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Dielectric Relaxation of Rochelle Salt*
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The complex dielectric constant of Rochelle salt has been measured at frequencies from 2.5 to 13 0Hz,
and at 155 MHz. The measurements were made in a temperature range from —50 to 45'C which includes
the ferroelectric region and significant parts of both paraelectric regions. Measurements were made both
with and without dc biases. The dielectric constant is found to undergo a relaxation of a strictly Debye
character. Over the entire temperature range, the relaxation time is found to be proportional to P "times
the difference between the low-frequency, clamped, differential dielectric constant and its limiting high-
frequency value. This result is shown to be consistent with a model of the high-frequency dielectric behavior
based on the Kubo susceptibility formalism. Following Mitsui, it is assumed that the ferroelectric properties
of Rochelle salt arise from the rotation of hydroxyl groups within the tartrate molecules. The basic relaxa-
tion process probably involves phonon-induced transitions between the lowest states of these hydroxyl
ions. However, the cooperative dipolar interaction between ions reduces the over-all relaxation rate of
the coupled system. An approximate model Hamiltonian of the coupled hydroxyl system is constructed in
terms of the Pauli matrices and is used to calculate an explicit expression for the relaxation rate.

that this frequency is low compared to the dielectric
relaxation frequency of Rochelle salt, but high com-
pared to the piezoelectric resonance frequencies of our
samples. In this way, we are measuring consistently
dielectric constants at constant strain (clamped di-
electric constant) rather than at constant stress (free
dielectric constant). It is, of course, the clamped
dielectric constant which is directly susceptible to
theoretical analysis. Ke will show that all of our
experimental results are consistent with a rather
elementary extension of Mitsui's model of static
behavior. However, our results diGer in several im-
portant respects from those obtained both experi-
mentally and theoretically for other ferroelectrics. For
prospective it is useful to review, brieAy, some of the
previous work on the frequency dependence of ferro-
electric dielectric constants.

A rather sophisticated model of "displacive" ferro-
electricity has been developed by Cochran8 and others'
in terms of instabilities in the lattice vibrations.
Cochran has shown that the spontaneous ferroelectric
distortion may result from a transverse optical phonon
of zero (or near zero) wave vector becoming unstable at
the Curie temperature. In the paraelectric region, the
square of the frequency of this mode cop' decreases
linearly with temperature, becoming zero at the Curie
temperature, at which point the harmonic motion of
this mode becomes unstable and a phase change is
possible. According to this view, the frequency-de-
pendent dielectric constant should have the form
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Y was the investigations of the unusual properties of
. . Rochelle or Seignette salt that 6rst led to the
evolution of the notion of ferro electricity-. ' 'Since -the
early work on this substance numerous materials, of
course, have been found to exhibit similar ferroelectric
properties. However, Rochelle salt (sodium potassium
tartrate tetrahydrate, NaKC4HsOe 4Hs0) remains
essentially unique in that its ferroelectric region lies in a
narrow temperature range between —18 and +24'C.
Above and below this temperature range the nonpolar
regions appear to be crystallographically identical.
Mitsui, 4 drawing on the earlier work of Mueller, ~

Mason, ' and Devonshire, ' has developed a model which
accounts rather well for the peculiar static ferroelectric
characteristics of this material.

In this paper, we report a series of measurements of
the complex dielectric constant of Rochelle salt in the
frequency range from 2.5 to 13 6Hz. Kithin this range,
the ferroelectric properties exhibit a distinct Debye-
type relaxation. These measurements were made in the
ferroelectric region and in signi6cant parts of both
nonpolar regions. In order to make contact with the
theoretical analysis, measurements were also made at a
single low frequency, viz. , 155 MHz. Ke have found
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Rigorously, a damping term is also necessary in the
above equation and the nature of the damping processes
has been discussed by Silverman. ' When co =0, Eq. (1)
and a linear temperature dependence of ~p' yield the
familiar Curie-Weiss law. Experimentally, the di-

s W. Cochran, Advan. Phys. 9, 387 (1960); 10, 401 (1961).' 3.D. Silverman, Phys. Rev. 125, 1921 (1962).
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electric constant in displacive ferroelectrics such as
BaTi03 has been found to go through a resonance in the
far infrared. ""As predicted by theory, the resonance
frequency varies with temperature as (T T,—) U' and,
hence, as (ep) 'I' where ep is the low-frequency, clamped,
dielectric constant.

In contrast, the dielectric dispersions in several of the
so called "order-disorder" ferroelectrics have been
found to be of a relaxation character. Hill and Ichiki"
have observed a broad relaxation, at microwave
frequencies, in the dielectric constant of deuterated
potassium dihydrogen phosphate (KDP), triglycine
sulfate (TGS), and deuterated TGS with a relaxation
time proportional to @.The shape of this relaxation was
approximated by a Gaussian distribution of Debye
relaxation functions of the form

s(co) ~ exp( —n'r ) (1.+ioor) 'dr. (2)
0

The dispersion in Rochelle salt was first observed by
Akao and Sasaki." They also reported a broad re-
laxation in the microwave region whose relaxation time
varied as ep. However, subsequent measurements by
Jackie," at 9.39 GHz, and by Horioka and Abe" at
9.30 GHz, near the upper Curie temperature and by
Baumler, Blum, and Deyda" at 9.61 GHz over the
temperature range from —30 to 40'C show large (up
to a factor of 3) errors in Akao and Sasaki's results. In
large part, these errors arose from the small air gap
between their unplated samples and the walls of their
wave-guide sample holder. Later measurements by
Petrov'~ on Rochelle salt also appear to sufter from a
residual air gap. This gap acts as a thin series capacitor
with an extremely low relative dielectric constant and
tends to mask the capacitance of the ferroelectric
material.

