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P.(k) —X(0) cosk]k 'dk T(r—), (A4)
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in superconductivity seem to be of such a strength and Using the relationship
range as to satisfy this condition. Although the deriva-
tion is valid only for the ground state (at 7=0), we can
safely assert that thermal excitations at suKciently low
temperatures will have a negligible eGect on these
results. It thus seems that, as far as the strength and and Eq. (A3), Eq. (A2) may be written
range of the interaction are concerned, the application
of the Tomonaga model in Ref. S is justified. Q(r) =2 stnh'd(0)»r

In conclusion, we point out that the core L
—I*,rt*]

is not completely 6lled, and it is an open and interesting
question to estimate the eGect of a few holes present in
the core.
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APPENDIX

r(r) = f s '[x(s) —x(0)j coskrss.
0

Integrating by parts twice, we 6nd

(AS)

It is convenient to rewrite Q(r), given in Eq. (3.38), as

The quantity C is defined in Eq. (3.40) by the
asymptotic behavior of the function Q(r) for large r: 2'(r) ~o(1/r')

Q(r) - 2 sinh'(l(0) lnr+C+O(1/r'). (A1) for large r Com. bining Eqs. (A4) and (AS) and com-
paring with Eq. (A1), we obtain

Q(r) = )t(k) (1—coskr) k 'dk— (A2)
C= k'P k —Xo coskdk.

0

X(k) —=2 sinh'e(k) .
Using Eq. (A3) to express this in terms of 0(k), one

(A3) obtains Eq. (3.4S) of the text.
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An equation-of-motion formalism is used to give a nonlinear spin-wave treatment of fcc solid ortho-
hydrogen. The elementary excitations in ortho-hydrogen are librational waves and can be treated in a
manner similar to spin waves in magnetism. The excitation spectrum, long-range order, and ground-state
energy are calculated. It is found that the spin-wave excitations have a nonvanishing effect on both the
long-range order and the ground-state energy. But, because of a large energy gap, the spin-wave-theory
results deviate only slightly from their molecular-6eld values.

I. INTRODUCTION

t 1HE cooperative orientational ordering of ortho-H2
J .molecules on a rigid fcc lattice has been described in
terms of a molecular-Geld approximation by Raich and

j'ames. ' ' This treatment was based on a knowledge of
the molecular equilibrium orientations, as found from
the ground state of a system of classical quadrupoles on

t J.C.Raich and H. M. James, Phys. Rev. Letters16, 173 (1966).' H. M. James and J. C. Raich, Phys. Rev. 126, 649 (196'/).
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a rigid fcc lattice, "and experiment. ' Miyagi and
Nakamura' have recently estimated the corrections to
the ground-state energy for ortho-H2 molecules on fcc
and hcp lattices due to a spin-wave type zero-point
energy. This eGect was studied by considering rota-
tional excitations in the ordered state, similar to spin-
waves in antiferromagnets, where there is also a correc-
tion to the ground state as a result of the nonvanishing
of a zero-point energy. Miyagi and Nakamura used a
second-order perturbation treatment of this correction.

The method of temperature-dependent Green's
functions has been applied to the above molecular-field
model of ortho-hydrogen. " It was found that this
problem can be solved by methods very similar to those
used in the theories of ferro- and antiferromagnetism.
It therefore seems reasonable to apply approximations,
other than the molecular-field treatment, which are
useful there, to the ortho-H2 problem. One such method
commonly used in magnetism is the spin-wave approxi-
mation. The application of a linear spin-wave theory,
valid only at very low temperatures, has in fact been
outlined by Homma, Okada, and Matsuda. " They
calculate the energies of the low-lying excitations and
an approximate density of the excited states in solid
ortho-H~. These excitations can be considered libra-
tional waves or "spin-waves. "

The purpose of this paper is to give a nonlinear spin-
wave treatment of solid ortho-H~ for the fcc case using
an equation-of-motion formalism developed by
Wallace. " The method used is an application of the
theory of Wallace including degenerate perturbation
theory. The present work can in a way be considered an
extension of the calculations of Homma et al. ,

"to finite
temperatures. However, the methods used here are
different. The excitation operators developed in this
paper differ from those of Homma et a/. , in that they are
boson operators only at zero temperature.

