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The classical-field description of a long Josephson junction is reinterpreted as a quantum-field theory,
which allows a unified treatment of fluctuation phenomena in both the Meissner state and the mixed state.
For practical configurations, the mean square fluctuations in the field ¢ are negligible, and the zero-point
corrections to the energy in the mixed state are less than 1%,.

I. INTRODUCTION

HE electrodynamic behavior of a long Josephson

junction®™ is similar to that of a bulk type-II
superconductor. In a weak external magnetic field
(Hy<H,), the junction excludes all magnetic flux ex-
cept in a small region of length A; (the Josephson
penetration depth) near its ends. When the external
magnetic field exceeds He, quantized flux lines pene-
trate the junction, forming a regular one-dimensional
lattice. The associated supercurrents are confined to a
thin layer of thickness Ay (the London penetration
depth) on each side of the barrier. This mixed state has
recently been studied in great detail with Josephson’s
classical field equations.”?® In many one- or two-
dimensional systems,'>1® however, a classical descrip-
tion is inadequate because fluctuations reduce or
destroy the long-range order. For this reason, we here
present a quantum field theory of a long Josephson
junction. In Sec. II, the Hamiltonian operator is
derived with a canonical transformation; the resulting
excitation spectrum is discussed in Sec. III. The theory
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is then used to examine spatial correlations in the phase
¢ and in the order parameter (Sec. IV) and to compute
the zero-point contribution to the energy (Sec. V).

II. FUNDAMENTAL EQUATIONS

Consider two identical semi-infinite superconductors
separated by a thin dielectric sheet of thickness I,
lying in the xy plane. Josephson’s phenomenological
description of the barrier? is based on a two-dimensional
field ¢(«, v, ¢) that represents the increase in the phase
of the order parameter on crossing the barrier from
2=0— to z=0+. The derivatives of ¢ are related to
the fofal electromagnetic fields E and H in the junction:

0/dt=26lE/h=2eV /£, (1)
Vo= (2ed/fic) HX3, (2)

where V is the voltage across the dielectric, and
d=2)\+I>1 is the effective thickness of the region
containing the magnetic fields. The phase ¢ also de-
termines the supercurrent j=j2 flowing across the
barrier,—3

(3)

where 71 is a constant characteristic of the particular
junction. Equations (1)-(3) may be combined with
Mazxwell’s equation to yield the fundamental field
equation®*

J=h Sin¢,

Vip—C7%(8%/38%) =A;* sing, (4)
where
c=c(l/ed)"?, (3)
and
Ar = (Bic/8rjred) 2, (6)

Here, ¢ is the dielectric constant of the barrier, ¢ is the
velocity of light in vacuum, and V2 is a two-dimensional
Laplacian. Typical numerical values” are ¢x/10°
cm sec}, AyjR2107% cm, and d=~1075 cm.

Equation (4) may be considered as the variational
equation for the following Lagrangian:

2= j/20) [[ ady[3n/0)2(@e 00

=3\ (Vo)2—1+4-cose], (7)
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where the additive constant is chosen to ensure that £
vanishes if ¢=0. The corresponding Hamiltonian 3¢ is

so= / f dx dy (3(2e/Rj2) (&/As)

+(%j1/2¢) (3N (Vo) *+1—cose]},  (8)
with the canonical equations of motion
83¢/dp=—m,  83C/dm=¢. 9

The classical field theory will now be quantized by
interpreting ¢ and 7 as quantum-mechanical operators
satisfying the canonical equal-time commutation
relations

Lo(z, 3, 0), 7(«/, ¥/, 1) 1=ihé(x—2")6(y—y"). (10)
These operators obey the Heisenberg equations of
motion

iﬁﬂb:[ﬁa) ZC:I, lﬁﬂ':[ﬂ', 3(3], (11)

where 3¢ is the Hamiltonian operator [Eq. (8)]. In
addition, it is convenient to perform a simple canonical
transformation, defined by the unitary operator'®:/

s=exp(m~1 / dx dy W) ,

where ¢p is a c-number function. The field variables

undergo the following transformation:
SQOS T=‘ﬁ0+¢;
SrSt=nm,

(12)

(13)

while the Hamiltonian separates into three distinct

terms,

S3CST=5Cy+5C;43Cs, (14)

where
3Co= (fij1/2e¢) // dx dy {3N2( Vo) 241 —coseo}
+@/20) [[ dwdy ([sina—22Vegulel,  (15)

3= // dx dy {(Tj1/2¢) [3N2 (V) 243 cospor?]

