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Spin-Disorder Scattering and Magnetoresistance of Magnetic
Semiconductors
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The consequences of a simple type of exchange interaction between free charge carriers in a broad energy
band and localized magnetic moments are discussed. The interaction causes a splitting of the energy bands
into bands for the two spin directions. It also leads to spin-disorder scattering of the charge carriers. The
temperature dependence of the mobility is calculated for ferromagnetic and antiferromagnetic semicon-
ductors. Expressions are given for the magnetoresistance of ferromagnetic semiconductors.

INTRODUCTION The calculations given in this article are not valid at
very low temperatures, i.e., far below the Curie temper-
ature. This is because the quasistatic approximation,
used here, is not valid at very low temperatures. For
calculations in this temperature region, spin-wave
theory should be used.

r iHE electrical resistivity of nonmagnetic metals and
semiconductors is due to the scattering of charge

carriers by impurities and lattice vibrations. In mag-
netic materials, scattering due to a disorder of the
magnetic moments is also possible. The importance of
this mechanism is indicated by an abrupt change of
slope, or even a peak, at the Curie temperature in the
resistivity-versus-temperature curve.

The simplest calculations of this effect consider an
exchange interaction between the free charge carriers,
occupying states in a broad energy band, and localized
magnetic moments responsible for the magnetic proper-
ties. Calculations of the resistivity as a function of the
temperature, based on this model, have been given by
several authors. ' 4

More complicated scattering mechanisms have been
considered also. One of these is the so-called s-d scatter-
ing, i.e., the scattering of an electron from a state of a
broad s band to a state of a narrow d band. ' ' Related
to this is the resonance scattering in metals. ~ These
eGects, however, are speci6c to metals, and not relevant
to semiconductors.

This paper discusses the consequences of the simplest
type of exchange interaction between free charge
carriers in a broad band of a semiconductor and
localized magnetic moments. The interaction men-
tioned causes a splitting of the energy band and an
anomalous temperature dependence of the energy gap.
These eGects were discussed recently also by Rys
et a/. The temperature dependence of the mobility of
charge carriers in ferromagnetic and antiferromagnetic
semiconductors will be calculated. Finally, calculations
are presented for the magnetoresistance of a ferro-
magnetic semiconductor.

CHARGE CARRIERS AND LOCALIZED SPINS

For the calculations, it will be assumed that there are
two distinct types of electronic states in the crystal.
On the one hand, there are states derived mainly from
the outer s and p orbitals of the atoms. These states
overlap strongly, and are properly described by
energy-band theory, just as in nonmagnetic semi-
conductors. The charge carriers in the magnetic semi-
conductors are assumed to occupy states in a broad
energy band of this type.

In 3d transition-metal compounds, there are also
electronic states derived mainly from 3d orbitals.
Because of the much smaller extension of these orbitals,
overlap is much smaller, and correlation energies are
more important than for the states of the broad energy
bands. Electrons in these d states are more localized,
and are assumed to be responsible for the localized
magnetic moments present in the magnetic semi-
conductor.

The electronic energy bands can be derived from a
one-electron Hamiltonian' Xo.

&sub(r) =Lp'/2~+ J'o(r) l&b(r)

= ebIPPbb(r) ~

Here Vs(r) is the periodic potential, ebb' the energy,
and p the momentum operator. The eigenfunctions
pbbs(r) are Bloch functions which can be written as
Nbb (r) exp (ilr r), where lr is the wave vector and b

a subscript labelling the various energy bands. The
functions are normalized in unit volume, i.e.,

' T. Kasuya, Progr. Theoret. Phys. (Kyoto) 10' 58 (1956) 22'
227 (1959).' P. G. de Gennes and J. Friedel, J. Phys. Chem. Solids 4, 71
(1958).'T. van Peski-Tinbergen and A. J. Dekker, Physica 29, 917
(1963).' J. Kondo, Progr. Theoret. Phys. (Kyoto) 2'7, 772 (1962).' N. F. Mott, Proc. Phys. Soc. {London) 47, 571 (1935);Proc.
Roy. Soc. (London) 153, 699 (1936).' D. A. Goodings, Phys. Rev. 132, 542 (1963).' Y. A. Rocher, Advan. Phys. 11, 233 (1962).' F. Rys, J. S. Helman, and W. Baltensperger, Ph
Kondensierten Materie 6, 105 (1967).