The measurements reported here cover a much larger
frequency range than those of Jackie'e and Baumler
et a/. ' However, the agreement between our results
and theirs is quite good in the region of overlap. The
experimental procedures used in this work are outlined
in Sec. II. The experimental results are discussed in
Sec. III where it is shown that the temperature de-

pendence of the relaxation time arises mainly from a
proportionality to 6p, but has an additional explicit
temperature dependence of the form T~ where E is
approximately 5/4. However, the shape of the re-

ro A. S. Barker and M. Tinkham, Phys. Rev. 125, 1527 (1962).
~ W. G. Spitzer, I R. C. Miller, D. A. Kleinman, and L. E.

Hovrarth, Phys. Rev. 125, 1710 (1962).
'~ R. M. Hill and S. K. Ichiki, Phys. Rev. 128, 1140 (1962);

1309150 (1963);13201603 (1963).
"H. Akao and T. Sasaki, J. Chem. Phys. 23, 2210 (1955).
'4 W. Jackie, Z. Angew. Phys. 12, 148 (1960).
'~ M. Horioka and R. Abe, J.Appl. Phys. Japan 5, 1114 (1966).' P. Baumler, W. Blum, and H. Deyda, Z. Physik 180, 96

(1964).
'r V. M. Petrov, Kristallografiya 7, 403 (1962) /English transl. :

Soviet Phys. —Cryst. 7, 319 (1962)g.

laxation is very close to a pure Debye relaxation'
rather than the broad relaxation observed in other
order-disorder ferroelectrics. In Sec. IV an extension
of Mitsui's model is presented which makes use of the
Kubo formulism for complex susceptibilities. "

II. EXPERIMENTAL PROCEDURE

Three different experimental techniques were used in
this investigation in order to cover the entire frequency
range. At the high end of the frequency range, 9.5 to 13
GHz, the reQection coefficient of a wave guide com-
pletely filled with a silvered block of Rochelle salt was
measured with a slotted line. The sample was long
enough to completely attenuate any reQections from
its rear face. Even at these high frequencies the di-
electric constant of Rochelle salt is quite large and a
filled guide has a reQection coe%cient very close to
minus one. While the large resultant voltage standing-
wave ratio (VSWR) was not hard to measure accu-
rately, the very small diQerence in phase between
the reQected wave from the sample and a perfect
short (typically 0.005 wavelengths) was difficult
to measure. In order to increase the phase shift, the
sample holder was partially matched to the slotted
line by means of a quarter w'avelength section of
wave guide filled with Rexolite having a dielectric
constant of 2.55. The reQection coefficient from the
front of this transformer was then close to that of an
open circuit but diGered from it in phase by an amount
adequate for measurements to be made at frequencies
up to the low end of E„band. Above that point spurious
reQections from sample irregularities became relatively
larger and precluded accurate measurements.

The reference phase was established in these measure-
ments by measuring the position of a null in the slotted
line when a short was placed at the far end of the
empty sample holder. To this null position was added
the length of the sample plus transformer to obtain the
position of a null due to a short at the front face of the
transformer. Minor corrections in the null position were
then made for the diBerence in guide wavelength
between the sample holder and slotted line, the change
in length of the sample holder with temperature and the
change in guide wavelength of the sample holder due to
thermal expansion of its cross section. The temperature
of the sample was controlled by immersing the holder
in a Dewar containing water (at or above room tem-
perature) or alcohol (below room temperature) .

At frequencies from 2.5 to 9.5 GHz the dielectric
constant was determined by measuring the capacitance
of a small disk of Rochelle salt approximately 70 mils in
diameter and 39 mils thick. The disk was silvered on
both faces and placed between the center conductor of a

"P. Debye, Polar Moleegies (Dover Publications, Inc. , New
York, 1929).

» R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
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Fxo. j.. Coaxial sample holder for
dielectric measurements.
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rigid coaxial line and a Qexible diaphragm terminating
the outer conductor. A diagram of the end of the
coaxial sample holder is shown in Fig. 1.The impedance
of the sample plus holder is measured with a slotted
line as shown in the block diagram, Fig. 2. This tech-
nique is similar to that used by Jaynes and Varen-
horst' Diamond" and Hill and Ichiki" at lower
microwave frequencies. However, at the high end of
the frequency range involved, it is no longer valid to
treat the system as a uniform transmission line ter-
minated with the sample impedance plus a fixed
capacitance and inductance representing the fringing
fields of the sample holder as is done at lower fre-
quencies. Not only does this lumped circuit for the
fringing fields break down, but the attenuation of the
sample holder and the rejections from the connector
between the slotted line and the sample holder become
noticeable. The transformation of the impedance of the
sample through the holder and slotted line (or any
microwave network for that matter) can, however,
always be simulated by the transformation through
any of numerous three component circuits. These
components, of course, have an unknown frequency
dependence and hence must be measured at each
frequency used. The calibration procedure, which
employed a set of disks of known dielectric constant
having the same shape as the Rochelle salt samples, is
described in detail in Ref. 22. That report also describes
the corrections in calculating the impedance of the
small Rochelle salt capacitors. These corrections are
necessitated by the fact that the radius of the disks

2' E. T. Jaynes and V. Varenhorst, Stanford University,
Microwave Laboratory Rept. 287, 1956 (unpublished).

~ H. Diamond, University of Michigan, Willow Run Labora-
tory Report oi Project Michigan 2900-121-T, 1960 (unpublished) ."F. Sandy, Air Force Cambridge Research Laboratories
Report 65-250, 1965 (unpublished) .

while small is not negligible compared to a wavelength
in the material at the frequencies employed.

Provisions were made for inserting a dc bias on the
center conductor of the sample holder. It was found
necessary, however, to switch the polarity of this bias
several times per minute to avoid the build up of a
dipole layer at the sample surface with a large part of
the dc bias across it. This layer, it is assumed, arises
from the difference between the bulk and surface
resistivities of the sample.

The low-frequency, clamped, dielectric constant was
measured by means of a General Radio uhf bridge at
155 MHz using the same coaxial sample holder and
ferroelectric samples. Since the samples had a very high
impedance at this low frequency and the bridge was
capable of measuring from a smaller upper limit down to
zero, an odd number of quarter wavelengths of line
was placed between the sample and the bridge. The
length of the line was then adjusted so that the bridge
read zero for the empty sample holder. The deviations
in the length of the line from ~ wavelengths then just
balanced the capacitance of the fringing fields at the
end of the sample holder.

