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Perturbation theory, up to erst order in the wave function and second order in the energy, is formulated
for a many-electron system without requiring the perturbed one-electron states to be orthogonal. The most
general self-consistent coupled equations, referred to as Method 1, form the counterpart of Langhog, Kar-
plus, and Hurst's (LKH) Method a for orthogonal orbitals. The uncoupling of the perturbations bp;, Stt, to the
zero order wave functions p and lIt'; produces equations referred to as Method 2. Further approximation in the
Method-2 equations yields a set of equations called Method 3. Methods 2 and 3 are counterparts of LKH' s
Method $, but have computational advantages over Method b in that normalization and orthogonalization
are accomplished in a particularly simple fashion. In comparing the uncoupled Method-3 equations with
Dalgarno's equations, an additional difference is found involving the overlap integral between perturbed
states, besides the difhculty pointed out by LKH. Application of the Method-2 and -3 equations is made
to the spin-polarization problem of the Fe+' ion, leading to a hyperfine constant in reasonable agreement
with earlier unrestricted Hartree-Fock (UHF) calculations. A comparison between results obtained by
Methods 2 and 3 and Dalgarno's equations permits a relative evaluation of these methods. +le have also
studied the eRect of indirect spin polarization of the s electrons through the action of the p electrons which
are in turn Polarized by the unPaired d electrons. This contribution is found to be about 10oro of the di-
rect eRect.

I. INTRODUCTION either of two equivalent forms:

''N a recent paper, Langhoff, Karplus, and Hurst'
~ ' (LKH) have examined some methods of applying

perturbation theory to Hartree-Pock systems. In par-

ticular they showed that some important terms were

omitted in the perturbation equations derived by
Dalgarno' which led to inconsistencies. Thus, in the
Hartree-I ock equation for the zero-order wave function,

the Coulomb and exchange terms can be written in

*Supported by the National Science Foundation. Portions of
this work were reported briefly at the American Physical Society
meeting at Chicago, March 27-30, 1967.

' P. W. Langhoff, M. Karplus, and R. P. Hurst, J. Chem. Phys.
44, 505 (1966).

'A. Dalgarno, Proc. Roy. Soc. (London) A251, 282 (1959).

le '(1)u'(1)= g ((u,o(2) (r» r lu o(2)—)u o(1.).
j'=1,j'Qi

—(use(2) lrrs-'lu (2))u, o(1)j (1)

= g 1 (u, (2) 1
rrs '1 us (2))u;e(1)

—(us'(2) (rts 1u'(2))ui'(1)g= It(1)«u,.o(1) . (2)

However, this is only true if the one-electron Hamil-
tonian acts on the zero-order wave function I;, since
in this case the self-Coulomb and self-exchange terms
cancel. When the Hamiltonian acts on a erst-order
correction to the wave function, there is no such can-
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cellation. This lack of equivalence of the alternate
forms (1) and (2) was responsible for the diKculty that
crept into Dalgarno's formulation of Hartree-Fock
perturbation equations. LKH have demonstrated that
such an omission has more significance than being
merely a further approximation. Thus, in an 1V-electron
perturbation problem Dalgarno's equation determines
the perturbation to a given electron in the presence of E
other electrons instead of Ã—1, and so corresponds to a
physically incorrect model.

In their formulation of the perturbation theory,
I.KH have made the restriction that the perturbed
orbitals be orthogonal. We believe that some advantages
in numerical computation accrue from relaxing this
condition, and it is the purpose of this paper to give
the relevant theory. We believe such an approach is

important for the following reasons:

(1) There is a purely academic desire to have a com-

plete, correct theory available in terms of nonorthogonal
orbitals.