(

pbbs(r)

('ds(r) =1.

ubb(r) is a periodic function, invariant for translations
which leave the crystal lattice unchanged.

ysik ~ See, for example, J. M. Ziman, The Principles of the Theory of
Solids (Cambridge University Press, London, 1964).
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For simplicity, it will be assumed that there is only
one type of magnetic atom in the crystal. The co-
ordinates of these atoms are R, the spins 8„, and the
magnetic moments —gp~S„. The interactions between
the spins S„are given by a Hamiltonian K,. The
eigenfunctions of X„describing the orientation of all
spins S, are called n, and the corresponding energies
e, so that X,n=e,n.

At a given temperature, there is a certain probability
m for a state n to occur. Thus, the statistical average,
for example, of the value of the spin of the atom at
R„, is given by

(8-)= Z ~-(~ I
s. I ~»

where &o(I S„In) is the expectation value of S„ for
the state 0..

The generalized spin susceptibility x'&'(lr), which is
a useful quantity for later calculations, can be expressed
in terms of the spin correlations":

x"(lr) =C(g~~)'/&~2'3 Z Z expCslr (R-—R-) j

The brackets indicate statistical averages as defined
above, i, j=@, y, s, and k& is the Boltzmann constant.
For small values of lr, a dependence on lr is to be ex-

pected of the form

&/x*'(lr) =&/x"+~;;&'.

In this expression, y'& is the susceptibility for homo-
geneous fields, defined as x'&=83E;/BH;, where M=
—gpi) P„&S„) is the total magnetization per unit
volume and B the magnetic 6eld."The susceptibility
de6ned in this way depends on B. The values of the
constants A;; can be calculated by using a method given
by de Gennes and Villain. "

The interaction between an electron at a position r
and the spins S„is written as

V= —g J(r—R„)sS„,

where s is the spin of the electron and J(r—R„) an
exchange interaction, depending on the distance r—R„
of the electron from the spin 8„.

%e assume that the interaction V is sufficiently weak
to be treated as a perturbation. Because only semi-
conductors with a small number of charge carriers are
considered, the interaction of the spins with the charge
carriers will give only a negligible contribution to the
exchange interaction between the spins.

ENERGY BANDS

Consider an electron in an unperturbed band state
(()b),(r), with energy ebbp T.he first-order energy change,
due to V, is given by &p»(r) Xn

I
V

I A), (r) Xa), where
X is the spin function of the electron. Since in the band
theory only the periodic part contributes to the energy
of the band states in first order, the expression given
above must be averaged over all spin states n, giving,
for the 6rst-order energy change,

Deb),' ——Q v() &q b),(r) Xo(
I V I ybk(r) X(r). (5)

a

Substituting V and A),(r), one Qnds

5gd = —I,f ( u~~(r) ('J(r—R)dv(r) (r ( I
~

r )

x Q w, &n I 8„ I u). (6)

Only colinear spin arrangements will be considered,
so that the average values P w &n I S„Io() are all
parallel to a common direction, called the s axis. This
makes it possible to choose spin functions X+ and
X, with the spin of the electron parallel and anti-
parallel to the s axis, for which nondiagonal matrix
elements vanish.

Because all magnetic atoms are equivalent, one can
write

I Nbk(r) I'J(r —R„)dv(r) J»/x,

where X is the number of magnetic atoms per unit
volume.

In all following considerations, only one single, non-
degenerate energy band is considered, and interband
matrix elements are neglected; the band subscript b

will be omitted.
For the first-order energy change of electrons with

spin parallel (+) and antiparallel ( —) to the s axis, we
then find

d,e),'+= +-', SJ),(M/Mp),

where Mo = —EgpgS.
If only states near the band extrema (maximum of

the valence band, or minimum of the conduction band)
are considered, the eGective-mass approximation can be
used. ' In this approximation, the dependence of N), (r)
on lr is disregarded: Nb(r) =Np(r). For the states of a
conduction band with minimum energy e,o at k;„,
one obtains

e,b=e,p+ Q (pk, s/2m„*)

'0 P. G. de Gennes, in 3fugnetisns, edited by G. T. Rado and H.
Snhl (Academic Press Inc. , New York, 1963), Vol. III, p. 115.