III. EXPERIMENTAL RESULTS

Microwave Measurements

The microwave measurements of the real part of the
dielectric constant of our best samples of Rochelle salt
are shown in Fig. 3. The various curves were taken at
fixed frequencies indicated by distinct points. Results
among good samples agreed within about 10%. This
sample-to-sample scatter is about twice as large as the
total instrumental error.

The most interesting qualitative feature of these
results is that at all frequencies above 5.10 6Hz, and
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possibly even at 3.90 GHz, the real part of the dielectric
constant has minima at the Curie temperatures, instead
of maxima. The reason for these minima may be under-
stood quite simply. Ke might assume that in accordance
with results of previous workers, the relaxation fre-
quency varies inversely with the low-frequency,
clamped, dielectric constant. It is intuitively reasonable
that a better approximation would use the difference
between the low-frequency dielectric constant and the
high-frequency limit that the dielectric constant is
approaching, rather than the low-frequency value
alone. Ke may thus write

6p 6~ orT

T —7p Cp

where e' is the real part of the dielectric constant, @
and e„are, respectively, its low- and high-frequency
values, f(sar) is an, as yet, unknown relaxation function,
and 7p is a constant of proportionality.

9/e now wish to find how e' varies with temperature
at high frequencies. Differentiating Eq. 3 and assuming
that Brp/BT is zero or negligible, we may write

Be' Bep Blnf(por)
por 1+ 4

BT BT Bln((or)

Since e —e is positive, f(a&r) must be positive. Thus,
Be'/8 T has the same sign as Bep/B T, providing Blnf(por) /
Bln(eor) )—1. If it is less than —1, e' has the opposite
slope to that of ep. This is just what is observed near the
Curie temperatures at high frequencies. The require-
ment that the logarithmic derivative be less than —1

above some frequency implies that f(~r) falls oG faster
than or ' at high frequencies. Now the relaxation
described by Hill and Ichiki as shown in Eq. (2) has a
limiting fall-off of or and, hence, the logarithmic slope
is always greater than —1. For this reason one does not
find minima at the Curie temperatures in KDP or TGS.
However, a pure Debye relaxation of the form (1+
eoere) ' has a limiting fall-oB of co P and the logarithmic
derivative is less than —1 for all co) 1/r As will b.e
seen later in this section, the relaxation in Rochelle salt
is in fact of the Debye type. It will also be seen that the
proportionality constant 7p is not entirely temperature-
independent. However, its temperature dependence is
so small compared to that of ep that it may be ignored in
the above discussion.

The data in Fig. 3 may be essentially characterized in
the following way. The dielectric constant drops with
frequency at all temperatures. However, since ep —~ is
greatest at the Curie temperatures, the relaxation
frequency is lowest there. The dielectric constant thus
starts to drop first at the Curie temperatures, and if it
drops at a fast enough rate it can become less than the
dielectric constant at neighboring temperatures.

Since the relaxation frequency is proportional to
(ep —e ) ' and the criterion that the slope Be'/BT have
the opposite sign to Bep/BT is that the measurement
frequency be greater than the relaxation frequency, one
would expect that the temperature range in which this
inversion takes place would increase with frequency.
This is in fact the case, as can be seen in Fig. 3. The
reason that the existence of a minimum at the Curie
temperatures at 3.90 GHz is ambiguous is that the
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temperature range in which the inversion takes place is
very small, even though 3.90 6Hz is slightly greater
than the relaxation frequency at the Curie tempera-
tures. Not only is the range of the inversion small, but
the magnitude of the slope Be'/8Tis small and the curve
appears Qat, rather than having minima at the Curie
temperatures.

The same argument can be applied to the imaginary
part of the dielectric constant by replacing ~' —e

with e" in Eq. (5). However, the imaginary part of a
Debye relaxation goes as f(on) =a&r/(1+aPr). The
limiting fall-off of this expression is ~ and the log-
arithmic slope never is less than —1.Thus, in agreement
with the experimental observation, the imaginary part
of the dielectric constant would not be expected to have
minima at the Curie points —see Fig. 4.

I ow-Frequency Measurements

Before we can go on to determine the form of the
relaxation function, it is necessary to discuss the

appropriate values to use for the temperature de-
pendence of eo. Values of the low-frequency, clamped,
dielectric constant have been reported by Mueller, 5

Mason', and Akao and Sasaki. "Their results are quite
inconsistent as can be seen in Fig. 5. Measurements
were, therefore, made at 155 Mc/sec by the method
described in Sec. II.These are also included in Fig. 5.

It is interesting to note the results reported here
agree within 10% with Mason's results in the nonpolar
regions, but are only 60% of Mason's values in the
middle of the ferroelectric range. The reason for this
discrepancy is believed to be the following. Mason's
measurements were made at 20 Mc/sec which is a high
enough frequency to insure inertial clamping. However,
in the ferroelectric region the dielectric constant has two
distinct components. The first comes from domain wall
motion, while the second arises from the intrinsic
BP/BE within each domain. Apparently, the domain
wall resonance occurs somewhere between 20 Mc/sec
and 155 Mc/sec, so that Mason's measurements include
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FIG. 4. Imaginary part of dielectric constant of Rochelle salt at various frequencies. Frequencies denoted as in Fig. 3.

the domain wall motion and the results reported here do
not. It is only the intrinsic value that we are interested
in here. If the values of the dielectric constant measured
at microwave frequencies in the middle of the ferro-
electric range are extrapolated to zero frequency, they
yield a value between 5% and 10%below that measured
at 155 Mc/sec. While this may only be experimental
error, it is more likely that it indicates that a small
contribution from domain wall motion still exists at
155 Mc/sec. In subsequent calculations the measured
values have been reduced 5% in accord with this
assumption.

