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or (4) for 8 in the regions I, II, or III, respectively. It
is also interesting to note that there is a finite polariza-
tion for T& T, in the absence of an external field, again
a consequence of the lack of symmetry of the model.
The polarizability if= B—Pj88 can now be computed ex-
actly. We note only its critical behavior x~(T—T,)

as compared to the (T—T,)
—' singularity of the Slater

KDP model. 4
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The statistical thermodynamics of a binary solid mixture of a ferromagnetic or antiferromagnetic com-
ponent A and a nonmagnetic component B is developed theoretically. The nearest-neighbor interaction
and exchange energies and a superexchange energy between any two A atoms sharing one B atom as a
nearest neighbor are introduced. In addition to magnetic spin ordering, long-range A-B sublattice ordering
of a type appropriate to a body-centered cubic lattice is considered, using the zeroth-order statistical ap-
proximation. The eGects of dilution and long-range component ordering on the onset of magnetic ordering
are calculated for several sets of parameter values over the whole range of mole fractions. If the super-
exchange integral is large enough relative to the direct exchange integral, the curves of Curie (or Ndel)
temperature against mole fraction are convex upwards, and a maximum may be observed. The interaction
of long-range ordering with magnetization is considered in both equilibrium (annealed) and frozen
(quenched) mixtures.

I. INTRODUCTION

N a series of three papers, Bell and Lavis, ' Lavis
and Fairbairn, ' and Lavis and Bell' investigated

the effects of long-range component ordering on the
occurence of magnetization in a binary mixture with a
magnetic component A and a nonmagnetic component
B. In Refs. 1 and 2, the lattice was divided into two
equivalent sublattices, and in Ref. 3, into four equiva-
lent sublattices. Nonmagnetic pair-interaction energies
and direct-exchange —magnetic-interaction energies for
3A pairs were postulated for nearest-neighbor pairs in
Ref. 2 and for all pairs (varying with the distance
between the two members of the pair) in Refs. 1 and 3.
For both the zeroth-order approximation used in Refs.
1 and 3 and the Bethe-pair approximation used in
Ref. 2, the Curie temperature was seriously aGected
by the presence of component order, and in Ref . 1, the
sign and magnitude of the exchange interaction be-
tween magnetic pairs on the same sublattice were
shown to be signilcant. In all cases, however, the
Curie temperature was seen to be a monotonically
increasing function of the percentage of magnetic
atoms present. In practice, exceptions occur in, for
instance, mixtures of ferromagnetic with semiconduct-
ing elements. 4

' G. M. Bell and D. A. Lavis, PhiL Mag. 11, 937 (1965).' D. A. Lavis and W. M. Fairbairn, Phil. Mag. 13, 477 t 1906).
3 D. A. Lavis and G. M. Bell, Phil. Mag. 15, 587 {1967).' S. Arajs, Phys. Status Solidi 11, 121 (1965).

The present paper introduces superexchange in the
form of an exchange interaction between two second-
neighbor A atoms, with a 8 atom as a common nearest
neighbor. The existence of such an interaction in
certain paramagnetic salts was first proposed by
Kramers' and has since been discussed by many
authors, including Anderson, 6 for nonmetallic B. As
far as we know, the statistical consequences of super-
exchange in an incompletely ordered mixture have not
previously been discussed, and we shall use the sim-
plest, or zeroth-order, approximation. While our anal-
ysis is not applicable to the face-centered cubic lattice,
it is likely that similar results could be obtained.

As in Refs. 1—3, we shall assume that the magnetic
moments of the 3 atoms are unaffected by the con-
centration. We shall also assume that the lattice
structure of the mixture is unchanged either in dimen-
sion or type by redistribution of the atoms upon it.
This tends to confine us to limited ranges of concentra-
tion when comparing with experiment.

