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The modi6ed potassium dihydrogen phosphate (KDP) model of a two-dimensional ferroelectric with
the inclusion of an arbitrary electric Geld 8 is considered. The nature of the phase transition is unaffected
by the inclusion of an external Geld, whereas the transition temperature depends on 8 with T,~~ as
E—+co, and T,—+0 as 8~some special values. We also Gnd that T, is determined by different relations in
different regions in the 8 plane, a property not shared by the Slater KDP model. Among the other thermo-
dynamic properties discussed, the critical behavior of the polarizability is shown to be x~(1'—T,) ".
It is shown that this model is identical to the problem of close-packed dimers on a hexagonal lattice.

L INTRODUCTION

ECENTLY, the problem of the two-dimensional
hydrogen-bonded crystals as soluble models in

~ ~ ~

statistical mechanics has received considerable atten-
tion. After Lieb's celebrated evaluation of the residual
entropy of the two-dimensional ice through the use of
the method of transfer matrix, ' the solutions have
since been extended to include the Ii modeP and the
Slater potassium dihydrogen phosphate (KDP) model,
both with a vertical field, ' and to the general case
when the energy parameters are arbitrary. '' In these
discussions, the partition function of the crystal is
identified as the largest eigenvalue of a certain matrix,
while the associated eigenvector proves to be identical
to the ground state of a one-dimensional anisotropic
Heisenberg chain. Use is then made of the properties
of the latter problem which have been discussed exten-
sively. ~"While in principle the thermodynamic proper-
ties of the hydrogen-bonded crystals follow from the
ground-state properties of the linear chain, detailed
studies of these properties involve the solution of an
integral equation which is analytically soluble only in
certain special instances. As a consequence, the parti-
tion functions of the P model and the Slater KDP
model are given explicitly only when there is no external
Geld."With a finite external Geld, the integral equation
cannot be solved in terms of known functions.

In a previous paper" (hereafter referred to as I), we

have proposed a tttodi /ed KDP model which exhibits
the main features of the two-dimensional Slater KDP

model, while mathematically it. is much easier to deal
with. This model is also interesting in that the inclusion
of an external Geld does not present any mathematical
problem. Explicit and closed expression can be obtained
for the partition function and one has at least one model
of a phase transition which is escpticitly solvable when
there is a finite external field. In this paper we shall
obtain this solution. First, in Sec. II a generalized ver-
sion of the modified KDP model is considered and it is
shown that this model is equivalent to the problem of
close-packed dimers on a hexagonal lattice, namely,
the solution to this model is exactly the generating
function for the related dimer problem. The modified
KDP model in an arbitrary field now appears as a
special case and is discussed in Sec. III with the com-
plete thermodynamic properties derived and compari-
sons with the Slater KDP model given.

II. GENERALIZED MODEL

As is well known, "a simple picture of the structure
of the KDP crystal (coordination number is 4) allows
one hydrogen atom sitting off center on each lattice
edge so that the crystal I. can be represented by a
directed graph. The ice condition (or the condition of
local electrical neutrality) requires that there are pre-
cisely two arrows pointing into a vertex. Energy values
are assigned to the crystal vertices according to the
arrow configurations, and we are required to evaluate
the partition function

exp( —p g e.),
allo@red configurations on L
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where e is the energy of the o.th lattice vertex and
p=—1/kT.

As pointed out in I, considerations relating to the
directed graphs can always be transformed into the
language of closed polygons. One simply compares an
arbitrary directed graph with a standard one and ob-
serves that there is always an even number of arrows
reversed at each vertex. Replacing these reversed arrows
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Fxo. 1. The six kinds of arrow con6gu-
rations allowed by the "ice condition"
and the associated bond configurations.
Con6guration (1) is taken as the standard
in obtaining the bond configurations.

VERTEX ENEMY

eg+e4 ——eg+ eg. (2)

On taking e2 ——0 and e3——e4 ——e~ ——e6
——e&0, one recovers

the model considered in I.
It has been pointed out that the restriction ei ——~ is

equivalent to taking a certain limit in the more general
model considered by Sutherland, Yang, arid Yang. ~

However, we shall proceed here with the method of
PfafBans because it allows us to see directly the equiva-
lence of this model and the problem of dimers on a
hexagonal lattice. The partition function we wish to
evaluate is given by (1) with the summation now ex-

tending over all allowed bond configurations on L.
Since it is well known" " that such a sum can be
transformed into a dimer generating function, we shall
describe the procedures only brieRy. As illustrated in
Pigs. 2 and 3, we 6rst construct a terminal (dimer)