During the preparation of this article we received
another paper by Ueyama and Matsubara, " in which
the authors also use a Green's-function technique to
calculate the ground-state configuration, the low-lying
excitations, and the temperature dependence of long-
range order. The results obtained there however differ

~ O. Nagai and T. Nakamura, Progr. Theoret. Phys. (Kyoto)
24, 432 (1960);30, 412 (1963).' J. Felsteiner, Phys. Rev. Letters 15, 1025 (1965).

'R. L. Mills and A. F. Schuch, Phys. Rev. Letters 15, 722
(1965);R. L. Mills, A. F. Schuch, and D, A. Depatie, ibid. 17,
1131 (1966).

6 M. Clouter and H. P. Gush, Phys. Rev. Letters 15, 200 (1965).
7 F. K. Mucker, S. Talhouk, P. M. Harris, D. White, and R. A.

Erickson, Phys. Rev. Letters 15, 586 (1965); 10, 799 (1966).
W. E. Steib, T. H. Jordan, ' and W. N. Lipscomb, J. Chem.

Phys. 37, 2962 (1962);T. H. Jordan, H. W. Smith, W. E. Streib,
and W. N. Lipscomb, ibid. 41, 756 (1964).

9 H. Miyagi and T. Nakamura, Progr. Theoret. Phys. (Kyoto)
37, 641 (1967).I J. C. Raich and R. D. Etters, Phys. Rev. 155, 457 (1967)."S. Homma, K. Okada, and H. Matsuda, Progr. Theoret.
Phys. (Kyoto) 36, 1310 (1966);38, 767 (1967}."D.C. Wallace, Phys. Rev. 152, 261 (1966).
.

' '3 H. Ueyama and T. Matsubara, Progr. Theoret. Phys.
(Kyoto) 38, 784 (1967).

from those of the present work. Ueyama and Matsubara
find no significant deviation from the molecular-field
theory results. It is shown that, using the treatment
described here, one finds indeed a small, but nonzero,
deviation of the long-range order and other quantities
from their molecular-field values.

Section II gives a description of the Hamiltonian for
the model to be considered. Here we have chosen to use
the angular momentum operators J+, J, and J' in-
stead of the operators J*, J&, and J'. This choice leads
us to a somewhat different formalism than the one used
by Miyagi and Nakamura' and others. ""In Sec. III,
the creation and annihilation operators of the system are
defined. An outline of the linear spin-wave approxima-
tion is given in Sec. IV. The results of the linear spin-
wave calculations are then used in Sec. V as a guide to
the nonlinear spin-wave problem. Here the equations
of motion are developed and solved for the proper
excitation operators and excitation energies of the
system. Section VI gives an outline of the calculation
of the temperature dependence of the long-range order.
An estimate of the ground-state energy is given in
Sec. VII. The conclusions drawn from the present
treatment are given in Sec. VIII.

II. HAMILTONIAN

The details of the model to be considered here are
described adequately in the literature. "' The Hamil-
tonian for a system of H2 molecules in the rotational
state J=1, coupled by quadrupole-quadrupole inter-
actions is

H=-,'gV;;(a;, a;),

where Q;= (8,, @;) specifies the orientation of a mole-
cule on site i relative to the crystal axis. V;; is the
quadrupole-quadrupole interaction' '

V;;= (20s./9) (70rr) '"I'g Q C(224; MX)
MN

XFssr(&,) V2iv(&;) F4sr+~(&,;)*. (2.2)'
Here C(JiJsJ; MrMs) is a Clebsch-Gordan coefficient"
and

I'; =6e'Q'/(25Eg'), (2 3)

where Q is the molecular-quadrupole moment, (see
footnote 27 of Ref. 2 on the value of Q), and R;; is the
vector connecting sites i and j, measured relative to the
crystal axis.

The molecular lattice for solid ortho-H2 is found to
consist of four simple cubic sublattices, ' ' " with
molecular-equilibrium directions oriented along the
four different threefold axes of the crystal. The threefold
axes coincide with the body diagonals of the fcc lattice.
These equilibrium directions are the axes of quantization
for each sublattice. For the present discussion it is

'4 M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley R Sons, Inc, , New York, 1957).
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therefore more convenient to transform to a coordinate
system where the 2; axis, for each moleculei, is along the

symmetry axis for that molecule i. This transformation
1S~4

F~M(Qg) = QD'gr *(n,, p, , y, ) F2„(~;), (2.4)

M=+1

M=-1

bt at

na=1, nb=0

na=O'nb 1

where D'~ is a rotation matrix, n;, P;, and y; are the
Euler angles specifying the orientation of the equilib-
rium axis for molecule i (or axis of quantization for
molecule i) relative to the crystal axis, and s);= (8;, p;)
describes the orientation of molecule in i relative to its
equilibrium axis.