~' Strictly speaking, the susceptibilities x'& of Kq. (3) differ
from the static susceptibilities by corrections due to demagnetizing
6elds. However, for the case of interest, i.e., not too close to 1„
these corrections are small."P.G.bsde Gennes and J. Villain, J. Phys. Chem. Solids 13, 10
(&960).

where k„ is the j component of the wave vector with
respect to the conduction-band minimum k,„;„, and
m.; is the effective mass for the direction j.The direc-
tions j=1, 2, 3 are chosen along the main axes of the
energy ellipsoid in k space. A similar expression is found
for the states near the top of the valence band.
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In the eGective-mass approximation, JI,——J, and the
erst-order energy change is independent of k:

aeg'+= a-', SJ(M/j)f, ). (10)

This result is sketched in Fig. 1. For a ferromagnetic
semiconductor below T„ the band splits into a band for
spin parallel (+) and one for spin antiparallel (—)

to the magnetization. Above T„M is zero, and there
is no splitting of the band. In an applied magnetic
field, band splitting will also occur above T,. In aq
antiferromagnetic semiconductor, band splitting occurs
only in an applied magnetic Geld.

The second-order contribution to the change of the
energy levels is given by

(k~ I
Vlk'~ '}(k'~ 'I Vlk

+4k~ =''R
a ai ki 4y'++a —eg '+—4 ~

(k&a l v
l
k'%4x')(k'wa'! v l k+4x)

&k ' +&a

where Eg +='egD+ Acyl

For reasons of simplicity, the matrix elements (yl, (r) X+0.
l V

l q~. (r) X-n') are written as (k+n l V l
k' —n'),

etc.
For the evaluation of Eq. (11), the quasistatic approximation' "will be used. This corresponds to neglecting

e —e ~ in the denominator, This approximation is justiied because the excitation energies Lrk of the spin system
are much smaller than the electronic energies for the same value of t|;. Furthermore, one can write

Q m Q (e l v l
a'}(n'

l v
l n) = Q w (n l

vv
l n) = (vv);

a ai a

and with
S„+=S„'+iS

and

Ji~ =X N~* r N~ r J r—R„exp i k' —k r—R„de r,
one finds

(12)

Using Eq. (2), and )t*4'=0, y**=g', etc. ,

g!t'J, +. I' (q) ( )+ "( )
&2&g44s I &~1,~ 4„+ 1,~ 4,1,~—4g

(13)

In the effective-mass approximation, Nq(r) =N4(r), independent of k. The function J(r—R„) is strongly
localized around R„; the extension bo is of the order of the radius of the orbitals of the electrons causing the mag™
netic moment on atom R„. For semiconductors, rather small values of k and k' are of interest, so that kbo and
k'bo are much smaller than one. Therefore one can write as a good approximation J~q =J. For antiferromagnets
and for ferromagnets in the paramagnetic region, the erst-order splitting vanishes. In that case, the summation
over q for an isotropic conduction band with cq'+ =4'+ (5'k'/2'*) gives

J'k~Tm* f2 arctan(4k'2 y*) 'i'

16ÃS2g2pB2$2$

arctan (4k'A, g*)i~')
!

A, j

For a ferrornagnet below the Curie temperature, the
contribution of the interband term p* and p& is strongly
reduced because of the appearance of the first-order
splitting in the energy denominator. Below T, (but not
too close to T,), the contribution of these terms can be
neglected if the 6rst-order splitting is large.

The temperature dependence of Ac~'+ is sketched
in Fig. 2 for a ferromagnet, using a molecular-6eld
theory to calculate p and x' as a function of T. The
values of A, and A, were calculated by the method of
de Gennes and Villain. "The result given in Fig. 2 is
for a ferromagnet with spinel structure, and magnetic
atoms only on J3 sites (CdCr&se4). If only nearest-

neighbor interactions are taken into account, one finds

A, =A, =44'kgTt 256g'j4~'S(S+1) g ',

where u is the lattice parameter.
The erst- and second, -order changes of the energy

levels can be used to explain the observed anomalous
temperature dependence of the energy gap in
CdCrmse4" '4 and Ruse"
"G. Busch, B.Magyar, and P. Wachter, Phys. Letters 23, 438

(1966)."G. Harbeke and H. Pinch, Phys. Rev. Letters 17, 1090
(1966)."G. Busch and P. Wachter, Physik Kondensierten Materie 5,
232 (1966).
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Fxo. 1. Splitting of the conduc-
tion band into sub-bands for spin
parallel (+) and antipsrallel
(—) to the magnetization. ———,
band in paramagnetic region;
sub-bands in ferromagnetic region.