II. FREE ENERGY AND INTERNAL VARIABLES

We make the following assumptions:

(i) The lattice divides into a pair of equivalent
sublattices, and each lattice site has s nearest neighbors
in the other sublattice and none in its own sublattice.

s H. A. Kramers, Physica 1, 182 (1934).
e P. W. Anderson, Solid State Phys. 14, 99 (1963).
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The most important example is the body-centered
cubic for which 2'=8 and each sublattice is simple
cubic. We suppose that the N lattice sites are occupied
by N&=Ncaa 2 atoms and N&=Nc& 8 atoms. The
symbols N~( ) and Ng&') denote the number of A atoms
on sublattices a and b, respectively, and N&(') and
N&&') are similarly de6ned. The long-range order
parameter 0. is deined so that

NA&'& = ,'NcA(-1+o),

NB&"& =-,'N(cB —cAo),

NA&'& =gNcA(1 —o),

NB&'& = ,'N(cB+c-Ao) . (2.1)

(ii) Apart from the superexchange Lsee (iii) belowj,
we neglect all interactions beyond nearest-neighbor
distance. We write the nearest-neighbor —pair-inter-
action energy in the form

NAABAA+NABeAB+ NBBeBB 2Je+8;~ St

,'z (NAeAA-+NBeBB) +NABtoAB 2Je+—s; s;, (2.2)

where
rt)AB = eAB (eAA+eBB) ~

Here Nzz, Nz&, and N» are, respectively, the numbers
of AA, AB, and J38 nearest-neighbor pairs; egg, e~g,
and e» are the corresponding pair-interaction energies,
while J& is the exchange integral, and s; and s; are spin
vectors on the members of an AA nearest-neighbor
pair. Using the zeroth-order statistical approximation,

NAB =2«r(NA(o)NB&'&+NA&" NB'&j/N

=NcAz(cB jcAo'), (2.3)

gs;.s;=2«S&'& S&')/N, (2 4)

where 8(') and S&') are the vector sums of all the spins
on sublattices c and b, respectively.

(iii) We introduce a superexchange interaction w'—
2J's; s, acting between pairs of A atoms, with a 8
atom as common nearest neighbor. In the zeroth-order
approximation, the number of such triads of atoms on
the lattice is

«NA& & (.—1)NA&.&

1N (&) ~1N (a)
2 1N 1N 2 1N 1N P

2 2 2 2

which can be written NcA'z(z 1)L-', cB+—(1—scB)os), and with a random distribution of spins, we can write

zN„& & (z 1)N„& & S( &.S(o) zN„&s) (z 1)N„&s& S(s).S&s&

lN lN (N (a))2 s 1N 1N (N (s))s

=z(z —1)[(cB+cA(l)S&' ~ S"+ (cB—cAa) S&'& S&'&j/N.

Hence the superexchange contribution to the energy is

E =z(z —1) INcA [scB+(1 scB)&l ]st)—2DcB+cA—a) S&a& ~ S& &+a(c BcAo)S&s& S&s&)JsI. (2 5)

(iv) We write —,Nr)t& & and —,Ntl(s) as the spin components in a given direction of the sublattice spin vector
sums S&'& and S&'&, so that e&t'& and Ns&'& are the mean spin components per site. For —,'Nt)s&'&, —',N)N&'&))1, we have
effectively

S(o).S(o) —(lN)s(sN(o))s S(s) ~ S(s) = (&lN)s(s)s(s))s S&'& S&"= (-'N)'m&'&m&'&

(see Van Vleckr). We may then add (2.2) and (2.5) to give the conigurational energy

E,=E,&'&+N«I cA'Ptt|AB+ (z—1) (1 ,'cB)tt)' j&l' —Je—t)t' 's)s(s' —,'Js (z 1)f—(cB-+cAo—) tN& &'+ (cB cAo ) r)s&s—)'jf (2.6).
For simplicity, we replace the term (1—slcB) w', which
varies from ttt to lsd', in the coeflicient of os by w . If
the c~ dependence were retained, it would introduce a
degree of asymmetry in the ordering transition tempera-
ture against concentration curves which would depend
on the ratio to'/toAB. In the extreme case when wAB ——0,
the maximum would be shifted to c~=0.58, while in the
case m'=0, the approximation is negligible. The effect
of neglecting the c& dependence is, therefore, not likely
to be large.