(2) The LKH equations (a) require for their validity
subsidiary orthogonality conditions

( "l '&+(''I '&=o (3)

Equations (b) and (d) are valid under conditions (3)
as well as the more stringent conditions

(u lu;o&=o,

which have the advantage of avoiding coupling be-
t~~~~ N.' and ~ . The incorpor«ion «Eqs (3) «(4)
into a numerical solution of the LKH equations in-

troduces difficulties. It could be argued that the (in
general) nonorthogonal solutions of the LKH equations
could be orthogonalized by some procedure and reiter-
ated. However, such orthogonalized functions are then
no longer solutions of the original equations, and there
appears to be no guarantee that such an iterative pro-
cedure will converge to orthogonal solutions. By relax-

ing the orthogonality condition we are able to develop
below suitable perturbation equations whose solutions
can be subsequently orthogonalized in a particularly
simple fashion if desired.

(3) The LKH equations may be solved by a varia-
tional procedure utilizing the minimization of
appropriate functionals. In such a case the incorpora-
tion of the orthogonality conditions (3) or (4) presents
no particular difficulty except that it leads to a loss of
Qexibility by reducing the number of independent
vai. jatjon parameters. Since the accuracy of the varia-
tion procedure can sometimes depend critically on the
choice of variation parameters, ' minimization of the
functional appropriate to the nonorthogonal theory has
advantages in avoiding loss of f1exibility.

' As an example, see N. Bessis, H. Lefebvre-Brion, and C. M.
Noser LPhys. Rev. 124, 1124 (1961}j,where a change in the num-
ber of basis states from six to seven changes the nitrogen atom
hyperfine constant by about 20 to 60% for two alternate
procedures.

(4) The uncoupled LKH Eqs. (b) and Dalgarno's
equations (LKH Method c) both reduce to the set of
equations LKH Method d if a local approximation is
used. We will show below that if the local approxima-
tion is made in the nonorthogonal orbital equivalents
of Methods b and c, the two sets of equations do not
become identical. Since some previous authors4 have
used the nonorthogonal Dalgarno equations, it is of
interest to see if the corrected equations predict
significantly different results.

(5) If a local approximation is used for the exchange
integrals, a noniterative procedure is available for
solving the resulting uncoupled equations. This proves
to be numerically very convenient and has been used
for the results presented in Sec. IV.

In Sec. II we develop the relevant equations for the
nonorthogonal theory. In Sec. III we discuss the
significance of the various stages of approximation by
comparison with LKH's equations, and indicate the
procedure used for their solution. An application to the
calculation of the hyperfine field in the ion Fe+' is made
in Sec. IV both as a test of the methods suggested here
and because of its current interest. ' Section V is a
summarizing discussion.

II. DERIVATION OF PERTURBATION
EQUATIONS

To derive the equations for the nonorthogonal orbitals
we repeat the derivation of the Hartree-Fock equation
with the orthogonality condition relaxed. The starting
point is the expression for the expectation value of a
symmetric operator taken between determinantal wave
functions:

where P is a Permutation and e„is +1 (—]) for an even
(odd) permutation. The integration symbol is meant to
include the summation over spin coordinates.

We expand this expression, retaining terms only up to
second order in nonorthogonality. The denominator is
expanded using the familiar binomial theorem. We
may assume without loss of generality that the per-
turbed orbitals are normalized. Putting

~=Z (f~+s Z g',),

4 R. P. Hurst, Martin Karplus, and T. P. Das, J. Chem. Phys.$6, 2786 {1962}.P. G. Khubchandani, R. R. Sharma, and g. P.Das, Phys. Rev. 126, 594 (1962). H. J. Kolker and M. Karplus,Chem. Phys. 41, 1259 (1964).'R. E. Watson and A. J. Freeman, Phys. Rev.$123,%2027(1961).D. N. E. Buchanan and G. K. Wertheim, Bull. Am. Phys.Soc. 7, 227 (1962). K. Ono, Y. Ishikawa, A. Ito, and E. Hirahara,J. Phys. Soc. Japan 17, Suppl. 31, 125 (1962}.
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we have

&»=& (&u'Iflu')+& Ll&u'u I luu') —&u'Iflu &&u;lu;&+&u Iflu)&u, lu)&u lu;&+-:&uu;I luu;&

x&u;lu;)&u;lu'H- 2 (—s&u,u;I lu'us)&u. lu;) —s&u, u'I lusu, )&u~lu, &+&u;IfIud)(uklu')(u'Iuj)