In the subspace of J=1 one can then replace the
spherical harmonics F2 (~;) by their operator equi-
valents"

where

and

Fg„(a);) =A 6;",

Ao ————', (5/4~) '",

Agg =&—,0 (15/2s') ~~2

A~2= —,0 (15/2m') u2

go 3 (J~z) ' 2

8 +'=J *J++J +J *

g,+2 —(J .+) 2

(2.6)

(2 7)

Units where 5=1 are used throughout. The Harnil-
tonian (1) can be written in operator form

jj—g g 7 . ,mn g,mgn, (2 8)

where

y,; "=(10m./9) (70m) "'I',;A A„Q C(224; MX)
MN

J;+=J,'+i'.
For J=1 the relations

J,+J =+J,+J

(2.11)

(2.12)

hold. In this paper we consider only nearest-neighbor

"T. Nakamura, Progr. Theoret. Phys. (Kyoto) 14, 135 (1955).

(2 9)

The relationship between this Hamiltonian and the
one used by Nagai and Nakamura and otherss, u, i is
given in Appendix A. Here J; is the angular momentum
operator for an H2 molecule on site i, with the s; axis
taken along the equilibrium orientation of that molecule
i. The components of J; satisfy the usual commutation
relations

[J~+~ Ji 3=2J'8 [J'+ J *1=+"J+4' (2 10)

where the brackets indicate commutators, and

interactions, that is

rg=r if i and j are nearest-neighbor sites

otherwise. (2.13)

III. CREATION AND ANNIHILATION OPERATORS

One knows from the molecular-field approximation
that the rotational states of the system can be described
by molecular wave functions that have the form
F&~(aa,), with M=O, &1, in the coordinate system
where the molecular orientations are described by ~;.
In the molecular-6eld treatment one finds that the
states M =+1 are degenerate for a fcc lattice, but not
for a hcp lattice, ' and lie above the 3f=0 ground state.
%e are thus looking for operators that when applied to
the state M=O will create excitations in either the
state M =+1or the state M =—1.

Clearly the operators J+ and J, given by Eq.
(2.11), will not do. For example, J+ operating on the
state M= —1 gives a state of lower energy, i.e., the
state M =0. Thus, for this problem, J+ can not be con-
sidered a pure creation operator for M =+I excitations.
This is not even true in an approximate sense, con-
trasting with the theory of ferromagnetism. A set of
operators that have the properties of annihilation
operators are

a, = (1/V2) [1—(J *)'jJ;

b, = (1/v2) [1—(J;*)']J;+,

(3.1)

(3 2)

with the creation operators a;t and b;t given by the
Hermitian conjugates of Eqs. (3.1) and (3.2) . It is easy
to show that these operators satisfy the following com-
mutation relations:

[a;, a; j=(1—2m. ;—e~;)b,;,

[b;, b, t]= (1—e.;—2ng, )bg,

[a b tj= b "a8"—
[b; a;t]= a;tb;8;. —

(3.3)

(3.4)

(3.5)

(3 6)

(3 7)

where e;=a;ta; and eg;=b, tb; are the number of
M=+1 and M= —1 excitations, respectively, for site
i. A schematic of these operators is given in Fig. 1.