IL

II

by bonds, one recovers closed polygons consisting of
bonds. These comparisons and correspondences are ex-
hibited in Fig. 1 for the case of a rectangular lattice.
Let e; be the energy of a vertex having the sth (i=1,
2, ~ ~, 6) configuration. The Slater KDP model corres-
ponds to e~=e2=0, ea=e4=es=ee=e&0; while the model
we now proceed to solve has the following restrictions:

ei ——eo Lconfiguration (1) forbiddenj,

lattice L~ by expanding each vertex on L into a city
of internally connected points. "Next, we cover L~ by
placing dimers along the edges so that (a) each dimer
covers two (neighboring) points on I.a, and (b) each
point on L~ is covered by one and only one dimer
(close-packed configuration). For any allowed dimer
configuration, we note that there are either two or
four dimers leading into a city, corresponding to an
allowed bond con6guration on I (two or four bonds
leading into a vertex). In fact, as shown in Fig. 4,
the correspondence between the dimer configurations
(within a city on I~) and the allowed bond configura-
tions (at a vertex on I.) is actually one-to-one. There-
fore to each dimer configuration on L~, there corre-
sponds a bond configuration on L, and vice versa. Now
we assign weights (or activities) to the edges on I.~
(according to Fig. 2) and consider the product of the
activities of the covered edges as the configurational
weight of a dimer configuration. It is then easy to
verify, using the relation )N;—=exp( —e~/kT) j

Nglg =Qgggg, (3)
that the dimer configurational weights of L~ are just,
the needed Boltzmann factors for the corresponding
bond configurations on L. It follows then the partition
function Z is exactly the dimer generating (partition)
function 6 defined by
Z=a=-

ali dimer configurations on I~

(configurational weight of I.a). (4)
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The dimer lattice L, as shown in Fig. 3, can still
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FIG. 2. The expansion of (a) a vertex point on L into (b) a city
on I.~.The dotted lines denote the lattice edges originally on I.and
the solid lines denote those gererated by the expansion procedure.

FyG. 3. The dimer lattice
I.~ generated by the expansion
procedure shown in Fig. : 2.
The meaning of the arrows
attached to the edges are
explained in Ref. 19.
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York, 1964), Chap. 4.

'4 H. S. Green and C. A. Hurst, in Order-Disorder Phenomena,
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"The structure of the city used here, which allows a direct
identification with the problem of close-packed dimers on a hex-
agonal lattice, is simpler than the one adopted in I. This possible
simpliacation is also observed by M. E. Fisher (private communi-
cation) .
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be further simplified. We observe that I.~ consists of
chains of three edges with activities i, 1, u4 and N6, 1,
us/Q4, respectively. Since the middle edge of these
chains always has a unity activity, we may replace
each chain by a single edge of activity u4 or usus/Q4= us,
respectively. The resulting dimer lattice is therefore a
hexagonal (honeycomb) one (see Fig. 5) with activities
u2, ua, and u4 respectively along the directions of the
three principle axes." Therefore, we have established
that the partition function of the generalized (modi-
fied) KDP model is identical to the generating (parti-
tion) function of the problem of close-packed dimers
on a hexagonal lattice, with the dimer lattice containing
twice as many vertex points.

The problem of dimers on a hexagonal lattice has
been discussed by Kasteleyn. "The main feature of the
solution is that the partition function is a smoothly
varying function of the activities u2, u3, and u4 when-
ever the activities satisfy the triangle inequalities
us+us& Q4, etc. ; otherwise the largest activity prevails
resulting in a perfect ordering state. Since Kasteleyn
did not write the partition function, and it has not
been given in the existing literature, we shall supply
it here. The derivation is through the use of PfaKan
and is quite straightforward, if one goes back to Fig. 2

and uses the dimer city and the associated activities
given there. We refer the readers to Ref. 13 for details
and only quote the result. "For an infinite lattice (N
is the number of vertices on the KDP lattice or 2E is
the number of vertices on the hexagonal lattice)
wrapped around a torus, we find the free energy Ii

per vertex (for the KCP lattice) given by

one of the integrations can be performed, yielding

PF—= —d8 ln max{u4', us'+us' —2usus cos8I. (7)
4X 0

Despite its apparent asymmetric appearance, Eq. (7)
is still symmetric in u2, u3, and u4. It is then clear that
Z is a smoothly varying function in u2, us, and u4
whenever u&, u&, and u4 satisfy the triangle inequalities
us+us& Q4, us+Q4& us and Q4+u» us Su. ppose, on the
other hand, Q4&us+us, then one has identically

us+ us(Q4.

Kasteleyn has given the reason for this from the point
of view of the dimer lattice. ' lt is also easy to see why
an ordered state should occur from the considerations
of the KDP lattice. If e2&ea&e4, then, at a suQiciently
low temperature, the configuration with the lowest
energy dominates, thus forming an ordered state."