Analysis of Data

Using the low-frequency values of the dielectric
constant given in Fig. 5 and the measured microwave
values, we may plot the frequency dependence of e' and
~" with the temperature as a supressed parameter. For
convenience we actually use (e' —e )/(eo —e ) and
e"/(eo —e ) as normalized ordinates. We also use
v(eo —e„) as a normalized abscissa. If our conjecture

that the relaxation time is proportional to (eo —e ),
then for all temperatures the normalized quantities
should lie on a single curve.

Two such plots with temperature as an implicit
variable are given in Figs. 6 and 7. These graphs were
plotted by an X-F plotter driven by an IBM 7094
computer used for the data reduction. The solid line
included in these figures is a pure Debye relaxation
function. An additional scale factor of 0.001j. has been
included in the abscissa so that the Debye relaxation
frequency is one when v is measured in GHz. In these
figures, as well as in Figs. 8 and 9, the various points
designate data taken in approximately 5'C temperature
intervals between —45 and +45'C.

In treating our data we have had to assume a value of
. According to Mitsui's model, at low temperature all

of the ferroelectric dipoles are frozen in their lowest
states and do not contribute to eo. Hence, in this
region e which represents the dielectric contributions
from all other sources is essentially given by eo. The
low-temperature value of eo is measured as 7. If we
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assume that e has a temperature dependence com-
parable to that of e in the two nonferroelectric di-
rections of Rochelle salt, we obtain a value e„=9 in
the temperature range of interest.

We see from Figs. 6 and 7 that the relaxation is
approximately of the Debye shape, and the relaxation
frequency is approximately proportional to (ep —e )
However, on looking carefully at these 6gures, it was
noted that most of the points below the curve are from
high temperatures, and those above the curve are from
low temperatures. We thus see that the relaxation time
also has a slight temperature dependence in addition to
its dependence on (ep —e„). We shall thus assume that

rp~ TN
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Pro. 5. A comparison of a number of experimentally measured
temperature variations in the low-frequency, clampled, dielectric
constant ~0. See text for references.

dence is not expected to hold beyond the range of
temperatures considered here. In order to find X we
replotted the data with the renorrnalized abscissa
(ep —e ) ( T/273) ~(0.0011) for various values of cV

(viz. , 1.0, 1.25, 1.50, 2.00) and determined subjectively
which one comes closest to yielding a single curve. T
itself was normalized to 273'K (O'C), to avoid the
necessity of varying the constant scale factor 0.0011
with changes in E. The best fit is obtained with S=
1.25~0.25 and this fit is shown in Figs. 8 and 9.

It may be noticed that while the plots for the real
and imaginary parts of the dielectric constant are both
improved by this modi6cation of r, the residual scatter
is greatest in the imaginary part. This is easily ex-
plainable, if one assumes that the major part of sam-
ple-to-sample and run-to-run fluctuations is a result of
variations in ep. These variations are caused by sample
strains and imperfections. We assume further that these
imperfections aRect the relaxation time primarily
through its dependence on ep. Since ep)&e, the dielectric

We now look to see how a small error in ep aGects e' and
e". When v[0.0011(T/273)~ep} =1.0, that is, at fre-
quencies near the relaxation frequency, e' is nearly
independent of ep while e" depends linearly on 6p. Thus,
as we have seen in Figs. 8 and 9, near the normalized
frequency of one, e' shows very little scatter and e"
shows considerable scatter. At low frequencies, e' varies
linearly with 6p, and experimentally it is seen the scatter
gets large. e" in this region varies as Ep', so that its
relative scatter also increases. However, since e"
itself gets small in this region, the absolute scatter
decreases. ~' is also dependent on ~p at high frequencies,
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FIG. 7. Imaginary part of normalized dielectric constant of
Rochelle salt versus normalized frequency. Solid curve is a Debye
relaxation function.
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FIG. 8. Real part of normalized dielectric constant of Rochelle
salt versus normalized frequency times (T/273)'. ".Solid curve is
a Debye relaxation function.

but since its magnitude decreases, the absolute scatter
is small. On the other hand, e" becomes independent of
ep for high frequencies, and the scatter decreases con-
siderably at the high-frequency end even before e"
becomes small itself.

Results in the Ferroelectric Range

One of the original questions posed at the start of this
work was whether there were any differences in the
high-frequency dielectric behavior between the two
nonpolar and the ferroelectric regions. Ke have already
seen that there is no major difference between these
regions although there is the apparently continuous
dependence of v 0 on T. However, a careful look at Fig. 8
in the vicinity of the normalized frequency of one, shows
that the points in the middle of the ferroelectric range
are primarily under the solid curve. In fact, we can say
that the relaxation time in the center of the ferroelectric
region is given by Eq. (5) times a factor of 1.1+0.1.
However, this eBect, like the dependence of 10 on T,
is quite small, and we see that the high-frequency
die1ectric behavior is qualitatively the same in all three
regions.

EBect of a dc Bias

The results that were obtained from measurements
with a dc bias applied are summarized below. At 155
MHz and at low-microwave frequencies, the real part
of the die1ectric constant drops with bias at all tem-
peratures, although in both nonpolar regions the mag-
nitude of the change is small far from the Curie tem-
peratures. As the bias is increased, the temperature of
the maximum in e' moves into the nonpolar region. At
frequencies suQiciently high to produce minima in the
real part of the dielectric constant at the Curie tem-
peratures, a rather interesting eGect occurs. At tem-
peratures between the maxima in e' near each Curie
temperature, e' first rises with bias and then drops. At

all other temperatures, it merely drops with bias as it
does at low frequencies. As the bias is increased, each
pair of maxima tends to coalesce and the minimum
between them moves toward the nonpolar region.

The imaginary part of the dielectric constant drops
with bias at all temperatures and frequencies. Its peak
also moves into the nonpolar region with increasing bias
and remains at the same temperature as the peak (or
minimum) of the real part of the dielectric constant. An
example of this behavior is shown in Fig. 10, which
shows the measurements at various biases around the
upper Curie temperature made at 8.25 Gc/sec.