Reservations should be made about the validity of
the perturbation theory for the calculation of the shift
of the energy levels. For a ferromagnetic crystal near
T„ the expression given above diverges for small values
of k, which means that a perturbation expansion does
not converge properly in this case. Related to this is the
possibility of self-trapping of charge carriers due to a
polarization of the spin system. These magnetic
polaron effects are expected to be quite strong at
temperatures near T„where the magnetic susceptibility
is very large, and at small kinetic energies of the charge
carrier (small k). In these cases, an intermediate or
strong-coupling theory similar to that used for ordinary
polarons" should be used instead of the perturbation
theory discussed above. A consequence of these con-
siderations is that Eq. (14) may be expected to describe
the change in the energy levels only at temperatures
not too close to T,.

The conclusions of this section are similar to those
obtained by Rys et a/. ; in his paper, calculations are
also given for the critical region and spin-wave region.
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FxG. 2. Change of energy levels in a ferromagnetic semiconduc-
tor. be=be'PEq. (10)g+betLEq. (14)g. The following values
were used: J=0.5 eV; ha= 1; a= 10 ' cm; T = 120'K, X=16/a',
S=$, m*=free-electron mass. Results in hatched region are
doubtful.

"F.E. Low and D. Pines, Phys. Rev. 98, 414 (1955).
I~ As a general reference for transport theory, see, for example,

J. M. Ziman, Electrons arid Phortotts (Clarendon Press, Oxford,
England, 1960).

ELECTRICAL RESISTIVITY

The nonperiodic part of the interaction V causes a
scattering of the charge carriers. To calculate this spin-
disorder resistivity, we must know the transition
probabilities for an electron going from a state k to a
state k' in the same band, both with or without change
of spin, whereas the spin system changes its state

from 0, to 0,'. These transition probabilities are given
bylaw

P(k+n k'+n') = (2w/&) I (k~n
I
~

I
k'~n'& I'

X&(ek++pa —ek +—e. ), (15)

P(k~n k'~n') = (2w/&) I
(k~n I

I'
I

k'+n'& I'

X5(ek++ ea e—k + e—a.) . (16)

If fk+ is the probability of a state k& being occupied,
then the change ot fk+ with time, due to the scattering,
is given by

(~fk"/@)-.«= Z Z Z ~- I:fk'(1—f")
a a~ kt'

XP(k'+n', k+n)+fk. (1—fi+)P(k' —n', k+n) j
—Z Z Z ~-Lfk+(1 fk+) P(k—+n k'+n')

+fi,+(1—fk -)P(k+n, k' —n') j, (17)

and a similar expression for (Bfk /pit). „tt.
The electrons are accelerated in an electric field F,

so that 5(Bk/Bt) =eF, and this induces a change

(&fit/&t) t;.is = (&fk+/&ok+) (V'kek+) (e/5) F, (1&)

or, for a parabolic band eke=op++p, (tt%,s/2rrt;*),

(~fk"/~t) field g («/rtt;*) (&;P;) (~fk+/~ek+) (19)

In the stationary state, one has

(Bfjg/ett) t;.is+ (Bfjg/Bt) „,tt=0 (2.0)

The equilibrium distribution fpk+ is given by fpk+=
L1+ exp(ok+ —i)/ktiT) ', where f is the Fermi level.