The calculation of entropy is identical to that of
Ref. 1, and applying the modification (iv), we can

l J.H. Van Vleck, The Theory of Electric aid Magrtetic Sescepti
abilities (Oxford University Press, London, 1932).

write the Helmholtz free energy

F.= Ic2' lng(tts&o), )N&'&, o—)+E (r)s&'& )st&'&, o), (2.7)

where

y& ' = [g exp+&(s —s—1)jINA" exp( —-,'ply)t& &),

2s+1

I g exp[j3s(s s 1)JINA—"' e—xp( —,'PsNrN&»)

(2.9)
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and

8, is the Brillouin function. ' ~

m' =2(Ng &/N)SB, (P]s),

m&'& =2 (Ng&'&/N) sB,(Pss)

IIL EQUILIBRIUM CONDITIONS

(2.10)

We have for equilibrium the stationary-point conditions

BF /Bm&'& =2 (kTPiN) —[3klV/2s(s+1) c~j[T&om&~&+ TP m'&&(c»+ego) )=0,
BF,/Bm"' =-', (kTPslV) [3k—A/2s(s+1) c~j[T&om&'&+ Tom&" (cs c~o)—j=0,

(3.1)

(3.2)

Q exp', (i—s—1)](1+o)(c»+ c~~)
BFg/Oo = 2cgNkT -ln & 2 +,

Z-p[.('- -1)&(1--)("-"-)
where

c~Nka 3NkTi'(m&~&' m&'"—) =0,
Cg 4s(s+1)

(3.3)

in which

Ti4' =c~t rio =2c~s (s+ 1)sJo/3k,

Ti =cari =cg«rio=2c~s(s+1) s(s —1)J~/3k,

T2 chic»r2 ———2cgc»y ——
~

J'i
i s/k,

f=~'/I ~' I, «= (s 1)~'/I ~-' I, v=[~~s+(s I)+j/}—J'
i

(3 4)

(3.5)

(3.6)

(3.7)

Combining (2.10) with (3.1) and (3.2) gives

m&'& = cg (1+o)sB,f [3ri4'/T(s+1) j[fm&'&+ «m&'& (c»+ego) j},
m&'& =cg(1 0) $Bg&&[3rio/T—($+.1)j[f'm" +«m'"(cB cA&r) j}. —

(3.8)

(3 9)

If (mo& &, mo&~&, oo) is a solution of (3.1)—(3.3) then the condition for a second-order transition from that state
at a temperature T is that the equations

(PF /Oo2)og&r+(PF /OoOm& &) Om& &+ (O2F /OirOm&&»)oem&&» =P

(O'F,/Bm&'&Bo)ohio+ (O'F. ,/Bm& &')obm'&+ (O'F,/Bm&'&Bm&") i&bm&'& =0,

(O'F,/Bm&'&Bo )ohio+ (O'F,/Bm&'&Bm&'&) Obm&'&+ (O'F,/Bm&'&') i&Om&'& =0, (3.10)

should have a solution nonzero in some or all of 80,
bm& &, and bnz&'&. This will be the case if the determinant
D(m&~&, m&~&, o) formed from the coefficients of (3.10)
is zero.

At high temperatures the only solution to (3.1)—(3.3)
is m&' =m&~& =o =0 (state I). In this case,

O'F,/Bm& &Bo=O'F,/Bm&'&Bo =0.,

and D(0, 0, 0) factorizes into two parts, corresponding
to a transition to an ordered nonmagnetic state for
which' ' m&8&'m&p&, boWO (state II) and a transition
to a disordered magnetized state for which ho=0,
&n& &=+Om&@WO (state III).

We shall also consider transitions from states II or
III to a state which is both ordered and magnetic
(Oo, Om&o&, i' '

&ma&ll &nonzero) (state IV) .

This equation has soluti. ons

T=czrg4'(cJ&«&1) . (3.11)

The signi6cance of the choice of sign is seen by
taking o.=p in (3.8) and (3.9). These equations then
have the solution

m&'& =+f'm&" (3.12)

The transition to state II occurs at the temperature
given by taking m&'& =m&'& =&r =0 in O' /F'O=o0,
namely, at T=Tz.