Looking at the graphs of the real part of the dielectric
constant with their various biases, one can imagine the
envelope made up of the maxima to which c' rises with
bias at each temperature between the pair of maxima
of the unbiased dielectric constant. This envelope is
approximately a straight line connecting the two
maxima about each Curie temperature in Fig. 3.

The reason for this behavior of the dielectric con-
stant with bias can be understood by repeating the
earlier arguments Lsee Eq. (4) $ with differentiation by
T replaced by differentiation by E. %le then have

tie' clep Blnf (rpr)f ppr 1+
BE BE eiin(epr)

The criterion for Be'/BE having the opposite sign to
Bep/BE (which is always negative) is just the same as
that for Be'/8 T having the opposite sign to Bep/8T. The
envelope of the curves of e' versus T at various biases,
i.e., the curve of the maxima of e' with E as function of
T is given by

Blnf(ppr)1+ =0.
ciln(ppr)

Since Rochelle salt undergoes a Debye relaxation,
f(cur) = (1+ppsr') '. Equation (8) is thus equivalent to
rpr=1 or f(err) =-,'. Combining this with Eq. (3) we
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FIG. 9. Imaginary part of normalized dielectric constant of
Rochelle salt versus normalized frequency times (T/273)'rp.
Solid curve is a Debye relaxation function.
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I I I I I I I I observations may be summarized briefly as follows:

(1) The frequency dependence of the complex di-
electric constant follows a simple Debye relaxation
behavior.

(2) The relaxation time is linear in pp
—c„.

(3) The relaxation time has a small additional
imcreasimg dependence on temperature, approximately
proportional to TSI'.

(4) The shape of the relaxation remains a pure
Debye relaxation upon polarization and the relaxation
time is only slightly polarization-dependent.

50—

obtain the values of e' (which we denote by e, ') on
the envelope as

1f
Cmax 60o = g (60

Thus we And the dependence of 70 on e, '

rp '-—2cp(e, ' —e ).

(9)

(10)

Since we have seen that the temperature dependence of
the envelope is just given by the slope of the lines
connecting the maxima surrounding the Curie points
in Fig. 3, we have another method of determining the
temperature dependence of vo and thus the explicit
temperature dependence of r. This is not an independent
experimental determination, since it only uses the data
in Fig. 3 again. It is merely another way of analyzing
data, and so it is not surprising that it also yields
Blnrp/cIlnT~1. 25 or r or (ep e) (T—/273) "s.

Some of these properties of the biased dielectric
constant were also observed by Jaclde'4 in his measure-
ments at 9.39 Gc/sec in the temperature range from 18
to 40'C and with biases up to 5 kV/cm. He reported
that at all temperatures in the above range the real
part of the dielectric constant only rises with bias.
However, he failed to observe that at the highest biases
he used, c' is actually decreasing with bias at all tem-
peratures, and that at the two temperature extremes e'

only drops with bias. This drop in e' with bias is essential
in establishing the phenomenological relationship that
the relaxation time is proportional to the differential
value of eo —e„.

IV. INTERPRETIVE DISCUSSION

In this section we present a model of the dielectric
relaxation in Rochelle salt which is consistent with the
experimental observations reviewed in Sec. III, These

I I I I I I I I I I I I

15.0 20.0 25.0 50.0 55.0 40.0 45.0
TEMPERATURE (:

FIG. 10. Temperature dependence of the real part of the dielec-
tric constant at 8.25 6Hz of Rochelle salt under various dc biases:
(A) no bias; (B) 1.0 kV/cm; (C) 2.0 kV/cm; (D) 4.1 kV/cm;
(E) 6.1 kV/cm; (F) 8.2 kV/cm.

The model we develop is basically an extension to
high frequencies of the general ideas underlying Mitsui's
model for the static ferroelectric behavior of Rochelle
salt.4 For reference we 6rst review some of these ideas.
Building upon this structure we make use of the Kubo
formulism" to obtain a general complex dielectric
susceptibility of the requisite character.

Static Model of Ferroelectricity

Mitsui's theoretical model' of the polarization of
Rochelle salt makes use of a basic assumption taken
over from Mason's earlier work on the problem. 6

Mason had suggested that the motion of the ferro-
electrically active dipoles is constrained by local,
asymmetric, double-well potentials. According to his
model, the primary source of ferroelectricity was
supposed to be associated with proton motion between
two equilibrium positions of a particular set of hydrogen
bonds. However, more recent structural evidence
throws considerable doubt on the importance of such
hydrogen bonds in the ferroelectricity of Rochelle
salt 3 23 Unfortunately, a completely satisfactory struc-
tural analysis has yet to be obtained, but neutron
diGraction results" do suggest that the ferroelectric
polarization is, at least partially, associated with the
rotation of the hydroxyl groups, denoted (0—H) p, of
the tartrate complex. The protons of the hydroxyl
group are apparently free to rotate about the oxygen
atoms between two equilibrium positions yielding a net
proton displacement component of 1 L along the ferro-
electric direction. There are four such rotatable dipoles
per unit cell which can be grouped into two pairs. The
protons within each pair are symmetry related even in
the ferroelectric region. The pairs themselves are
related by symmetry only in the nonpolar states. In
Mitsui's model the pairs are assumed to form two
interpenetrating sublattices. A representation of the
potential energy function of the hydroxyl group is
shown schematically in Fig. 11 where the variable x is
the projected coordinate in the ferroelectric direction of
the proton motion as the hydroxyl group rotates. By

"G. Shirane, F. Iona, and R. Pepinsky, Proc. I.R.E. 43, 1738
(~955).

'4 B.C. Frazer, J.Phys. Soc. Japan 1'7, Suppl. B-II, 376 (1962).
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V(r ) V(r)

SUBLATTICE ONE SUBLATTICE TWO

FIG. 11. Assumed asymmetric double-well potential constrain-
ing the dipoles responsible for the ferroelectric effect in Rochelle
salt.

"R. Blinc, J. Petkovsek, and I. Zupancic, Phys. Rev. 136,
A1684 (1964).