The calculations are carried out, making use of the
following approximations: (a) The field F is assumed
to be weak, so that the distribution function fag
diBers only slightly from fpk+. It is convenient to write
fk+~fpk++ (Bfpk+/Bek+) gk+. For small 6elds, only
linear terms in gk+ must be taken into account. (b) It
is assumed that the electrical current has little inAuence
on the spin system, so that m can be taken equal to the
equilibrium distribution. This corresponds to neglecting
magnon drag. '8 "

Using the fact that there should be detailed balance
for all processes in the equilibrium situation (i.e., for
gk+=0 and F=O), one can express w in terms of
w, fpk+, and fpk +. This is possible without making any
assumptions about the properties of the spin system.
Elimination of w ~ gives

= ZZZ-. I

f'",iI
itt t ecatt a a& k& 4 &ek

1—fpk+
X P(k+n, k'+n') (gk' gk )

Ok

Ok'
+P(k+n, k' —n') (gk —gk+) (21)

Ok

"M. Bailyn, Phys. Rev. 126, 2040 (1962)."J.D. Wasscher and C. Haas, Phys. Letters 8, 302 (1964).
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The quasistatic approximation will be used. Making
use of some results of the preceding sections, one 6nds

Q Q w P(k+n, k'+n') = (2rr/5)6(eg+ —eg+)

X (J/2N)'LkeT/(g~e)'jx'(k' —k) ~ (22)

Q Q te.I'(k+n, k' —n') =2(2x/5) b(eg+ —eg -)

1SC

1/p'g+ = (2s'/5) (J/2Ngwrr) (keT)

X t )(.
* g 3(ek+—e~+)+2X*Z 5(e~+—e~+) j. (23)

For parabolic bands, the sums are easily evaluated,

giving

1 (mr*mgrN *)'I'(AT) f J
2xv2P &Ng prr j

XLy*(e~+—ep+)»'+2x~(e~+ —ep+) 'I'j. (26)

The mobility of the charge carriers is given by'9

t' eP & gg k (c)fpz+/c)eg+) rq+

Em'*'i Q~ fp~+
(2'j)

for conduction in a direction i, chosen along one of the
main directions of the energy ellipsoid in k space. The
equations given above make it possible to calculate the
electrical resistivity if the values of x and J are known.

Explicit equations will be given for the mobility of

charge carriers in ferromagnetic and antiferromagnetlc
semiconductors. Because the susceptibilities and the
band energy change with an applied magnetic 6eld, it is
also possible to calculate the magnetoresistance.

If the charge carriers are nondegenerate, i.e., if
fez+~ expL —(ez+—t') /AT), one finds, for the mobility
in an antiferromagnetic semiconductor with @+=qo—,

('+.*)-. ( )
3rN *(mt*m*rN *)»'J'(ke T) '"

Thus the mobility is proportional to the inverse of the
average susceptibility p(z*+2X'). The anisotropy of

e mobility is due only to the anisotropy of the ef-

fective ma».

X (J/2N)'LkeT/(g~e)'3x*(k' —k) (23)

In semiconductors the relevant values of k' and k are
indeed small, so that one can write approximately
y'(k —k)~y'. This approximation is not valid for a
ferromagnet close to T„where the term A

~

k' —k P
of Eq. (3) is no longer small compared with 1/X.
In metallic conductors it is necessary to take into
account explicitly the k dependence of x. Using ap-
proximate expressions for the spin correlations, the
temperature dependence of the resistivity of metals
has been calculated by de Gennes and Friedel. 2

It is possible to solve the transport equation (20),
with

gg+=eSrg+ Q (k,P;/m;*), (24)

TN
I

0 100 m Ze em SN tN0
=T(e)

Fxo. 3. Mobility of charge carriers in an antiferromagnetic semi-
conductor: (a) nondegenerate; (b) degenerate.

For a degenerate antiferromagnetic semiconductor
(i.e., with ep

—i»AT), the result is

2m&2(Ngprt) 'e54

(gg Pcgg egg e)»2J2(k T)g»2

where Eg is the Fermi energy with respect to the bottom
of the band (Er+ep+=i ).

The temperature dependence of p for an antiferro-
magnetic semiconductor is shown in Fig. 3. (For the
calculation, the following values were used: m~*=
m2*=ns3* ——free-electron mass; J=0.5 eV; Ep =0.05
eV X=2)&10'2 cm~, Ep=0.05 eV, g=2, TN=310'K;
for the susceptibility, the experimental values of
MnTe" were used. )

In a ferromagnetic semiconductor, the situation is
complicated by the band splitting.