The transformations (3.1) and (3.2) can be inverted

na=o, nb=o

FIG. 1. Schematic illustration of the creation operators at and bt.
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to give

so that

J.z a ta.—b.tb

J;+=v2 (a;'r+b;),

J; =v2(a;+b, t),

(J') '= a;ta;+b;tb;,

g o=3(a,ta;+b, tb, ) —2

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

IV. LINEAR SPIN-WAVE APPROXIMATION

A. Effective Hamiltonian

At very low temperatures nearly all molecules must
be in the ground state specified by M =0. Since e, and
no represent the number of M=+1 and M= —1
excitations, respectively, we should expect that the
statistical averages (n, ) and (no) should be small at
low temperatures. Or alternatively, denoting the ground
state by I 0), one finds from Eq. (3.3) that

+' =42 (a;t b;), —

g .+2—2g.tb .

e;-'= (e;+'), (3.13)

e;-'= (e;+') t. (3.14)

+2[v "'(a*' b') (a~—' —»)

+r +' '(a —b )(a; —b; )+H.c.)
+4';;+'+'a, tb~a;tb, +y "+' 'a;tb, b ta +H.c.)

K2)~;~+'o(a b;) (n.;+nb;—) —H.c.)
+1 2[y;, +2oa; tb;( n., +no) +H.c.)

+4'[~,,+o+ia, tb, (a;t-b;)

+y;;+' 'a, tb, (a; b, t) —H.c.)},—(3.15)

where H.c. means Hermitian conjugate. Here we have
used the relations

m;n —(.
— 1)m+n+, ,mn8 (3.16)

(3.1'/)

g~. mo 0 m/0, (3.18)

which follow from the definition of y; "",Eq. (2.9) .
One also has to keep in mind that the operators a;,

b;, a;t, and b;~ are operators within the J=1 subspace,
so that, for example,

a;a; =b;b; =a;ta;~ =b;~b;~ =a;b; =a;tb;~ =0.

The procedure used here is to give a description of
the system by calculating the equations of motion for
the operators a; and b;, using the Hamiltonian (3.15).
These equations of motion are then used to derive the
excitation spectrum and the thermodynamic averages
of interest.

One should note here that the operators a~ and b~ diGer
from the operators x~ and y~ introduced by Homma
et al."The commutation relations (3.3) through (3.7)
show that the operators specified by Eqs. (3.8), (3.9),
and (3.10) are not boson operators. However, at zero
temperature, the two formalisms should coincide.

Using Eqs. (3.12), (3.13), and (3.14) the Hamil-
tonian (2.8) is written in terms of the operators a;,
b;t a;t and b;~. The result is

P= Q {y@~[3(n„+no;) —2)[3(n„+no, ) —2)

La, , a; ) I 0)=a,, I
o). (4.1)

Thus, at low temperatures the spin-wave operators for
ortho-H2 can be defined in a manner similar to the
Bloch spin waves in ferromagnetism. Therefore, near
T=o we may replace the commutation relations (3.3)
through (3.'/) by the approximate ones

Ea', a') =Eb', »') =b'J, (4.2)

Ea', »')=Lb' a~') =[a~, b~) =[a",»') =o (43)

Similarly, for excitations near T=0, one may neglect
all but bilinear terms in the operators a, b, ut, and bt
in the Hamiltonian (3.15) . The linear spin-wave
Hamiltonian is then

H =2+{y;;"[1—3(a,ta,+b, tb;) )
+7'~" '(a" b') (a »—')—
+y "+'+'(a t —b ) (a t —b ) }+H.c. (4.4)

Here the terms containing a coeKcient y;,™with
ni/0 and n=o vanish because of Eq. (3.18). Those
with m=+1, m=&2 and m=&2, e=&i contain only
trilinear terms, while those with m =&2, e=&2
contain quadrilinear terms. Both latter terms are
neglected in a linear spin-wave treatment.

Since a description of the elementary excitations in
solid ortho-H2 at T=O has already been outlined, '"
we will restrict our attention to only a first-order
perturbation treatment of the linear spin-wave approxi-
mation. The 6rst-order treatment, although somewhat
simpler than the exact treatment, does not yield the
zero-point energy of the spin-wave excitations. A
calculation of this zero-point energy requires a second-
order perturbation treatment. ' The first-order treat-
ment is included here primarily as an illustration of
the techniques that will be used in the more exact
nonlinear spin-wave approximation. The latter calcula-
tions should of course yield the correct zero-tempera-
ture results.

For a first-order perturbation treatment we need to
retain only the diagonal terms plus only those terms
leading to a, degeneracy in the Hamiltonian (4.4). The
remaining terms can then be treated by higher-order
perturbation theory. The alternative procedure, which
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is used in Sec. V is to diagonalize the complete problem.
For the first-order treatment we thus keep only those
terms in Eq. (4.4) that connect states with equal zero-
order energies, for example, terms like a;ta;, a;ta;, or
a;tb;. Terms like a;ta;t or a;tb;t are neglected to first
order, since they give nonvanishing contributions only
between states with different zero-order energies.