The energy per vertex E can now be computed for
all temperatures. However, it is easier (for T& T,) to
start from the expression of the free energy given by
Eq. (5) . We obtain (assuming es(es, e4)

~=8 (P~)/8P

=-,'(es+e4)+ (4s)-'(es —es)

d|t sgn (2usu4 cosg+uss Q4' —u)ss—

2Ã

+ (4s) '(e4 es) —~ sgn(2usus cosP+Q4 —us —us')

PF = limE —' lnZ
Q~m

Qs+ Q4( us

(9)

2

d0
8m' 0

d4 lntus'+us'+Q4'+2usus cos8
0

+2usu4 cosp+2Qsu4 cos(8 Q) j. (5)

=es+L(es —es)/sj cos 'P(Q4' us'+u—s')/2usu4]

+L(e4—es)/z. ) cos 'L(us Q4'+Qss)/2ususj&

Equation (5) is obviously symmetric in us, us, and Q4.

With the aid of the formula
2g

inL2u+2b cos$+2c sing]d4&
0

us+ Q4& us. (10)

Here we have used the following identity in obtaining
the expression (9):

=2s. 1n/g+ (a' —k' —c')'~s), (6), A+ J3 cos8+c sin8

"It is easy to see why the result does not depend on e& or ee.
This is because the configurations (5) and (6) always occur in
pairs with energy e~+e6=e3+e4."P.W. Kasteleyn, J. Math. Phys. 4, 287 (1963).

'~ We mention only one important point in the evaluation of the
dimer generating function 6 through the use of PfafBans. In order
to transform 6 directly and correctly into a PfafBan, it sufBces to
orient the edges of the dimer lattice L& such that if one traces
around any closed path (cycle) on I.a according to the two rules:
(a) The number of edges contained in the cycle is even, and (b)
the number of lattice points enclosed by the cycle is also even; one
always Gnds an odd number of edges oriented in the clockwise
(or the counterclockwise) direction. This is the key step involved
in the evaluation of d, and it can be shown that this proper
orientation can always be realized for planar lattices (Ref. 15).
Interested readers may check that this is indeed the case for the
oriented dimer lattice shown in Fig. 3.

=27r/(A' —8'—C')'", for A'& J3'yc'

for A'(8'+C'. (11)

As concluded in I, a second-order phase transition
(without latent heat) occurs at T, defined by

exp( —es/kT, ) +exp( e4/kT, ) =exp( es/—kT,) .—(12)

This is in contrast to the result on the Slater KDP
model with zero field (phase change with latent heat) .4

so Provided that this energy is also lower than zs(es+ee). Other-
wise, we have an antiferroelectric.
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FIG. 4. The one-to-one cor-
respondence between the bond
con6gurations on I and the
dirner con6gurations on I.~.

ferent forms in each of the three regions. They are
PE=es—', X=exp(2P8.d), F=exp(2P8+) j.

E=X+F, (e)28,d, e)28+; region I)
E=X Y, —(e(28,d, 8,)8„;region II) (13)
E=F—X, (e(28„d, 8„)8„region III) .

We observe that T,—&~ as 8~~ and T.—+0 as 8 ap-
proaches the boundaries between the three regions.
That T. may go to zero is a unique property of this
model and is also what we expect on physical grounds.
On these boundaries two or more of the Gve allowed
vertex configurations have the lowest energy and one
no longer has a unique, energetically preferred state.
The relation analogous to (13) for the Slater KDP

It is straightforward to compute the speci6c heat
c=BEjBT. We find c=0 below T, and c (T—T,) '~s

near and above the Curie temperature, in agreement
with the previous conclusions. ' "

III. MODIFIED KDP MODEL IH AH
ARBITRARY FIELD

We now turn to the modihed KDP model in the
presence of an arbitrary external field 8= (8„8„).s' In
addition to the vertex energies, we now also have bond
energies due to the dipole moment d of each arrow.
However, one may split the bond energy into two
halves and associate one half to each of the two vertices
the bond connects. Thus for the modified KDP model
in an external field 8, one makes the substitutions

8s = (8~+8') 4)

e4=e+ (8,—8„)d,

,= —(8,—8„)d,

es=e6=e.

Since condition (2) is satisfied, the results of the»st
section apply and the following conclusions are immedi-
ate: The transition temperature T, now depends on
the external Geld and, with the 8 plane divided into
three regions (Fig. 6), the critical condition takes dif-

=&x

FIG. 6. The three regions in 8 the plane and the equations
for the boundaries.

model in a vertical field only is"

E=1+exp( —2P ( 8s I d), (14)
which agrees with our expression when 8„&0 (8,=0).
This rejects the fact that our model does not possess
the up-down symmetry of the Slater KDP model. It
is also straightforward to compute the polarization per
vertex P= —BF/88. Again using (11), one finds

Tp Tg ~

2 F' X'+E'—I' = —cos'- d)2EF

Fzo. 5. The hexagonal dimer
lattice superimposed on the
original lattice I (denoted by
the thin lines). T(T,:

X' F'+�'—
EI= cos —1

7r 2EX

"We may also consider the model specified by relation (2) with
the inclusion of a 6eld. The conclusions are unchanged except the
di8erences in energy values.