The number of carriers in the two sub-bands are e+
and e, their mobilities p+ and p, . The electrical
conductivity is 1/p =step =I+ep++rs ep, with I=
rl++I

For a nondegenerate ferromagnetic semiconductor,
the result is

8(2')»'(Ngprr) 'e54
p 3m'*(mr*mp*mp*)»'J'(AT) P~'

CO te—'dt

p &'+2f+)t*E1~ (3/&) 3'" (30)

If 6 is positive, then f =1;f+=1 for 1)5;f+=() for
t&b; and 8 is a measure of the band splitting

8= (ep ep+)/AT= (SJ/k—BT) (M/Mp). (31)

The ratio of e+ and e is I+/e =e'. The terms with
x' and y in Eq. (30) are due to scattering within one
sub-band (without change of spin: +~+ or —~—)
and between two sub-bands (spin flip: +—+—or—~+), respectively. (See Fig. 4.)

~T. Komatsubara, M. Murakami, and E. Hirahara, J. Phys.
Soc. Japan 18, 356 (1963).
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FIG. 4. Spin-disorder scattering
in a ferromagnetic semiconductor:
(a) scattering without spin Qip;
(b) scattering with spin flip.

For a degenerate ferromagnetic semiconductor,

2s &2(Ngpn) se54

p ak

m;*(mrams*mp*) 'IsJ (kr) T)

&&Lx*(E +) '"+2X*(E +) '"r' (32)

In this equation, Ep+ and Eg are the Fermi energies
in the + and the —bands with respect to the minima
of these bands (Er++pp+=Ep +ep =f).

Figure 5 shows the temperature dependence of p+
and y for a nondegenerate ferromagnetic semicon-
ductor. LThe curve is calculated with J=0.5 eV,
5=-,', yg& ——~*=ms ——free-electron mass, X=1.3&(
10» cm-', g=2; the susceptibilities are calculated

by using a molecular-Geld model with T,=120'K
(see Appendix); these values are characteristic of
CdCrsSe4. p']

In many cases, one expects J&)k&T„ in which case
the band splitting in the ferromagnetic region is much
larger than kr)T, (except for temperatures very close
to T,). Then practically all carriers are in the lowest
sub-band, and 1/p=eep+. (For example, if J=0.5
eV, S=-', , T,= 120'K, this is not the case only in the
region 118(T& 120 K. However, it is precisely in this
region very close to T, that the equations are not
valid anyway. )

The mobility in ferromagnetic semiconductors is
expected to have a pronounced minimum at T„pro-
vided, of course, that the coupling J is strong, so that
the inQuence of spin disorder dominates.

Maxima in the resistivity at T, have been observed
in e-type CdCr2Se4~ and in Eu&,od,Se."'4 A maxi-

mum of this type does not occur in antiferromagnetic
semiconductors.

MAGHETORESISTANCE

In magnetic semiconductors, a magnetic field
changes the spin disorder, and this inQuences the
resistivity. This e6'ect will be calculated in this section.
The normal magnetoresistance effects, occurring also
in nonmagnetic semiconductors, are neglected.

A contribution to the magnetoresistance may also
come from a change of the carrier concentration
induced by a magnetic field. This will be the case if the
ionization energies of donors or aeceptors change with
a magnetic field.

As an example, consider an e-type semiconductor,
containing SD donor atoms, with ionization energy E~.
The charge-carrier concentration (for an uncompen-
sated crystal, without acceptors) is given by"

rr = (g,NDN, /gp)
'I' expt —(Er)/2krrT) j (33)

if n«Nr), ' N. =2 (2s mq*k~T/k') '" is the effective
density of states of the conduction band, m&* being the
density-of-states eGective mass Dor a single parabolic
band, mph' = (mrems*mpa) 'I'j. The degeneracies of
occupied and unoccupied donor states are go and g&,

respectively.
In a ferromagnetic semiconductor, there is a splitting

of the conduction band into two sub-bands e,+=
~sSJ(M/Mp) (see Fig. 6). The donor states will also
split into levels for + and —spin, with energy Er)+=
Eg)P+ ,'ySJ(M/Mp). -

In the ferromagnetic region, the charge-carrier con-
centration is given by

(g,xgpv. '" ( sa'+-', (v —1)sJ(M/~s))I=
/

'
exp/—

go 2k' T

(34)

for the case where the splitting of the conduction band
and that of the donor level are both large compared to
A~T. This corresponds to an apparent gradual change of
the donor ionization energy due to the temperature
dependence of M (Fig. 7) . Because M also depends on

f000

5—
p(cmp/p~

Jk

f00

The magnetoresistance of nonmagnetic semiconduc-
tors is usually quite small; it is due to the inhuence
which a magnetic field has on the energy bands. '
In ferromagnetic semiconductors, much::::larger effects
have been observed near the Curie ) temperature

(Eur, Gd, Se ss P4 and e-tyPe CdCrpSe4").