+3(2¢/hj1) (¢/As)*n?},  (16)
3Co = (#if1/2¢) /f dx dy {sing, (sinp—o)
~+cosgo(1—3¢*—cose) }.  (17)

If the function ¢ is now chosen to satisfy the equation
A2V2pp=singy, (18)

then the second term of 3C vanishes, and Eq. (15)

16 1, 1. Schiff, Phys. Rev. 86, 625 (1952).
17D, R. Yennie, Phys. Rev. 88, 527 (1952).
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becomes a ¢-number Hamiltonian
3Co= (Fij1/2¢) f/ dx dy M2 (Vo)2+1—cospo}.  (19)

The classical field equation (18) has two solutions of
particular interest.26~® The simplest choice @y=0
describes the Meissner state, which persists up to a
critical magnetic field H,. Above H,, magnetic flux
penetrates the junction, and the sample enters the
mixed state. The corresponding solution ¢ is given by

sin[3 (¢o—m) J=sn(x/v\s, 7), (20)

where sn is a Jacobian elliptic function.!® For simplicity,
we consider only the behavior in zero electric field, but
a finite voltage can always be included by a suitable
Lorentz transformation.”? The modulus v (0<y<1)
fixes the lattice spacing @ of the mixed state

a=2MvK(v);

it also determines the constitutive relation between the
induction B=H and the applied field H, through the
parametric equations

B=H=(fic/2ed\;)x[vK (v) Tt=®/ad, (22)

Hy= (ﬁc/Zed)\,;) 41r"1'y"1E('y) . (23)

Here, K and E are the complete elliptic integrals of
the first and second kind, and ®=/c/2e¢ is the quantum
of magnetic flux. Equation (23) is a monotonically

decreasing function of v, and its minimum value at
v=1 defines the lower critical field

Hcl = 2@0/71’2d>\,].

(21)

(24)

The limiting forms of the constitutive relation may then
be found explicitly:

BR2(®o/d\s) {In[8H/ (Ho—H.1) 1},
(Ho - H¢1<<Hcl)
(Ho>>H,).

(25)

B~H([14+0(H4/H#) ], (26)

III. SPECTRUM OF SMALL OSCILLATIONS

The time dependence of the quantum fields is gov-
erned by the total Hamiltonian operator 3C;-+3Cs,
containing harmonic and anharmonic terms, respec-
tively. In Sec. V, however, the anharmonic effects are
shown to be negligible, so that the harmonic Hamil-
tonian 3¢; suffices to determine the physical properties
of the system. If ¢; denotes the harmonic field describing
small oscillations about a given classical solution
@0, then Egs. (11) and (16) yield a linear field equation

NLV2—c2(8%/01) Jea(, 9, 1) = coseo() (%, , 1),
(27)
18 See, for example, H. B. Dwight, Tables of Integrals and Other

Mathematical Data (The Macmillan Company, New York, 1957),
3rd ed., pp. 168-173.
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The substitution!?

Sal(xy Y, t) =b(q: x) etkugivt (28)

reduces this equation to
A&/ 2+’ — k) b(g, %) = coseo(2)b(g, %), (29)

which is analogous to a one-dimensional Schridinger
equation in a periodic potential. Kulik? has obtained a
long-wavelength expansion for 6(q, x), while Lebwohl
and Stephen® have given the exact solution for all g.
As usual,? the Bloch function may be expressed as the
product of a plane wave % and a periodic function
u,(x) with period e,

b(q, x) =e@u,(x). (30)