+s&u'u'I luju')&»lu')&u'I»)+l(ui»l l»u &&u lu'&&u'lu &+ Z l f&u'u. l l»u')(uglu'&
l&i,j,k

&&(u;lug)+(uug, I fuu;)(uglus)&u;fug)+(u, ural fu;ug&(ug fu;)(u;lus)I)j), (7)

where for brevity we introduce the symbols

(u'I Ius&»=—(u'(2) Ig» I us(2) &»(1)-(u'(2)
I g» l»(2) &us(1&,

&u'u,
I

l»ug&—= &u'(»us(2) I ggs l»(2)ug(1» —(u'(1) ug(2) I g» lug(2)»(1) &

The latter equations represent just the Coulomb and exchange integrals.
If f; and g;; are the appropriate energy operators this expression contains all zero-, first- and second-order

energy terms in addition to some higher-order terms. We could proceed to separate out the second-order energy
for the subsequent variational procedure; however, an algebraically equivalent but simpler program is to use the
variational principle on the expression in (7) and subsequently use the zero-order equation to eliminite zero-order
terms from the result. By rejecting from the resulting equation all terms of higher order than erst order we obtain
an equation for the erst-order perturbation to the wave function. Ke will assume the zero-order wave functions to
satisfy the Hartree-Fock equation

Z—-'g7'u' ——u'+g (us'I Ius')u'=e u.
r J1

The result of carrying out the variation procedure is

fu;+P ((u, f fu;)u; —P (ug, fu, )(u, f fug, )u, —(u; ILf+Q ((ug, l fug, )—Q (us fug)(ug f fug, ))jfu;)u, )

+2 &u, lu;)&u;f(f+2 &»I lus&) lu;&u;=e;u;. (10)
jAi I0

These orthogonal orbitals will satisfy the Hartree-Fock
equation

(12)fu, +g (u;I lu;)u, =Q X,;u;

On evaluating the coeScients P;, and expanding the
u; according to Eq. (11), Eq. (10) is obtained. The
justilcation for such a procedure lies in the fact' that
the expectation value of any operator taken between
determinantal wave functions is independent of the
particular set of orbitals used in the determinants for
all sets which span the same Hilbert space. That is, we

may use an orthogonal or nonorthogonal set of functions
to evaluate the expectation value. The variational

'This result has been demonstrated quite generally by one of
the present authors (K. J. D) and is presented in an appendix in a
thesis which is being submitted by S. Ray to the University of
California in partial ful6llment of the requirements of Ph.D.
degree, 1968 (unpublished).

An alternative method of deriving Eq. (10) is to
proceed as follows: From the nonorthogonal orbitals
construct a set of orthogonal orbitals, by using, for
example, a symmetric orthogonalization procedure.

u;=u; ——', P (u;Iu;)u, .

program is then a matter of varying the appropriate
number of linearly independent functions and the
minimization must be independent of how we choose
the functions.

We complete the derivation of the perturbation
equation by expanding f and g in Eq. (10) into their
component operators and separating out the erst-order
terms. This procedure applies equally to the cases in
which the perturbing Hamiltonian has a one-electron
character, such as in polarizability problems~ ' and the
cases in which the perturbation is characteristically
two-electron-like such as in van der Waals —type cal-
culations. ' For the purpose of this paper, we will
assume the perturbation potential to be one-electron-
like so that we may write

(13)

g12 =

7 See, for example, R. M. Sternheimer, Phys. Rev. 127, 1220
(1962). E. G. Wikner and T. P. Das, ihld. 107, 497 (1957).

8 P. W. LanghoG and R. P. EIurst, Phys. Rev. 139, A1415
(1965).

9 Joseph O. Hirschfelder, Charles F. Curtiss, and R. Byron
Bird, Molecular Theory of Gases ared Liquuls Qohn Wiley llg Sons,
1'nc., New York, 1954).
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so that the perturbation equations, which we will call Method 1, reduce to