%hen we examine the transition to state III, how-
ever, the effects of superexchange are evident. The
factor of D(0, 0, 0) corresponding to the magnetic
transition when equated to zero gives

(T—c~c»«re) ' c~'r~4'=0. —
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8'
kT

IJ'I

CA I

J&&0. The magnetization transition temperature for
equilibrium ordering is obtained by simultaneous solu-
tion of Eqs. (4.1) and (3.3) (m& i =m&'& =0) . For a& 1,
(4.1) is a monotonically increasing function of o, and
hence magnetization will be enhanced by ordering.
Similarly for —1(~&0, (4.1) is monotonically de-

creasing, and we deduce that magnetization will be
decreased by ordering. Outside these ranges (4.1) is
no longer monotonic; we may, however, determine the
relative behaviors of the Curie temperatures in the
presence and absence of ordering near I', the crossing
point of T~ and T2, and at T=O. Near I', the deter-
mining factor is the sign of

(d'T, /do') .=s c,rg4'—$—2 sc„+~' 1j, —

where c„is the value of cg at I".Note that
FIG. 1. Curie temperature against mole fraction of magnetic

compound (s=2) in the disordered state for various values of s.

while c„is given by

(d T,/do ),=p 0, ——

and as ~~-~~0,

T~cgris(CBK& 1) . (3.13)
Hence

Of the two temperatures given by (3.11), the higher
temperature

c„=Lrs—rid(~+1) j/(rs —rie~). (4.2)

(d'T, /do'), ~ c„(rie——) 'V (~) /(rs risK) ' (4 3)

Ti =eyrie (cits+1) (3 14) where

g & —L1+3ys—'(s+1)—'j.
Examination of V(s) reveals the presence of two roots

corresponds to a transition, and from (3.12) we see (") ~"+ ~/ ( + )~I" +L ~/ + )+ j
that this is to the ferromagnetic state m&'=mt:~& if +(6y/s(s+1)+1)» —3y/s(s+1) I.
J&&0, and to the antiferromagnetic state m~'& = —m&~~

if J~(0. The condition that 0(c„&1implies that
The Curie (or Neel) point Ti depends significantly

on s (see Fig. 1). If ir& —1, magnetization does not
occur for cg &co, where

cp
——(1+~)/r, (3.15)

For 1~&0, the Curie temperature plotted against mole
fraction c~ is convex towards the cg axis. For ~&0, the
curve becomes concave, with a maximum appearing at

/
/

/
/g /

cg =-', (1+r) /ic (3.16)

for I(.& 1. This maximum will tend towards cg =—,'as ~

tends to infinity. This corresponds to the case when
direct exchange becomes negligible (J&=0) .

12

IV. MAGNETIZATION TRANSITIONS IN THE
ORDERED STATE (STATES II TO IV)

The magnetization transition in the ordered state is
given by factorizing D(0, 0, o.) into the form D r)sF,/Bos
and taking the factor D =0. This gives

T, =cgri&ttK(c~+c~o')+(~'o'+1 a')"$ (—41)

Figure 2 contains graphs of T, plotted against cg with
parameter o. for ~=4, s=s. From (3.8) and (3.9) this
corresponds to a transition in which the sublattice
magnetizations are parallel if J&&0 and antiparallel if

FIG. 2. Curie temperature against mole fraction of magnetic
component {s=-,') in the frozen (quenched) state for ~=4 and
various values of the (frozen) long-range ordering parameter cr.

( ——,perfect order; —--, impossibie value of 0 at given c~.)
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at values of ~ greater than one, another root ~1 between
one and zero, and the remaining root ~2 at a value less
than minus one. This implies that magnetization will

be enhanced by ordering near P for

»,(«(—
I
1+3ys-'(s+1)—'j,

supressed for ~2&~&a1, and enhanced for ~&z2, which
is in agreement with the monotonic character of (4.1)
mentioned above.

As T tends to zero, the Curie temperature in the
presence of ordering will approach that for co~piete
ordering tangentially. A consideration of (3.3) reveals
that complete ordering for cz&-,' is given by 0.=1, and
for cz&2 by o =cii/cz. Substitution in (4.1) gives

2&«) 1: Magnetization is enhanced by ordering for
all concentrations.

1&~&0.456: Magnetization is enhanced by ordering
near P and suppressed near T=-0.

