant. That is, such
quantities as paramagnetic and diamagnetic suscepti-
bility are not individually gauge invariant; only
their sum, the total magnetic susceptibility, has this
property. "

Inspection of Eq. (8) shows that the 6rst two terms
on the right side (i.e., those coming from the second-
order correction) are negative for all values of H„and
Et. (For the first term, this follows from the fact that
a —po„and E„' & —E & & have the same algebraic sign. )

"J.S. Grifiith, The Theory of Transeteon Meta/ lons (Cambridg-e
University Press, Cambridge, England, 1961),p. 434.

F=F,y(V)„—;g n'" — -"'
—(2&&) '((V-—(V)A.)')A' (6)

Here Fo is the unperturbed free energy, E„&'& and E &'~

are eigenvalues of the unperturbed Hamiltonian, k is
Boltzmann's constant, and T is the temperature. The
symbol ( )A„denotes

(W)A, ——Q to„W„„, (&a)
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i(g& 0,

x»"&o,

(13a)

(13b)

~vs/4~& (xse"s«) '". (13c)

The inequality (13a) expresses a well-known limita-
tion on the diagonal components of the electric-suscep-
tibility tensor. 's The inequality (13b) expresses an
analogous limitation on the paramagnetic-susceptibility
tensor. The inequality (13c), however, places an upper
bound on every element of the magnetoelectric-suscep-
tibility tensor. We thus have the result that each ele-
ment of the magnetoelectric-susceptibility tensor must
be smaller than the geometric mean of appropriate
elements of the paramagnetic- and electric-suscepti-
bility tensors. We remark that the inequalities (13b)
and (13c) might be capable of improvement by a ju-
dicious choice of gauge; that is unnecessary, however,
in view of the approximation to be made.

For materials having localized permanent magnetic
moments, the diamagnetic contribution of Eq. (9) will
be far outweighted by the paramagnetic contribution
of the unpaired electrons. Since all magnetoelectric
materials must, of necessity, be of this type in order
for the eGect to be allowed, we may neglect the small

"G. T. Rado, Phys. Rev. 128, 2546 (1962)."S. Perlis, Theory of Matrices (Addison-Wesley Publishing Co.,
Inc., Cambridge, Mass. , j.952), p. 94. .

Consider now the last term on the right side in Kq. (8),
which involves the quantity d&. Comparing Eqs. (3)
and (8), we see that

(ds)A, Q—— (es/4sttc') (ri'&A, . (9)

The negative of the expression on the right side of
Kq. (9) is the diamagnetic contribution x» to the
magnetic susceptibility. Combining the above observa-
tions, we have

Fs+ sx„'H,'& 0

The equality holds only for H, =E~——0.
Now the free energy F2, which corresponds to a choice

of E, H, and T as independent variables, may be
written, for the disk-shaped specimens discussed
earlier, as

Fs= sxee—Hs' (~st—/4 )HeEtsK«E. —P, (11)

where x», (n,t/4'), and «s» are appropriate elements
of the magnetic-, magnetoelectric-, and electric-suscep-
tibility tensors, respectively. This has been discussed
for the magnetoelectric case by Dzyaloshinskii' and
by Rado. t4 Substituting Eq. (11) into (10) gives

sx.s"Hs'+(~.t/4~) H.Kt+ssttFt'&0, (12)

where x»&, the paramagnetic contribution to the mag-
netic susceptibility, is equal to p» —x» .

From the positive definiteness of the quadratic form
appearing in (12), we may conclude that"

diamagnetic susceptibility. Thus, for all practical pur-
poses, inequality (13c) becomes

~st/4~& (x-hatt) ". (14)

~e«(t eeet~)
'" (15)

must be satisfied in order to insure that the system be
thermodynamically stable. Here p,» and e~~ are elements
of the permeability and permittivity tensors, respec-
tively. For the case of cr~~ in Cr,O, , Kq. (15) gives as
an upper bound, (p~~e~~)t"=3.4. We thus obtain an
improvement of more than an order of magnitude by
using Eq. (14) rather than Eq. (15) to place an upper
bound on the magnetoelectric susceptibility.

DISCUSSION

By considering the change in the free energy of a
magnetoelectric medium in the presence of applied
magnetic and electric fields, we have calculated an
upper bound on the magnetoelectric susceptibility.
This upper bound is given by the geometric mean of
appropriate magnetic and electric susceptibilities. It
thus appears that the chances of finding substances
with large magnetoelectric susceptibilities will be
better in ferromagnetic as opposed to antiferromagnetic
materials. We note that the magnetoelectric suscepti-
bility in Gas Fe Os (x 1),r which is ferromagnetic, "
is an order of magnitude greater than that of Cr~03,
which is antiferromagnetic. It may also be concluded
that materials which are both ferromagnetic and ferro-

"T.J.Martin and J.C. Anderson, Phys. Letters 2, 109 (1964).'"T. H. O'Dell, PhiL Mag. 13, 921 (1966).
"D. R. Renneke and D. W. Lynch, Phys. Rev. 138, A530

(1965).
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Schieber, Phys. Rev. Letters 15, 953 (1965).