2' N. C. Miller and P. A. Casabella, Phys. Rev. 152, 228 (1966).

symmetry requirements, the local potentials for the
two sublattices are mirror images of each other. '4 Since
the two equilibrium positions of the protons are not
symmetry related, they would be expected to have
diferent energies. This diGerence is denoted by 2V.
The motion of the proton corresponds to the reversal
of a dipole of moment p, =-,' ed where d is the component
in the ferroelectric direction of the separation of the
potential minima. Mitsui assumes that the hydroxyl
rotation is the only important atomic rearrangement at
the ferroelectric transitions. Recent measurements on
the Na" nuclear quadrupole resonance of Rochelle
salt"" indicate that this assumption is an over simpli-
fication. The atomic motion is probably considerably
more complex. However, it seems quite reasonable to
accept, at least as a phenomenological device, the
notion that the rearrangement is constrained by an
asymmetric local potential.

In addition to the local asymmetric potential,
Mitsui assumes that the interaction between the ferro-
electrically active dipoles may be treated by means of
a simple molecular field. It is perhaps surprising to
suppose that a molecular-field approach might work at
all. As is well known, '~ important transverse correlation
eGects in dipolar coupled systems make necessary a
more Onsager-like" treatment of dielectric properties.
However, the local potential in Rochelle salt may
sufBciently "quench" the transverse components of the
electric dipole moment so that transverse correlation
would be greatly reduced. In such a case, the longi-
tudinal correlations would dominate and the molecular
field would be adequate. The situation would be
analogous to that in the magnetic compound dys-
prosium aluminum garnet. ""In this substance the
dominant dipolar interaction may be replaced by an
Ising-like interaction, since the dysprosium ion has an
extremely anisotropic g factor which leads to a minu-
scule transverse component of the magnetic dipole
moment.

In departure from Mason's theory, Mitsui's model
does not assume equal values for the intrasublattice
and intersublattice molecular-field constants, denoted,

respectively, in his theory by p and p. It is this view
which constitutes Mitsui's crucial contribution to the
understanding of the ferroelectricity of Rochelle salt.
Unfortunately, at the same time, the mathematical
analysis of the problem is greatly complicated by the
assumption of two independent molecular-field con-
stants. For our purposes we need not review this analy-
sis in any detail. It is sufhcient to note that Mitsui is
able to characterize the temperature dependence of the
dielectric susceptibility entirely in terms of the relative
behavior of two dimensionless parameters viz. , c=—

(P' —P)/(P'+P) and b= cV—p'(P' P)—/2V In.particular,
he is able to show that two dielectric singularities or
Curie temperatures are possible if c&0.288. Thus,
Mitsui's model is able to elucidate the most interesting
aspect of the ferroelectric of Rochelle salt if P'AP. In
our subsequent discussion of dynamic behavior we
follow only the spirit of Mitsui's model and need not
review further its mathematical details.

Dielectric Relaxation Function —Formulism

In an earlier discussion, "we analyzed the dielectric
relaxation of Rochelle salt in terms of a rather classical
model of relaxation towards an "instantaneous equi-
librium. " In many respects, this discussion follows
quite closely the original ideas of Debye" and leads
directly to the result that the relaxation time varies
directly as (eo—e ).Both Mason' and Landauer" have
used a similar kind of analysis in earlier works. As Hill
has pointed out, '~ such a treatment is inadequate to ac-
count for the dynamic behavior of most polar materials.
It completely neglects correlations in the transverse
components of the elementary dipole moments. How-
ever, as we have pointed out above, the Mitsui model
presupposes that the hydroxyl dipole moment has only
a single nonvanishing component. Thus, the simple
picture may be reasonable for Rochelle salt.

In this paper we would like to make use of the point
of view that Kubo and Tomita"" 6rst developed in
connection with problems in magnetic resonance. Cole"
has previously discussed dielectric polarization rather
generally in terms of the Kubo formulism. Our work
represents a rather specialized extension of his analysis.

If we suppose that 5' represents the total polarization
operator of a given dielectric material, Kubo has shown
quite generally that the complex frequency-dependent,
dielectric susceptibility must have the form

X(co) =4 (0) ia) C—(t) e 'dt,
-'

+N. L. Hill, Proc. Roy. Soc. (London) A240, 101 (1957).' L Qnsager, J. Am. Chem. Soc. 58, 1486 (1936).
'9 D. C. Mattis and W. P, Wolf, Phys. Rev. Letters 16, 899

(1966).
'0 B. E. Keen, D. Landau, B. Schneider, and W. P. Wolf, J,

Appl. Phys. 37,)1120 (1966)."R. Landauer (private communication).
'~ R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 {1954).
~' R. H. Cole, J. Chem. Phys. 42, 637 (1965).
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where C(t) represents an appropriately defined re-
laxation flzzctzozz F. or a canonical statistical ensemble
the relaxation function has the form

C(t) = (6 ( —ifz)(P(t) )dh —P(5", ) (12)

where (Pp signifies the invariant part of the operator (P

with respect to the total Hamiltonian of the system.
The operators 60(t) and (P( ih—h) are given, respec-
tively, by exp(iXt/5)(Pexp( iX—t/fz) and exp(Xlt) &(

(Pexp( —XX). The bracket notation denotes thermal
averages taken with respect to the canonical den-

sity matrix p=exp( —PX)/Tr exp( —PX)—i.e., (A) =
TrpA.

In our experiments we are concerned solely with the
relaxation of the polarization due to atomic rearrange-
ments at relatively low frequencies well below the
relaxation frequencies associated with optical phonons
and any correlations in the electronic components of
polarization. In this low-frequency case, Eq. (11) may
be reduced to

xz ( ) =x„—P(6'o')+C (0) —z C„(t)t' '"'dt, (13)
p

where

(14)(P(—iQ,) P(t) )(h.