0.456& ~& —2: Magnetization is decreased by order-
ing at all concentrations, there being a critical concen-
tration at cg ———,

' when x&0.
—2& z& —2.286: Magnetization is decreased by

ordering near P and enhanced near T=O.
—2.286&z. Magnetization is enhanced by ordering

for aH concentrations.

Figures 3—2 are, respectively, illustrations of these
types of behavior.

T,=c~r,~f.+ I
~ Ij,

T~—rip! «Cii+ («2ciP+cA2 cB2) 1/21

(4 4)

(4 5)

V. ORDERING TRANSITIONS IN THF
MAGNETIZED STATE (STATES

III AND IV)

This indicates that for ~&0, the Curie temperature
will approach T=O at cg=O, and for ~&0, at cg=2.
For «)0, we have dT,/dc~ =2r,&«as compared with
dTi/dc~ =ri&(«+1), which indicates that ordering will

enhance magnetization for ~&1 and decrease it for
0&a&1. For ~&0, we see that no magnetization can
occur for cg& —'„and hence from (3.15) ordering must
decrease magnetization for 0& g& —2 and enhance it
for —2& ~. It may be shown that there is the possibility
of at most one crossing point of the Curie temperature
in the ordered state with T1. We can therefore catalog
the following types of behavior for the case p = —2, s =

~

(»i=0.456, «2= —2.286, »(2).

For the disordered magnetized state III, we write
m&~& =t'mi'& =m, and (3.8) and (3.9) become

m=cgsB, $3ri~rn(1+«cubi) (s+1) '1 '$ (5.1)

for mWO O'F/BaBmi i=8'F/BoBm&'i/0, and in the
relation

(5.2)

the Jacobian determinant does not factorize into two
parts; instead we must obtain a solution to (3.10) in
which none of bo-, 8m&'), 8m&" is zero. This may be
called a mixed transition (see Ref. 3). After some
simplification (5.2) becomes

AT
CA

T l T 3' n.1&XI T 3c~~r1~X't—
COAX

— c~r~!, m ——+ !—m —+
c+ i c/ s(s+1) i '

c~ s(s+1) i

T 3'»ri&X)

cg s(s+1) i '
gcli«r, &X T)
( s(s+1) cubi

6r1&X

s(s+1)
=0 (5.3)

T 3'»ri&X)

s(s+1) i '
6r1~X

s(s+1) '
(3cggn-, ~X T&

& s(s+1) cubi

where

p, =tp, =p and X=aLsB,(ps)]/ap.

By selecting the root of (5.3) which reduces to T= T2 when m=o, we obtain

(5.4)

where

3ri&csrN' ( 3c~2g2r1~X 1/2

T=T2 —U(m) 1— 1+ ! r, (c,.+» 1)+-
U'(rN) cps(s+1) I, s(s+1)

2U(m) =T,+3r,&s-i(sy1}-'L2cg'X»+ (1—» —cg«) (nPC~+Xc~') j.

(5.5)

(5.6)
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kT

lJ'I

3.

Fxo. 3. Transition temperature against mole fraction of mag-
netic component (s=-,'} in the equilibrium state for a=3, 7= —2.
(- ——,undisturbed I—II and I—III transitions. )

In assessing the behavior of the ordering transition in
the presence of magnetization, we may adopt the same
procedures as those used in IV, namely, to determine
the sign of ( O' T/dm )ss near I' and to note that the
transition curve for equilibrium magnetization will

approach its counterpart for complete magnetization
as T tends to zero. We obtain

dsT/drls =
$3r iss(1 —c„)V («) /2csr (s+ 1) (rs —rid«) sj

T= Ts (3rr~s'cn—cps/s(s+1) j/1 «(1+cd)—j
for complete magnetization. We may therefore classify
the following cases (again for 7= —2, s=-,') .

7&z&0.5: Ordering is enhanced by magnetization
for all concentrations.

FIG. 5. Transition temperature against mole fraction of mag-
netic component (s=s) in the equilibrium state for «= —1,
y= —1. (-——,undisturbed I-II and I-III transitions. )

0.5& ~&0.456: Ordering is enhanced by magnetiza-
tion near P and suppressed near T=0.