The Bloch functions obey an orthogonality relation

Lz
/ dx b*(g, %)b(¢’, %) =84¢, (31)
o :
while time-reversal invariance implies

An extended-zone scheme is used throughout this
paper, so that band indices are unnecessary.
The field operators may be expanded in normal

modes
ﬂol(x’ y) =L71_1/2 Z eikyb(q’ x) Paky
qk

m(%,9) =L 30 et (g, w)ma,  (33)
and a straightforward calcila.tion shows that
=% }q; [ 'rgm— g it powgloap—g—r ],  (34)
where
w=(fij/2¢) (\s/2)* (35)

has the dimensions of a mass. The final diagonalization
of 3C; is now achieved with the linear transformation

Qgp= (Zﬁqu)“1’21qu—i(quk/Zﬁ) Vo g, (36)
which yields the standard result
= 2 g (aataat}). (37)
gk

It is not difficult to verify that the operators ¢ and a
obey boson commutation relations

Lagw, aget]1=0,q6m (38)

and are therefore identified as the creation and de-
struction operators for a vibration quantum with wave
vector ¢Z-+ky and frequency wg.

The exact functions b(¢, «) and the dispersion
relation wg; for the mixed state are given in the Ap-

19 We use ¢ and % to denote the wave numbers in the « and y
directions, respectively, and vy and v'= (1—+?)12 to denote the
modulus and complementary modulus of the elliptic functions.
The junction is assumed to have an area A=1L,L,.

20 G, H. Wannier, Elements of Solid State Theory (Cambridge
University Press, Cambridge, England, 1959), Chap. 5.
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MEISSNER STATE

(qry)

F1c. 1. The dispersion relation in the Meissner state and in the
mixed state, where the following parameters have been used:
y=v'= 1/\/2 a=2.62\;, and Hy=1.91 H,.

pendix. Here, we shall list certain approximate disper-
sion relations that are useful in the following sections.
In the extended-zone scheme, the spectrum in the ¢
direction consists of two bands, the first lying inside
the first Brillouin zone and the second lying outside.
Thus, the spectrum has only a single gap, occurring at
the edge of the first zone, with no gaps at the higher
zone boundaries (Fig. 1). The edge of the first zone
corresponds to

+r/a=d=7/20vK (7). (39)

For definiteness, we shall refer to these two bands as
vortex oscillations and plasma oscillations, respectively,
but they are both transverse electromagnetic waves.

q:iqm—_—

A. Vortex Oscillations

In the long-wavelength limit ¢<&gm, the dispersion
relation is

Lwo(q, &) P=2*[R+F*(v)q"],

F(y) = (v'K/E)*.

Actually, Eq. (40) is quite an accurate representation
for all | q| <gm. As shown in Ref. 9, the exact ex-
pression at ¢=g,, is given by

[w, (gm; k) P=c L+ ('/v\)],

Fog? = (v /7\)*(n/2E)?
differs from the last term in Eq. (42) by at most

1x2.

(40)
where
(41)

(42)

while

B. Plasma Oscillations

For g—gn<gm, the dispersion relation behaves like
Lop(g; &) P=c [+ () 4G (v) (g—gm)*], (43)
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where
G(v)=(yK)*(K—E)™. (44)

Thus the gap at the edge of the first zone [Egs. (42)
and (43)]is

Lwp(gm k) P—Lwu(gm k) P=C%/N2  (45)

independent of the magnetic field. In the opposite limit
(¢>qm), the exact spectrum reduces to

[wp(g, B =¢[k*+g*+ (W\7)2(2—¥*—2E/K) ]. (46)

It is interesting to compare the mixed-state dispersion
relation with that of the Meissner state

[wn (g, k) P=E[F+g+N"]. (47)

Equation (47) shows that the Meissner spectrum has
the same gap as in Eq. (45), but the gap is now shifted
to g=k=0. Indeed, Eq. (47) may be obtained as the
limit of Eq. (46) for y—1(Hy—H.), since ¢»—0 in
this case.