+ (z/tz)'
0 0

dt'dt"[X(t'), [X(t"),P(t")jj. (15)

This development leads us to the following, still exact,
expression for the thermal average

(P(—iQ) P(t) )= (P(—iQ.) P(0) )

+(t/tt) f dt'(P( —tttX)('00(t'), P(0)])
0

t'

+(i/8, ) s dt'dt"
0 p

&& (LX(t'),P(—i&it)1[X(t")»(t")j) (16)

The particular form of the last term in Eq. (16) is a
consequence of the commutation properties of the trace
operation. In what follows we shall be concerned only
with those Fourier components of Eq. (16) at fre-

The operator P represents the total component of, say,
the hydroxyl dipole moments along the ferroelectric
axis.

By a formal double integration of the Heisenberg
equation of motion, we may obtain the following
explicit development of the operator P(t) in terms of
the initial operator P(0):

t

P(t) =P(0)+(t/tt) f dt [00(t'),P(0)]'

quencies less than the frequency associated with the
splitting between the two lowest states of the hydroxyl
group. Consequently, we may approximate the equation
by its behavior over long times. In such a "long time"
approximation, we suppose that the time interval I, in
Eq. (16) is short compared to the relaxation time of P,
but long compared to the characteristic oscillatory
periods of X» which denotes those parts of the total
Hamiltonian not commuting with P. The time is long
compared to the correlation times of the microscopic
fluctuations in P.

Under these circumstances the second term on the
right of Eq. (16) averages out. The integrand of the
third term for stationary processes is a function only of
the time difference t"—t' and, by assumption, di-
minishes rapidly. Thus, Eq. (16) has the limiting value

lim(P( —i)rile) P(t) )= (P(—NX) P(0) )+(t/fP)

&& ([X,(0),P( —zQ) ][X,(t'),P(t') j). (17)

It is not unreasonable to identify this approximation
with the 6rst two terms of the series expansion of a
Debye relaxation function C~(t) =C„(0)exp( —t/r) .
According to this identification the relaxation time
would be given by

P co

dlt dt([Xi(0),P(—z7zX) J
p p

&& [X,(t),P(t) j) I '
P —»

D, (P(—i') P(0) ) (18)
0

or from Eqs. (13) and (14):

'dt, 'dt(00, (0),P( —tat)](00, (t),P(t)]I
p 0

&& l &'[(xo—x-) +P ((P ')jI ' (19)

A Debye relaxation is, thus, reasonable in the loeg time
approximation used here. Equations (18) and (19) are
similar in content to expressions developed by Mori and
Kawasaki" for the relaxation time of a Heisenberg
ferromagnet. In the "classical" limit fi=0, Eq. (19)
takes on a particularly simple form

(P(0) P(t) )dt IkT[,—„j+(6,)I-.
(20)

If the numerator in this expression is a weak function
of the temperature, the predicted temperature de-
pendence of 7 is quite consistent with the previously
discussed experimental results, viz. , r ~ T(es e). The-
term ((Ps ) in the denominator of Eq. (20) is negligible.
Using Hablutzel's values" for the saturation polari-
zation we find this term to be less than 0.1%of kT(xt)—
x ) even in the middle of the ferroelectric range. As we

"H. Mori ar)d K. Kawasaki, Progr. Theoret. Phys. (Kyoto)
2'7, 529 I', 1962).

3 J. Hablutzel, Helv. Phys. Acta. 8, 489 (1935).
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show in the next section, the numerator of Eq. (20)
would be expected to have a weak temperature vari-
ation if the time dependence of I' is due mainly to one
phonon transitions between the two lowest states of the
hydroxyl ions.

Model Hamiltonian of Polarization Mechanism

In order to obtain a little more physical insight into
the significance of Eq. (20), we present a greatly over-
simplified picture of the dynamics of the proton or
hydroxyl ion moving in an asymmetric double potential
well, such as depicted in Fig. 11.Following a suggestion
of de Gennes, "we construct by means of the Pauli spin
matrices, a model Hamiltonian of the lowest states of a
dipole coupled system within which individual particles
move in asymmetric double wells. We assume that there
are two distinct sublattices characterized by the sense
of asymmetry of the individual double wells. The ex-
pectation value of the Pauli operator 0-,' is taken as a
measure of the degree of a particle localization on a
particular side of the double well at the ith site of the
o.th sublattice. The sum of o-„over all sites and both
sublattices constitutes a representation of an operator
proportional to the total polarization operator P. To
adequately model our problem our Hamiltonian must

contain five distinct types of terms —viz. ,

x = P Z -( *) + P V -. '+ P T -. '
CL ~ 5 A, $

—~i Z ~ *+ Z Z ~ "~ *oe * (21)
rxi ai P j

The Grst two terms represent the individual energies of
two separated asymmetric potential wells. According
to the Mitsui model, the static, unpolarized Rochelle
salt lattice would have V = V'= —V'. These two terms
alone lead to eigenstates which describe a particle
motion localized about the minimum in a particular
well. The third term in Eq. (23) represents the non-
localization effect produced by the proximity of the two
sides of the double well. The fourth term is just the
electrostatic interaction between the individual dipoles
and the local electric field E. The fifth term is an
Ising representation of the inter-protonic dipolar inter-
action. As we have said before, the Ising approximation
is probably adequate here since the hydroxyl ions are
assumed to have only one definite component of local
dipole moment. Equation (21) would reproduce
identically the static behavior discussed in Mitsui's
model.