(ho —,)g +h'u;o —g (u (h'(u )u —g (u (u )( — )u,'—g g ((up(u;)(u ( (uo'&u —p (ut'I(us(u, )i l

x(u'I ' lus')lu")ut')+g I (u I
' lu')g'+(g'(' Ig')u' —g ((uo'u'

I
' Iu'g')

+(g,og.o
I

.
I
g. g.o))g,oj () (14)

where jp contains the Coulomb and exchange operators
Fq. (2). This is a set of coupled integrodiB'eren-

tial equations which may be solved (possibly by itera-
tion) for the 6rst-order perturbations to the wave func-

tions. They are the nonorthogonal orbital equivalents
of LKH Method a.

We proceed to uncouple these equations by following
LKH's procedure of arbitrarily deleting from the equa-
tion for u all terms containing u,

' (j &t') The. result
1s

(h o—e')u '+h'u;o

=p (&g,o(u, '&(eto e;o)u—to+(uto(h'(geo&uto

(„.o„.o(. („,o„,. &,o+( iuolu, )(u,ol lu, o&u, o

—P (uto(u )(ghoul( (utou o&gj,o}. (15)

which does not have the last term on the right-hand
side of (17), in addition to having ho instead of h, on
the left as pointed out earlier by LKH.

An approximation introduced by Sternheimer" and
used by several authors" is to write

h"—e '= —-'&'+-'&'u '/u ' (19)

.I= -I
Ns =As

This is equivalent to the local approximation dis-
cussed by LKH. As has already been pointed out,
Eq. (19) is an identity if the operators are acting on the
zero-order wave function I, but not otherwise. It is
clear that if the approximation (19) is used in Eq. (17),
and the right-hand side of (19) is used for h' —e in
(16), the two equations have the same left-hand sides,
but diBerent right-hand sides.

All of Eqs. (14), (15), (17), and (18) have the im-
portant property that if

ese equations we call Method 2 which is equivalent

to LKH Method b. A further simpli6cation can be
made by arbitrarily dropping the terms:

p (g.ou.o( . (u,ou, ) g, =g ~ —Q (uoo(u; )go . (16)
kQi

We may expect such terms to be near zero on the same

grounds' as those sometimes given for the neglect of
nonzero oR-diagonal ) matrix elements in the zero-order

problem, namely, the functions in the integrand are

expected to overlap only very weary. The result is

(h o—e,')u +h'u;o=P (&uto(u )(eto —e;o)uto

+(u'(h'(u )u +(u (u )(u (
~ (u,')uto}. (17)

We call this Method 3. It is instructive to compare this
with Dalgarno's equation2 for nonorthogonal orbitals

(ho, ,o)u '+.h'u. o g ((uto(gt )(eto eto)u, o

+&g,o(h'(u, o)u, o}, (18)

"For a discussion, see, for example, John C. Slater, QNgntlm
Theory of Atomic Structure (McGraw-Hill Publishing Co., New
York, 1960), Vol. II, p. 24.

are solutions so are

g,'=g +X.u.o,

where X, is a constant and u, ' is an occupied zero-order
orbital. This means that if solutions are obtained which
are not normalized or orthogonal they may be nor-

alized/orthogonalized by addition of a suitable admix-
ture of the zero-order wave function and the resulting
functions are still solutions of the equations, provided
the original nonorthogonality is sma11; this last condi-
tion is the condition of validity of the equations. How-
ever, if the local approximation (19) is made in (17)
and (18) we can only claim to be able to normalize the
perturbed wave functions; if the local approximation is
an accurate representation of the nonlocal potential
actually experienced by electron i, then the solutions of
(17) may, in addition, be orthogonalized, but if orthog-
onalization is attempted for the solutions of (18) the
resulting functions are not solutions of the same equa-
tions. Equations (14) and (15) may be solved directly
or variation-wise by minimization of the following