IV. FLUCTUATIONS IN THE FIELD VARIABLES

Equation (37) defines the eigenvectors and eigen-
values of the harmonic Hamiltonian, and it is now
possible to compute physical quantities of interest.
As a first example, we consider the correlation function
{o(x, y)o(«', ¥')), where the angular brackets denote
an ensemble average at a temperature 7= (kgB)7%
An elementary calculation yields

(o(x, y)o(a',y') )=L; Zk: (B 2pegr)

Xcoth (367iwa) b(g, #)6*(g, +) €@, (48)

In particular, the mean square fluctuation is given by

ar=A7 [[ dwdy (o, 9o, 9)
= (i/2u4) 2 oo™ coth(3fiwg).  (49)

Equation (49) is easily evaluated in the Meissner state
(ou?)av=(2mu¢ 38) " In[sinh (3%5Bkn) /sinh (3%EBN) ],
(50)

where an upper cutoff £, =2w/d~6X10° cm™ has been
introduced.? Typical orders of magnitude are uc?~
1071 erg, Atk ~N6X1078 erg, {ou?)avHicka/4dmuc 2o
31X 1072, so that the field fluctuations are always small
in the Meissner state.

For the mixed state, the approximate spectrum
[Eq. (40)] may be used to evaluate the contribution
of the vortex oscillations to the mean square fluctu-
ations. When the sum is replaced by an integral, it is
necessary to introduce a lower cutoff proportional to
A2, The importance of a lower cutoff has been

81 For disturbances varying more rapidly than k. the super-
conducting properties of the metals cease to play a role and the
phase difference ¢ cannot be defined.
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discussed by DeWames et al.22 An approximate cal-
culation gives

(o2)av= (figm/2ucn?) [In(2kn/Fgm) +1]
+(2u¢ 8aF) 1 In(24Y2/7icB) . (51)

The first term, which represents the zero-point fluctu-
ations, is again small. The second term represents the
thermal fluctuations and is also small except for a
narrow range of magnetic field near H,, where F
behaves like

FN[(HO_Hci) /2H01]1/2 ln[:8Hcl/(Ho—-H01) _].

Strictly speaking, the mean square thermal fluctuations
(51) diverge in the limit of a large system (4A—),
which means that the vortex lattice would be unstable
with respect to thermal fluctuations. In practice, how-
ever, the dimensionless ratio kpT/uc? is =10~ and the
unit of length %é/ksT is ~1072 cm at 1°K| so that the
fluctuations are small for all experimental systems.
This divergent behavior may be understood quali-
tatively by observing that the frequency spectrum
[Eq. (40)] is analogous to that of a two-dimensional
lattice of point masses, where a similar divergence
occurs.!?

In order to investigate the long-range phase coherence
between the two superconductors that make up the
junction, we examine the correlation function for the
order parameter

(e gminst ) =exp( —} Lo (x, 9) =o', ¥) P}
(52)

The expectation value on the right-hand side is readily
evaluated in the Meissner state

Loz, y) —o (', ¥") PO
— (75 2mu) / " bk (Bag) e
0

X coth[3#e8 (BN 2) Ve [1—To(kr)], (53)

where Jo(kr) is a Bessel function and 7 is the distance
separating the points (x, y) and (', 9"). Apart from the
last factor, the integrand is identical with that in
Eq. (49), which therefore provides an upper bound

([‘P(x) 3’) _‘P(x,; yl) _]2>M<3(§0M2>av, (54)

because |1—Jo(x) | <1.5 for all x. Equation (54)
shows that the Meissner state of a junction separating
two superconductors is characterized by long-range
phase coherence. This result depends crucially on the
gap in the spectrum at £=¢=0. In contrast, the gap in
the spectrum of the mixed state is shifted to ¢m, and
the corresponding phase correlation does not extend
over arbitrarily large distances. If the Bloch functions
are replaced by plane waves, the correlation function
(52) in the mixed state may be evaluated approxi-
mately with the spectrum from Eq. (40). For large
spatial separations perpendicular to the applied field,

2 R. E. DeWames, G. W. Lehman, and T, Wolfram, Phys. Rev.
Letters 13, 749 (1964).
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we find

{Lo(x, y) —o (2, ) 1)
R (wucBF) ™ In[2 | —a' |/AEBF], (55)

neglecting terms that are independent of |x—a'|.
Thus, strict phase correlation vanishes as | x—z' | —o,
but, as in the case of the mean square fluctuations, Eq.
(55) is small for all systems of practical dimensions.
This expression is very similar to that found by Rice,*
who investigated phase fluctuations in a two-dimen-
sional superconductor.