COMPARISON WITH EXPERIMENT

The most studied magnetoelectric material to date
is Cr203.~ "' The highest value of n~~, the magneto-
electric coeKcient parallel to the trigonal axis, that has
been reported is" O.~~=SX10, at a temperature of
approximately 285'K. This would correspond' ' to an
0,

~~
of about 8.6X10 4 at T~255'K, the temperature

at which o.
~~

is maximum in Cr203. It has been esti-
matedr4 that cr~~ (T=255'K) may be as large as
14X10 4.

Using values of ~~t=0.85" and x)( ——9.2X10 '," at
255'K (y~~" is negligible at this temperature's), we find
that 4sr(K~ ~x~ ~)

'"=0.1.Thus we see that cr~
~
(T=255'K)

is approximately 1% of the upper bound given by Eq.
(14).All quantities are given in gaussian units.

It is easily shown'~ that, according to conventional
theory, the inequality



16S M A 0 N E TO EL E C T R I C SUSCEPTIBILITY

electric may have relatively large magnetoelectric
susceptibilities.
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APPENDIX

It is clear that the derivation of the upper bound
presented here did not depend on the particular charac-
ter of the operators &t& and bt appearing in Eq. (5). An
important point, however, was that no term of the form
c&tH„Et appeared in Kq. (5). If such a term had been
present, it would have contributed to the (n„t/4&r) H„Et
magnetoelectric-susceptibility term in Eq. (12) through
the (V)A, term in Eq. (6). Since such a term may be
positive or negative, we could no longer show that the
quadratic form of Eq. (12) was positive definite, and
our derivation would fail.

We now wish to show that the leading contribution
to a c&tH„Et term in Eq. (5) is negligible. To do this,
it is useful to think of the many-electron Hamiltonian
as an expansion of v/c, where the electron velocity v

is small compared with the speed of light c. From this
point of view, Eq. (1) gives the perturbation in the
Hamiltonian to order zero in v/c. The many-electron
Hamiltonian to order (v/c)' has been discussed in full

by Slater, "and we shall not go into it in detail here. We
simply note that, to order (v/c)', only the spin-orbit
mechanism leads to a term of the type c&&B„E~,all other
mechanisms contribute only to the e&II, and b&E~

terms in Eq. (5).
We now show that the term c't&H„E~ arising from the

spin-orbit mechanism is negligible in comparison with

H„E~ terms in the free energy entering from the second-
order contributions. For definiteness, we shall consider
the case $=rt. (The procedure for P&rt is completely
analogous. ) Then there will be first-order contributions
to F~ of the form

Z Z (c/4~') ~.I &~ I (It ) ~
I ~) &~ I

r~
I ~)

fm

+&tt ) ri ) ttt) ~ &tN ) (I&,) ~ j N)jH(Eb (A1)

"J.C. Slater, Qgggtgm Theory of Atomic Strgctgre (McGraw-
Hill Book Co., Inc. , New York, 1960), Vol. II, Chap. 24.

where (It,) t.=(It,—y, HH/H') is the component of
p, perpendicular to H. The first summation is over
all electrons in the system. From the Hamiltonian of
Eq. (1), there will be a second-order contribution to
Iie of the form

2 Z
2 (,&"

E (,&
~-L&NI(t)tl~)&~l~tl~)

(o&m o&~ 1)c

+ &I [ r, [ tN) &ttt [ (t „),[ tt)]

+&'/»r& 2 .&~l &~&(~IN&&~lnI~))&(a

(A2)

Ignoring for the moment the matrix elements in (A1)
and. (A2), let us examine the ratios of the coefficients
appearing in these two expressions. That is, we wish
to find the maximum values of the ratios Ri ——kT/tnc'
and R2= [

(E~(e& E~(")/(&d~—/o&~ 1) I/2tttc'—
As ft/tttc'~10 ", and as we need be concerned only

with temperatures of up to 1000'K, we 6nd that the
maximum value of the ratio R» is 10 ~.

To obtain a maximum for E2, we make use of the
fact that g (x) =x/(1 —e t") (P= 1/t'tT, x=E ( & —E„(&)

is a monotonically increasing function of x. Now, x
will certainly be less than the ionization energy of a
hydrogen atom, which is 13.5 eV. For this value of x,
kT&(x at any reasonable temperature, and we have
Re ——

~

E„&'&—E &'& ~/2mc' For
~

.E„"&—E„"&[=13.5 eV,
we And the maximum value of E2 to be 10 '.

Turning our attention to the matrix elements appear-
ing iri (A1) and (A2), we see that the first-order con-
tribution in a given direction (say, z) is 10 ' times the
sum of the second-order contributions in the x and y
directions. But we already have shown that the second-
order x and y contributions are bounded by p,z, and
x„~, respectively. Thus we 6nd that the upper bound
on &r„/4r is actually &&,«,+10 '(x,&&,+x„«„). On
physical grounds, we may drop this latter term just
as we did with the diamagnetic contribution. This then
justifies our use of Eq. (1) as the perturbation in the
Hamiltonian caused by the external magnetic and
electric Gelds.