1' R.. M. Sternheimer, Phys. Rev. 93, f34 {1956)."M. Karplus and IC. J.Kolker, J.Chem. Phys. 38, 1263 {1963);
H. J.Kolker and M. Karplus, ibid. 39, 2011 {1963);T. P. Das andR. Bersohn, Phys. Rev. 102 /33 (1956); G. D. Gaspari, Wei-Mei
Shyn, and T. P. Das, ibid 34, A852 (19.64).
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functionals:

(u''lh" —o" iu''& —2 l(uP Iu~'& I'(e' —e")+22 (u''Iuf &(»'lu'')(u~'u"
I

lu"u-'&+2 «((u''lh'lu"&

p p [( .
I „o)(u„o . I.I,o .o)y(,

I
„o)(u ou.ol. Iu. u,o)j p p (( „ I

.o)+(uioiu. ))

X(u, 'u I Iug, 'u )+p p p (ug, 'Iuo)(u Iut')(utou
I lug, 'u )

j k&j. l

+P P g (uo'iu &(u Iui'&(ur'uPI Ius'u )}, (14')
jgz kgj l

(u''I h"—e" Iu''& —& 1(u'Iui')
I
'(oP —e )+2 «((u''I &'Iu"&—2 L(u''IuP&(u~'I h'I u')+2(u''I u'&

)((u.ou.ol . Iu.ou.')g+P P (u.oiu. ')(u.'ludo)(»ou.
o I

. Iu.ou.o) (15')

III. DISCUSSION OF PROPERTIES OF THE PERTURBATION EQUATIONS:
RELATION TO OTHER APPROACHES

Within the area of applicability of the Hartree-Fock method, Eqs. (15), Method 1, are expected to be the most
accurate of the approaches here suggested for the perturbation problem. This method is equivalent in principle to
LKH Method a. In fact, as we remarked in Sec. II, it is always possible to find solutions of Eqs. (15) which are
orthonormal and these solutions satisfy the simpli6ed equations

(J'—e")u''+[&' —(u" II'lu"&+2 (( " i.
I 'u")+( .-'u'I lu~'u"&) ju.-'+& ((u 'I Iuf &+(u'I lu '&)u"

=g [(u iu &(e,'—.)+(u'Ih'Iu')+2 (u'uk'I iuk'u'&+(u'ukol Iuo'u")ju' (2o)

The left-hand side of Eq. (20) is identical to the
left-hand side of the LKH Method a equation. The
terms on the right-hand side are absent in I.KH
Method a because, for the perturbed set of orbitals,
they have required the X matrix of Eq. (12) to be
diagonal. In our treatment, the diagonality requirement
is not appropriate because we have not imposed
orthogonality. In fact, the coef6cient of I,' on the
right-hand side of (20) is X;;. It is clear that the solu-
tion of (20) and of LKH Method a can only differ by a
unitary transformation of the perturbed orbitals
u;=u,'+u, and such a transformation cannot alter
the theoretical expectation values of any physical
observables.

It frequently occurs that the full accuracy of the
Hartree-Fock method is not required so that some
degree of precision can be sacri6ed for simplicity in
computation. In such a case we believe Methods 2 and 3
offer a practical approach. We can use arguments similar
to those above to show the equivalence of Method 2
and Method b, the more stringent orthogonalization
conditions (4) being necessary for this purpose instead
of the condition (3) used by LKH. Method 3 is an
analog of Method b only when expression (16) is approxi-
mately zero.

The local approximation of Eq. (19) is attractive for

computational purposes. It includes the nuclear poten-
tial and Coulomb interactions exactly, but approxi-
mates the exchange. It should be an acceptable ap-
proximation for core electrons, where the dominance of
the nuclear potential makes exchange less signi6cant.
In deriving the local potential froin Eq. (19), some
smoothing may be necessary at the nodes of the zero-
order function. For the problem discussed in Sec. IV,
no such smoothing was required with the zero-order
functions" employed.

The use of the local approximation allows one to use
a noniterative method of solution. If the accuracy of the
local approximation itself is not satisfactory, it can still

be used as a fast method of obtaining the trial solutions
for the erst iteration without the local approximation.
Alternatively, an equation can be formulated for the
difference between the local and nonlocal approximation
solutions, which can be solved approximately and iterated
if necessary. In the calculations reported here, we have
used the latter method and employed only one iteration.