10

Ã0 800
~T{4K)

"C. Haas, A. M. J. G. van Run, P. F. Songers, and W. Albers,
Solid State Commun. 5, 657 {1967).

&H. W. Lehmann and G. Harbeke, J. Appl. Phys. 38, 946
(1967).I S. Methfessel, Z. Angers. Phys. 187 414 (1965).

~S. von Moinar and S. Methfessel, J. Appl. Phys. 38, 959
(1967).

FIG. 5. Mobility of charge carriers in a nondegererate ferro-
magnetic semiconductor (T,=120'K).

~ For general reference about the application of Fermi statistics
in semiconductors, see R. A. Smith, Somkoldgofors (Cambridge
University Press, London, 1959).
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a)

+) FyG. 6. Donor levels in a
ferromagnetic semiconductor: (a)
paramagnetic region, with H =0;
(b) ferromagnetic region, or
paramagnetic region, with H&0.

0.6

H, there will be a change of the carrier concentration
with H, which can be calculated directly from Eq. (34) .

In the paramagnetic region, the splitting of donor
levels and bands is small, and proportional to H.
One 6nds for the relative change of the number of free
charge carriers (for the case that N((i!!!'n)

0
0.& 4.0 1.2

= r/r

N(H) cosh(tSJM(H)/2MsknT j s Pro. 8. Magnetoresistance of a ferromagnetic semiconductor as a

N(0) coshLySJM(H)/2MsknTj
function of temperature.

A change of n of course contributes directly to the
magnetoresistance. The effect will have a maximum at
T„because there, x has the largest value.

For shallow donors the effect is small, because in
that case, y will be about one. This can be understood
as follows. The wave function of an electron in a donor
state with a small ionization energy (a shallow donor)
consists in most cases of a combination of only slightly
perturbed conduction-band wave functions. "A conse-
quence is that the change of the donor energy En with
a magnetic 6eld will be the same as that of the cor-
responding band states, i.e., y 1. For deeper donors,
there is no reason why p should be about one, and
appreciable magnetoresistance effects due to a change of
the carrier concentration are possible.

The magnetoresistance of a ferromagnetic semi-
conductor due to a change of the mobility, i.e., assuming
a constant carrier concentration, can be calculated
from the equations give before. Below the Curie
temperature, e+»e, 8»1, and 1/p=N+etu+. From

0
/og„n

Eq. (30) one finds

p(H) /p(0) =x*(H)/x'(0) (36)

The band splitting in this case is large compared
with k&T, so that only scattering between the states of
the lowest sub-band is important. The expected
magnetoresistance in this region does not depend on the
strength of the coupling between localized spins and
conduction electrons, provided, of course, that it is
large enough for spin-disorder scattering to dominate.
Curves of the magnetoresistance as a function of
temperature and Geld are given in Figs. 8 and 9; the
field dependence of the susceptibility was calculated
with the molecular-field theory for a ferromagnet,
with S=~3.

Above T, carriers are present in both sub-bands;
the ratio I+/I —=expLSJM(H)/MsksT]. Moreover,
the mobilities are different, and depend on the field.
From Eq. (30) one can calculate the magnetoresistance,
if again the field dependence of the susceptibilities is
known. Figures 8 and 10 give the result of calculations
for S=+ and J=0.5 eV. A comparison of calculations

P. O

q
P+
~e0)
"ae r/r, =ar0—

06-

ae

0

X~1,0

8= QT

Fxo. 7. Free-carrier concentration n (arbitrary units) in an
extrinsic ferromagnetic semiconductor. The curves are calculated
from Eq. (34), with En 0 125 eV; S=J=.0.15 eV; T,=120'K.
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~%. Kohn, Solid State I'hys~cs, edited by F. Seitz and D. FxG. 9. Magnetoresistance of a ferromagnetic semiconductor as a
Turnbull (Academic Press Inc. , New York, 1952), Vol. V, p. 258, function of the 6eld for T&2;.
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FIG. 10. Magnetoresistance of a ferromagnetic semiconductor as a
function of the 6eld for T& T,.