V. ZERO-POINT ENERGY

The classical field description of a Josephson junc-
tion assumes that quantum-mechanical effects are
unimportant. One aspect of this assumption was ex-
amined in the previous section. As a different approach,
the present section compares the classical and quantum-
mechanical contributions to the ground-state energy.
We define the mean energy per unit area as

(3C;)av=A71(3C,), (56)

where =0, 1, or 2, and the angular brackets now
denote an average in the ground state specified by a
particular solution ¢y.

As a first example, we consider the Meissner state,
where ¢ and (3Cp)av vanish identically. The harmonic
contribution to the energy is given by

(3(31)”: (ZA)—I zk: ﬁ“’qk: (57)

and an approximate calculation with Eq. (47) yields
(BCur)ev (i) 120) Chn+ 3N hem+-+++ ], (58)

where the terms omitted are independent of the cutoff
km=2w/d. Here the first term represents the zero-point
fluctuations in the cavity formed by the two super-
conductors and is therefore irrelevant to the present
considerations. The physically significant quantity is
the change in the zero-point energy (83Ci)av due to the
coupling between the two superconductors. This is
given by the second term of Eq. (58),

<6SCIM >av = ﬁékm/ 871"}\,]2
= (fiji/2e) 3 {eu®)av (59)

where the zero-temperature limit of Eq. (50) has been
used to obtain the second line. It is interesting to com-
pare Eq. (59) with the contribution of the anharmonic
terms

(3Caonr Yav = (Tig1/2e4) / @ (1—%2—cosp)

= (%ij1/2€) {1—%{on*)av—exp(—% {or’)av)}

(60)
At zero temperature, Eq. (50) shows that

<§0M2>av = 87"3%5/@02
= 8r(5/c) 107,
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where a~~(137)~! is the fine-structure constant.
Equation (60) may be expanded, and comparison with
Eq. (59) yields

| (3Caar)av/ (83Cur Yav | R (Par?)avdy X 1072 (61)

Thus the anharmonic contributions to the ground-state
energy are small.

A similar analysis may be carried out for the mixed
state, where the classical field ¢ must now be taken
from Eq. (20). Kulik” has calculated the classical
ground-state energy

(3o)av=(Rj1/2€) {4E(v’K) ' —2v2+2},  (62)

where the additional constant ensures that (3C)ay
vanishes at y=1. The zero-point energy in the mixed
state differs from Eq. (58) only because of the altered
spectrum. An approximate evaluation with the plasma
branch [Eq. (46)] yields

(8C1p)av=(7ic/12m) [km+5 (vAs) 2 n(2—y2—2E/K) ],
(63)

while the vortex oscillations make a smaller contribu-
tion of order #¢g.As2 In(%x/gn). Finally, an estimate
of the anharmonic contributions™to the energy of the
mixed state gives

| {3C2Yav/ (35C1)av | RAL(0s?avt (@ )av];

where (¢,%)av and (p,?)av are taken from Eq. (51) and
the second term of Eq. (63), respectively. Like the
mean square fluctuations, the anharmonic terms are
small except very close to H,, when {¢,2)., becomes
large.

It is now possible to calculate the energy & per unit
area associated with the mixed state:

&= <3c0+5c1>av l mixed ™ <"~;CO+5€1>SV IMeissner- (65)

Equations (58) and (63) show that the zero-point
energies are identical in leading order, so that the
quantum contributions to & depend only linearly on the
cutoff £,. Explicit evaluation leads to

&= (¢*/167%d\;) [ (4E/v*K) —2v2+2]
— (hc/4d\s)[(2E/v*K) —2v~2+2],

where the second term represents the zero-point cor-
rection to the classical energy [Eq. (62)]. These zero-
point fluctuations necessitate a renormalization of the
magnetic field. The calculation is most simply per-
formed with the thermodynamic identity”

(64)

(66)

98/0H = (4m)~(Ho) d, (67)
and gives
(Ho) r= (2@0/7,-2)\‘,(@ ’Y_IE— (456/6d)\1)
X[y E—K*(1—v?) (vE)7']. (68)

The square bracket, which contains the quantum-
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mechanical corrections, equals unity at y=1 and
decreases monotonically as y—0, becoming small of
order 7. Hence the zero-point effects are most im-
portant for y=1, which defines the renormalized lower
critical field

(Hcl)r= (2@0/7('2)\Jd) - (46_6/6d>\,])
= (Ha)o [ 1—%5ma(E/c)].