Finally we observe that in formulating Eq. (15), terms
are dropped from Method 1 which can be given a
physical interpretation and whose effect on the solu-

tions may therefore be suspected to be significant. %e
can treat this by first solving (15) and then regarding

"Enrico Clementi, IBM J. Res. Develop. 9, 2 (1965).
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the additional terms as a further perturbation, which
can again be treated by (15). Just such a situation
arises in the problem reported below. We have cal-
culated core polarization of the ion Fe'+ due to un-
paired d electrons. In addition to the direct polariza-
tion of the s states by the d spin density it is possible
for the d states to polarize the p states, giving rise to a p
spin density which can give an additional indirect spin
polarization of the s states. The exchange terms in
Eq. (14) involving the perturbation (u ) of the p states
were therefore chosen to act as further perturbation to
the s states. Numerov's method was used to solve the
relevant differential equations and the results are dis-
cussed in Sec. IV.

IV. APPLICATION OF NONORTHOGONAL
PERTURBATION THEORY TO Fe+'

HYPERFINE PROBLEM

Experimental evidence of a large negative magnetic
field at the nuclei of some transition elements has been
ascribed to the core polarization due to unpaired con-
duction/valence electrons. '" A method which can be
used for computation of this effect in atoms and ions is
the unrestricted Hartree-Fock approach. "4 However,
it is not yet possible to carry out such calculations in
solids, so perturbation techniques must be used. It is
therefore of interest to gauge the usefulness of the
various perturbation methods in a system which is
qualitatively similar to the transition metals, but which
has the advantage of simplicitly. To meet these criteria
we have chosen to study the Fermi contact interaction
in the ion Fe'+. Because of the large number of elec-
trons on the ion, it is impractical to attempt a solution
of (14) so we have solved only the equations of methods
2 and 3, and also Dalgarno's equations using the local
approximation mentioned above. We have calculated
two correction terms as described in the previous sec-
tion. The first corrects for use of the local approxima-
tion; the second takes into account an indirect spin
polarization due to a p spin density. The results are
shown in Table I.

It is seen that Methods 2 and 3 and Dalgarno are in
substantial agreement. However, the difference be-
tween the results with methods 2 and 3 is an order of
magnitude smaller than their individual differences
from the Dalgarno equation result. Since the local
approximation was employed in the erst instance in
solving the three equations, the only effective difference
between Method 3 and the Dalgarno equation is in the
last term on the right of Eq. (17) which is absent from
Eq. (18). It appears then that, for this problem at
least, the missing term in Dalgarno's equation is more
serious in eRect than the approximation (16) made in
obtaining Method 3, Eq. (17), from Method 2. It must
be emphasized that the differences between the numeri-

"V.Heine, Phys. Rev. 107, 1002 (1957);J.H. Wood and G. W.
Prat t, Jr., ibid 107, 995 (1957). .

cal results for Method 3 and Dalgarno's method are
dependent on the degree of nonorthogonality of the
solutions initially found [if it so happens that solu-
tions are produced satisfying (4) the solutions will be
identicalj and are therefore a happenstance of the
numerical method. If follows that no predictions can be
made for the importance of the additional terms in
Method 2 other than the statement that the 5% diRer-
ence in the hyperfine 6eld found here is grounds to sus-
pect that the effect may be significant.

As anticipated, the local approximation was found
to be quite acceptable for the innermost electrons (1s
and 2s), although a significant correction term was
found for the 3s state. The magnitude of the indirect
spin-polarization correction, amounting to 10% of the
calculated hyperfine field, indicates that the original
uncoupling is the most severe of the states of approxima-
tion used in our development of the perturbation
equations.

The total hyper6ne field at the nucleus obtained
from Method 2, after including nonlocal and indirect
P spin polarization effects, is —745.2 kG, in reasonable
agreement with —630 kG found by Watson and Freeman
using an unrestricted Hartree-Pock (UHF) procedure.
This reasonable agreement indicates that the use of
Method 2 for hyperfine problems in solids would be
quite justi6able. The remaining discrepancy of 115.2 kG
could perhaps be explained by the effect of some of the
consistency terms in Method 1 which were dropped in
Method 2 and also indirect spin polarization involving
the effect of core s states on one another.