of this type with experimental data on e-type CdCr2Se4
was given recently. "

The origin of the magnetoresistance above T, is
somewhat different from that below T,. Upon the
application of a field, the number of carriers in the
lower sub-band increases. At the same time, the
mobility of these carriers increases because spin-
Qip scattering decreases, leading to a lower resistivity.

DISCUSSION

Assuming a simple type of exchange coupling between
charge carriers and spins, the change of the energy
levels, the electrical resistivity, and the magneto-
resistance were calculated for magnetic semiconduc-
tors, using perturbation theory.

Experimental evidence is available only for a few
cases. The resistivity-versus-temperature curve of
MnTe i is in qualitative agreement with the calcula-
tions, although the decrease of the resistivity below the
Neel temperature is stronger than predicted. This may
be due to the inQuence of magnon drag, which is
probably appreciable in this compound. ' ' '

For the ferromagnetic semiconductors Ku&, Gd, Se"'4
and n-type CdCr2Se4, ""a pronounced maximum in
the resistivity has been observed at T„and also a
large magnetoresistance effect. The data for CdCr2Se4
are in reasonable agreement with the theory. " The
situation in Ku~, Gd Se is more complicated, because
the presence of the charge carriers strongly inQuences
the magnetic interactions between the localized spins.

Some reservations about the results obtained are
necessary. The calculated mobilities are quite small,
particularly near and above the Curie temperature.
It is well known that in such a situation of very strong
scattering, a simple perturbation theory becomes less

"G.Zanmarchi and C. Haas, J. Appl. Phys. (to be published).
PP G. Zanmarchi and C. Haas (to be published).

reliable. Some of the consequences were already briefiy
mentioned.

For an increased but not too strong coupling between
charge carriers and spins, the moving charge carriers
perturb the spin system from its normal isotropic
equilibrium in such a way that an energy current in the
spin system is dragged along by an electrical current
of the charge carriers. This magnon-drag effect has been
described elsewhere "' "

If the coupling becomes very strong, magnetic self-
trapping of the charge carriers may occur, leading to a
magnetic polaron. '4 In this case, a cloud of mag-
netization surrounds the carrier, and prevents its
unhindered motion through the lattice. This cor-
responds to an apparent increase of the effective mass
(polaron mass), and is related to the effects discussed
by Wolfram and Callaway. "Xo theory has yet been
given for the conductivity of magnetic polarons.

M =MpuB, (gJgS
~

F ~//kaT), (A1)

if the inhuence of anisotropy can be neglected. Here
8, is the Brillouin function and u is a unit vector
parallel to the molecular field F acting on the spins.
F is given by F=XM+H, where X is the molecular-
field constant equal to

X =3kaT,/Ng'IJapS(S+1) .

From Eq. (A1) the change 8M induced by a small
field 6H can easily be calculated, and from this the
susceptibilities x' and y ..

1/x*(II) =II/M, (A2)

1/x'(II) =EMp(BB /BF) j ' —~ (A3)

From Eqs. (A1)—(A3) one can calculate numerically
and I' as a function of temperature and field.

The molecular-field theory can be used only to
obtain a crude estimate of the susceptibilities. For a
more accurate calculation, the effect of short-range
order above T, and the inhuence of the magnetic
anisotropy should be taken into account,

'9 T. Wolfram and J. Callaway, Phys. Rev. 127, 1605 (1962);
130I 45 (1963).

APPENDIX

The susceptibilities y and y' do not include the
effects of Bloch wall motions, i.e., they describe the
change of the magnetization 3f of a single domain.

and p' can be defined in the following way: If a
sample with magnetization M parallel to a field H
along the s axis is subjected to a small extra field 5H,
then the change of the magnetization is given by
Wf, =g'6H„BM, =y 8H„and 83f~=x&BH„. The sus-
ceptibilities defined in this way depend on the field H.

In the molecular-field approximation for a ferro-
rnagnet, the magnetization is given by