0.456&z& —2.286: Ordering is decreased by mag-
netization at all concentrations.

—2.286& a. Ordering is enhanced by magnetization
near P and decreased near 7=0.

VI. COÃCI USIOH

With direct exchange only, the zeroth-order
approximation (sometimes termed the "molecular-
field method") gives a linear dependence of Curie
temperature on mole fraction of the magnetic com-
ponent. (See the «=0 curve in Fig. 1.) When short-
range ordering e8ects are taken into account, the

l6.

kT

lJ'I

kT

lJ'i .

l2

Cz I

FIG. 4. Transition temperature against mole fraction of mag-
netic component (s=-',} in the equilibrium state for ~=0.5,
y = -4. (- ——,undisturbed I-II and I-III transitions. )

FIG. 6. Transition temperature against mole fraction of mag-
netic component (s=ss) in(the equilibrium state for «= —2.1,
y =-2. (-- —,undisturbed I-II and I-III transitions. )
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Curie-temperature curve lies below this line at large
values of cg for all parameter values, though at lower
values of cg, the behavior depends on the value of y '
(see also Bell and Fairbairns). Some mixtures conform
to this pattern, but others do not, as can be clearly
seen in Ref. 4, Fig. 2. When long-range component
order is introduced into the molecular-field model, the
Curie-temperature curve remains linear outside the
ordered region (including for all T&0 the region near
cg= 1), and inside it the curvature can be upward or
downward, depending on the values of the parameters.
However, the Curie-temperature curves are mono-
tonically increasing with c& in all circumstances. The
superexchange eGect introduced here makes a con-
siderable difference to this situation, even in the
zeroth-order approximation used in this paper. Figure 1
shows the Curie-temperature curves in the absence of
long-range order, and it can be seen that the curvature
is upwards for a&0, while for s&1 a maximum is
observed. For negative values of ~, there is a critical
concentration below which magnetization does not
occur. When long-range component ordering is intro-
duced as in Figs. 3—7, the eGect is more complicated.
In Fig. 3, with a value of l~ giving a maximum in the
disordered state, the upward curvature is enhanced
by ordering and the maximum shifted to a lower value
of cg. In Fig. 4, where there is upward curvature but

kT

Fxo. 7. Transition temperature against mole fraction of mag-
netic component (s=1) in the equilibrium state for e= —3,
y = —4 (-——,undisturbed I—II and I-III transitions. )

8 G. M. Sell and W. M. Fairbairn, Phil. Mag. 0, 907 (1961).

no maximum in the disordered state, the upward
curvature is increased for high values of c~ but reversed
for lower c~. In Fig. 5, where there is downward curva-
ture but no critical concentration in the disordered
state, a critical concentration at cz ——

~ is produced by
ordering. In Figs. 6 and 2, we see the eRect of ordering
when there is already a critical concentration in the
disordered state. In most cases (though not in Fig. 6),
whatever eGects are produced by the superexchange in
the disordered state are enhanced by component order-
ing. Figure 2 shows the situation in quenched mixtures
where the ordering parameter is held fixed independent
of temperature.

All the curves given in the 6gures were computed
with the aid of an electronic machine, those in Figs.
3-7 being derived by the Newton-Raphson method
applied to the pairs of equations L(4.1) (3.3), el' &=
m&'& =0j and f(5.1), (5.5)].

It is now known that in real magnetic materials, a
number of exchange mechanisms are likely to operate,
including direct exchange, superexchange through sol-
vent atoms and indirect exchange, through electron
bands (see Martin and Mattis"). Also, in real alloys,
the alloying element may considerably aRect the
electronic structure of the ferromagnetic element.
Hence it would be rash to assert that the mechanism
of the present paper in fact underlies the phenomena
of upward curvature and maxima in Curie-temperature
curves in all observed situations. However, what has
been shown is that such phenomena can be explained
by a combination of direct exchange and superexchange
through the alloying atoms, together with the statistical
e6ects of dilution and long-range ordering. It would be
valuable to also include short-range order e6ects by
using a better statistical approximation along the lines
of Ref. 2 or of Thompson and I.avis. The authors
hope to do this in the future, but it seems unlikely that
this will modify the basic conclusions reached.
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