V. CONCLUDING REMARKS

This paper presents a generalization to nonorthogonal
orbitals of equations given by I.KH for the Hartree-
Fock perturbation problem. They have the advantage
that if solutions are found which are not normalized or
orthogonalized, such conditions can be imposed on the
solutions, and the resulting functions are still solutions
of the equations. The predictions of expectation values
of physical operators will be the same for the solution
of the equations here presented and for the solutions
of I.KH equations.

The coupled equations (Method 1) appear too com-
plex for use in all but the simplest systems unless
precision is mandatory. When some accuracy can be
sacrificed for simplicity, Method 2 or Method 3 offers
an attractive approach. The intermediate case in which
some of the significant terms included in Method 1 but
neglected in the other method need to be taken into
account, can be treated satisfactorily by a repeated
application of the approximate equations. It has been
our experience that although the Method 2 equations
are superficially more complex than the Method 3
equations, the additional complexity in numerical
computation is only slight. We therefore recommend
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TABLE I. Spin density and hyperfine field in Fe+' ion by various perturbation procedures.

Spin density (atomic units)

Method

Method 2
Method 3
Dalgarno
Nonlocal Correction
Indirect spin polarization correction

9.93X10
9 94X10 3

9.76X10
1.54X10 5

3.05 X10

2$

—1./26—1./42—1.812
1.49X10—8.06X10

3$

1.994X10
1.994X10
1 997X10—7.11 X10-2
2 012X10

Total
-1.516

10533—1.603—5.62 X10-'
1 51X10

Hyperfine
field {kG)

—795.0—803.7—840.2—29 .4
79.2

Method 2 for approximate calculations, since it is less
approximate with little extra effort needed.

The approach we have given is strictly a Hartree-
Fock procedure, and therefore correlation e6ects have
not been considered. This proves to be adequate for a
large class of problems, but in some others, notably the
core-polarization problem such as has been treated here,
correlation eGects are not negligible. Estimation of
these effects will have to be made by some many-body
methods, possibly the Bethe-Goldstone" and Brueckner-
Goldstone" techniques.

The significance of the comparison of our hyperhne
results with experiment, as also is the case for the UHF
result, is rendered a little uncertain by the possible con-
sequences of our total wave function not being an
eigenfunction of S'. lt would be interesting to apply the
nonorthogonal theory developed here to other problems
such as the dipole and quadrupole polarizabilities and
shielding factors. Useful comparisons could be made
with the results of earlier workers' '" who have used the
variational versions of the I KH methods a, b, and d
for these properties.
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I~=G+ (~ I ~)~ +(~. I ~)x., (A1)

where I. is a linear differential operator, and G, @t, gs,
X~, and X2 are known functions.

We solve
LNi= 6,
LN2 =X~,

LN3 =Xg,

(A2)

(A3)

(A4)

assuming that the boundary conditions for (A1) can be
applied to the solutions of (A2), (A3), and (A4). We
write

f= It+ps»+ps» y

where Ps and Ps are constants. Then

(AS)

L,4'= G+psXt+p ps
=6+((4 r I »)+ps' t I »)+ps(&r I »))&t+ (8 s I »)

+p.g.I»)+ps/ s lu. ))X'
Assuming X& and X2 to be linearly independent we can
write the equations

(1—(4tlls))Ps —(4r ~
»)Ps= (4t(ski),

—(4s ~»)Ps+(1—(4s ~~s))Ps= (4s)Nt).

(A6)

(A7)

ps and ps can be obtained from (A6) and (A7), and the
solution (AS) follows.

&s See R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).

APPENDIX

As an example of the noniterative method used in
these calculations to obtain a particular solution of the
integrodifferential equation, we give here a variation of
the method attributed" to Percival.

Consider the integrodiff erential equation