In view of our simple model Hamiltonian, Eq. (20)
takes on the following specific form:

'=(4/'/k') g Z &T' (o) T/(1) -"(0)~."(1))«LkT(xo —x-) j '
ni Pj 0

(22)

In general, we would not expect Quctuations in the
lattice potential parameters T, to be correlated with
the Quctuations in the protonic motion. Thus, we may
factorize the numerator of Eq. (22) as

(T'"(o) Te(1)~-."(0)~et (1) )di= &T' (o)

X T,~(1) ) & .;"(0)o'e;"(1) )di. (23)

In a pure Ising model, of course, there is no cross
correlation between the transverse "spin" components
from site to site. However, the "tunneling" or non-
locahzing eRect of the o. , terms in Eq. (21) gives rise
to some transverse cross correlation. In our problem
the cross correlation leads to a relaxation mechanism
similar to cross reloxatiorI, in magnetic resonance. Such
mechanisms would be essentially temperature inde-
pendent. For simplicity, we neglect these cross-correla-
tion effects by assuming that the eigenstates of the
system are fairly well localized on either side of the
potential barrier. Thus, we assume that

& -"(o) "(1))=~- 3' & -"(o) -"(1)) (24)

This self-correlation function has only Fourier com-
ponents at zero frequency and at the frequencies

"P. G. de Gennes, Solid State Commun. 1, 132 (1963).

hE /k where hE is the splitting between the two
lowest states of the protons on the eth sublattice. The
lattice vibrations lead to modulations of the tunneling
integral Ti which lead in turn to direct transitions
between the protonic levels. The relevant Fourier
components of &T; (0) T;"(t) ) vary as the average
lattice displacement at the frequency AE /fi —i.e., as
p(AE ) coth(AE /2k T) where p(AE„) is the density of
phonon states of energy AE .

For the direct one-phonon relaxation process we may
then write

r ' = (4p'/k') PPG, I
&e, I

o '
I g ) I

'

Xp(AE )coth(DE„/2kT)][kT(ye —y )] ~. (25)

In this expression
~ g ) and

~
e ) represent, respectively,

the ground and first excited protonic states. The
parameter G is proportional to the square of appro-
priate strain derivatives of the tunneling integral. For
d, E,)2kT the factor coth (AE /kT) is essentially
temperature-independent and Eq. (25) is consistent
with experimental observation. However, AE must
also be larger than kT to explain the static behavior of
the system. The slight deviations from Eq. (5) in the
ferroelectric region might be associated with small
changes in the splittings AE„ in this region,
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V. CONCLUSIONS

By means of the Kubo formalism for generalized
susceptibilities, we have shown that the experimentally
observed frequency variations in the complex dielectric
constant of Rochelle salt are consistent with the spirit
of Mitsui's model of static behavior. Experimentally,
the frequency variations are found to be strictly Debye
in character. Such a Debye relaxation behavior is

reasonable if we assume that the dominant dielectric
relaxation mechanism is associated with rapid modu-
lations of the local potentials at the sites of the ferro-
electrically active dipoles. In these circumstances, the
temperature dependence of the macroscopically ob-
served relaxation time should be dominated by the
eRects of long-range correlations which give rise to the
experimentally observed 2'(ee e—) variations in the
Debye relaxation time.
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Closed-Form Solution for the Collective Bound State due to
the s-d Exchange Interaction

AKIo YosHIMoRr

Institute for Solid State Physics, University of Tokyo, Tokyo, JaPan
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A closed-form solution is derived to an integral equation for the singlet collective bound state, which
has been shown by Yosida to be the ground state of a system of conduction electrons coupled vrith a single
localized spin due to the antiferromagnetic s-d exchange interaction. The solution is valid to logarithmic
accuracy, with an assumption concerning a series in the equation. The triplet collective bound state is also
examined, and no solution is found.

r THEORIES have been developed by many authors in..various approaches to the problem of the low-
temperature anomaly, considered by Kondo, in a sys-
tem of conduction electrons coupled with a single
localized spin by the s-d exchange interaction. ' "
Among these, Yosida' has shown, by a generalized
perturbation method, for the case of the antiferro-
magnetic exchange interaction, that the ground state
of this svstem is a singlet collective bound state, in
which the spin is quenched. (This paper will be referred
to as I.) This conclusion has been confirmed by Okiji
through a higher-order calculation. ' The energy of this
singlet state has been shown to be lower by the binding
energy —E than that of the normal state calculated
by the usual perturbation method. " In this paper a
closed-form solution to an integral equation for the
collective bound state is derived on the basis of the

1J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' H. Suhl, Phys. Rev. 138, A515 (1965);H. Suhl and D. Wong,
Physics 3, 17 (1967).

3 Y. Nagaoka, Phys. Rev. 138, A1112 (1965); Progr. Theoret.
Phys. (Kyoto) 37, 13 (1967).

4 A. A. Abrikosov, Physics 2, 5 (1965).' D. R. Hamann, Phys. Rev. 158, 570 (196/).
6 J. Kondo, Phys. Rev. 154, 644 (1967}.' K. Yosida and A. Okiji, Progr. Theoret. Phys. (Kyoto) 34,

505 (1965).
K. Yosida, Phys. Rev. 147, 223 (1966).

'A. Okiji, Progr. Theoret. Phys. (Kyoto) 36, 712 (1966).' K. Yosida, Progr. Theoret. Phys. (Kyoto) 36, 875 (1966).
"H. Ishii and K. Yosida, Progr. Theoret. Phys. (Kyoto) 38,

61 (1967}.

theory by Yosida in I. The solution is valid in logarith-
mic accuracy and with an assumption concerning a
series in the equation.

The eigenfunction for the collective bound state is
constructed in I as follows:

+ Q L 212223 ~Ill t ~132t ~23)++ P~1132133 Al t ~132 t ~133 t i
a& p't

It;yA:2k3

+P21I&223 ~Illt ~I32 t ~23 t ~+ PI3113223 F31t oI32t ~133tP)af P& t

+" If (1)

where cr and P denote, respectively, the up and down
spin states for the localized spin (S= 22), and P„denotes
the Fermi state. From the Schrodinger equation an
infinite chain of integral equations for l~, FI„I„~„,and
coeKcients of higher-order terms, is derived. ' ' In these
equations one can express FI„~,I„ in terms of FI„and
successively each higher-order coefficient in terms of
the next lower-order one, to eliminate higher-order
coeKcients, following Yosida and Okiji. ' ' These equa-
tions are Anally reduced to integral equations for FA,

and FI,~ only.
Putting Pp= —Pss= I'(el, ) for the singlet state as in

I, and replacing summations over k by integrations
with the band energy e on the assumption of the con-
stant density of states p for —D&e&D (e is measured
from the Fermi energy), one finds the integral equation