P=(—d, —&), (region I)
= (+d, —d), (region II)
= (—d, +d), (region III). (16)

below 2'„all vertices take the configurations (2), (3),"Equation (14) is implicit in Ref. 4.
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or (4) for 8 in the regions I, II, or III, respectively. It
is also interesting to note that there is a finite polariza-
tion for T& T, in the absence of an external field, again
a consequence of the lack of symmetry of the model.
The polarizability if= B—Pj88 can now be computed ex-
actly. We note only its critical behavior x~(T—T,)

as compared to the (T—T,)
—' singularity of the Slater

KDP model. 4
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The statistical thermodynamics of a binary solid mixture of a ferromagnetic or antiferromagnetic com-
ponent A and a nonmagnetic component B is developed theoretically. The nearest-neighbor interaction
and exchange energies and a superexchange energy between any two A atoms sharing one B atom as a
nearest neighbor are introduced. In addition to magnetic spin ordering, long-range A-B sublattice ordering
of a type appropriate to a body-centered cubic lattice is considered, using the zeroth-order statistical ap-
proximation. The eGects of dilution and long-range component ordering on the onset of magnetic ordering
are calculated for several sets of parameter values over the whole range of mole fractions. If the super-
exchange integral is large enough relative to the direct exchange integral, the curves of Curie (or Ndel)
temperature against mole fraction are convex upwards, and a maximum may be observed. The interaction
of long-range ordering with magnetization is considered in both equilibrium (annealed) and frozen
(quenched) mixtures.

I. INTRODUCTION

N a series of three papers, Bell and Lavis, ' Lavis
and Fairbairn, ' and Lavis and Bell' investigated

the effects of long-range component ordering on the
occurence of magnetization in a binary mixture with a
magnetic component A and a nonmagnetic component
B. In Refs. 1 and 2, the lattice was divided into two
equivalent sublattices, and in Ref. 3, into four equiva-
lent sublattices. Nonmagnetic pair-interaction energies
and direct-exchange —magnetic-interaction energies for
3A pairs were postulated for nearest-neighbor pairs in
Ref. 2 and for all pairs (varying with the distance
between the two members of the pair) in Refs. 1 and 3.
For both the zeroth-order approximation used in Refs.
1 and 3 and the Bethe-pair approximation used in
Ref. 2, the Curie temperature was seriously aGected
by the presence of component order, and in Ref . 1, the
sign and magnitude of the exchange interaction be-
tween magnetic pairs on the same sublattice were
shown to be signilcant. In all cases, however, the
Curie temperature was seen to be a monotonically
increasing function of the percentage of magnetic
atoms present. In practice, exceptions occur in, for
instance, mixtures of ferromagnetic with semiconduct-
ing elements. 4

' G. M. Bell and D. A. Lavis, PhiL Mag. 11, 937 (1965).' D. A. Lavis and W. M. Fairbairn, Phil. Mag. 13, 477 t 1906).
3 D. A. Lavis and G. M. Bell, Phil. Mag. 15, 587 {1967).' S. Arajs, Phys. Status Solidi 11, 121 (1965).

The present paper introduces superexchange in the
form of an exchange interaction between two second-
neighbor A atoms, with a 8 atom as a common nearest
neighbor. The existence of such an interaction in
certain paramagnetic salts was first proposed by
Kramers' and has since been discussed by many
authors, including Anderson, 6 for nonmetallic B. As
far as we know, the statistical consequences of super-
exchange in an incompletely ordered mixture have not
previously been discussed, and we shall use the sim-
plest, or zeroth-order, approximation. While our anal-
ysis is not applicable to the face-centered cubic lattice,
it is likely that similar results could be obtained.

As in Refs. 1—3, we shall assume that the magnetic
moments of the 3 atoms are unaffected by the con-
centration. We shall also assume that the lattice
structure of the mixture is unchanged either in dimen-
sion or type by redistribution of the atoms upon it.
This tends to confine us to limited ranges of concentra-
tion when comparing with experiment.

II. FREE ENERGY AND INTERNAL VARIABLES

We make the following assumptions:

(i) The lattice divides into a pair of equivalent
sublattices, and each lattice site has s nearest neighbors
in the other sublattice and none in its own sublattice.

s H. A. Kramers, Physica 1, 182 (1934).
e P. W. Anderson, Solid State Phys. 14, 99 (1963).