Here (H.)o is the “bare” lower critical field [Eq.
(24)7, and the small quantum corrections (1073)
slightly reduce the theoretical value.

Thus the zero-point and thermal fluctuations are
generally negligible, which arises from a nearly com-
plete cancellation of the zero-point energy in Egs.
(58) and (63). It should be noted that the total zero-
point energy far exceeds the classical ground-state
energy. Here, however, we are only concerned with the
small changes between the mixed state and the Meissner
state, or between the state when the superconductors
are coupled or uncoupled (j1=0). To obtain a quanti-
tative estimate, we define an effective zero-point
magnetic field Hes by the relation

(81[') ~1Heff2d = (55C1>avw (ﬁjl/ze) %<¢2>av-

(69)

(70)

With the numerical values used previously, Hes: is
approximately 10=2 Oe, which is much smaller than
H, (0.4 Oe).

The present work has shown that the quantum-
mechanical corrections to Josephson’s classical-field
equations are usually small. The exception occurs in
the region of H,, where the spectrum of vortex oscil-
lations [Eq. (40)7] becomes anisotropic. In this narrow
range of applied field, the lattice spacing ¢ may even
become comparable with L,, in which case the sum
over ¢ cannot be replaced by an integral. A detailed
theoretical and experimental study of fluctuations near
the phase transition to the mixed state would be of
considerable interest.
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APPENDIX

For completeness, we list here the Bloch functions
b(g, x) satisfying Eq. (29) and the exact dispersion
relations. These expressions follow from those of
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Lebwohl and Stephen?® after a sequence of transforma-
tions.®
A. Vortex Oscillations

The frequency w,(g, k) and wave number ¢ are de-
termined by the parametric equations

Lwv(q, &) P=c[R+(v'/7A)?sn*(x, v) ], (A1)
g=(\)7LE( Y) —x(1-E/K)],  (A2)

where x varies between 0 and K'=K(y'). Here,
sn(x, v’) is a Jacobian elliptic function and E(x, v')
is the incomplete elliptic integral of the second kind.
Apart from a normalization constant, the corresponding
Bloch function is given in terms of & functions as

(%) = I3[ (w/2MyK) + (4mx/2K) | 7]
q S (mx/27vK) ] 7] )

where r=1K’/K. For long wavelengths, an expansion of
Eqgs. (A1) and (A2) yields

[wi(g, k) =2 [k (v'x/7\1)%],
q =XE/'Y>\JK1
which reproduces Eq. (40).

(A3)

(A4)
(AS)

B. Plasma Oscillations

The frequency w,(g, £) and wave number ¢ are de-
termined by the relations

Lwn(g, k) P=c 2[R+ (vN\s) %X (x, v)], (A6)
q—qn=(v\s) [x(1—E/K) +dc(x, ¥') sn(x, v')
—E(x,v)], (A7)

where dc is another Jacobian elliptic function and x
again varies from 0 to K’. Apart from a normalization
factor, the Bloch function for the plasma oscillations
is equal to

_ I (/20 vK) — (iw/2K) (x—K') | 7]
’(74[(7!‘96/2)\]’71{) l T]

For ¢—¢nKgm, an expansion of Egs. (A6) and (A7)
yields

#q(%) . (A8)

Lon(g, k) P=cTF+ () (x/A)*],  (A9)
9—gu=(x/7\s) (1—E/K), (A10)

which immediately leads to Eq. (43). The other limit
[Eq. (46)] also follows readily by expanding Egs.
(A7) and (A8) near x=K'.

2 All of the relevant formulas may be found in E. T. Whittaker
and G. N. Watson, A Course of Modern Analysis (Cambridge
University Press, Cambridge, England, 1962), 4th ed., Chaps.
XXTI and XXII and Sec. 23.71. Numerical evaluation is most
easily performed with G. W. Spenceley and R. M. Spenceley’s
work [Smithsonian Inst. Misc. Collections 109, (1947)7] which
was used in preparing Fig. 1.