B. Equations of Motion

the vector

c2(k) a2(k)

cs(k) b4(k)

ci(k) ai(k)

(4.12)

To first order the equations of motion are then, from
Eqs. (3.17) and (4.2) —(4.4)

and the 8&(8 matrix F(k), with matrix elements

Fpv, p, v=1, 2 ~ ~ 8

[a;, H]=191'a~+4+(y;+' 'a —y "+'+'b ) (4.5)
F(k) =

—g(k)
(4.13)

Lb; H] = 191'bi+4K (-, +'-'*a +,-+i+'*b ) (4 6)

where we have used the relation y@0 ———(19/144) r, '

and the nearest-neighbor approximation (2.13). The
equations of motion for the operators a;t',and b;t are
found by taking the Hermitian conjugates of Kqs.
(4.5) and (4.6). An examination of the equations of
motion shows that to first order the excitations a; on
the site i are coupled to excitations a; and b, for different
sites j. A higher-order treatment will also mix in a;t
and b, t as seen in Sec. V. Equations (4.5) and (4.6)
are simplified in the usual manner by a Fourier trans-
formation. Here one defines the operators

—g'(k) f*(k)

where f and g are 4X4 matrices, with the matrix
elements

f.,(k) = (4/»r) v.,+ -'(k), (4.14)

g. (k) = (4/»I') v.~+'+'(k), (4.»)
where 0., P=i, 2, 3, 4. Equations (4.9) and (4.10) are
then written together in the form

(1/191') Lc„(k),H] =gfb„„+F„„(k)]c„(k). (4.16)

In terms of the operators c„(k) the approximate com-
mutation relations (4.2) and (4.3) are

a.(k) =Q(4/X) Q exp[ik j(n)]a;( ), (4.7)
j(a)

b-(k) =v'(4/&) Z expL&k i(~)]b &.), (48)

(c„(k),c„t(k')]=b„.bI,I,

C. Elementary Excitations

(4.17)

j(a)

where n is the sublattice index, n=1, 2, 3, 4, k is a
vector in reciprocal space, and E is the total number of
sites in the system. The sums are over all sites j on a
given sublattice n. In terms of the Fourier-transformed
operators (4.7) and (4.8) the equations of motion
(4.5) and (4.6) are

[a (k), H]=191'a.(k)

+4ZLv-p" '(k) a~(k) —v.t+'"bt (kl], (4 9)

[b (k), H]=19I'b (k)

+4ZL —7-p+' '*(k)ap(k)+7-p+'"*(k) bp(k)] (4.1o)

where

v-~""(k) =v-s""(—k)

The problem now is to find the proper creation and
annihilation operators of the system. These operators
are some linear combination of the operators c„(k),
and they must satisfy on equation of motion of the
form

Ld„(k), H]=e„(k)d„(k), p, =1, 2 ~ ~ .8 (4.18)

where e„(k) is the (first-order) excitation energy for an
elementary excitation labeled by a mode index p and
wave vector k. The problem is thus reduced to solving
the secular equation

Z((1—&p(k) )~p.+Fp (k)]c (k) =o (4 19)

with co„(k) =e„(kl/(191'). Equivalently, one writes

QV,„*(k)M,g(k) V),„(k) =co„(k)b„„, (4.20)

where

= Zv'- ""expI-~k Li(P)-i( )]I (4»)
i(P)

M„,(k) =b„„+F„„(k). (4.21)

It is seen from Eqs. (4.9) and (4.10) that the elemen-

tary excitations of the system are mixtures of a and b

type excitations for a = 1, 2, 3, 4.
Let us define the operators c„(k), @=1, 2 ~ ~ ~ 8, by

Here V(k) is an orthogonal matrix with the properties

QV, ),*V.), =B„„, (V ')„,=V.„*. (4.22)

The operators d„(k) are related to the c„(k)'s by the
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C)

tg

C)

0.6

0.4-

0.2-

a1 OB

a1~ 0 a3

alt 0b
(4.28)

From Eqs. (4.22) and (4.23) it also follows that

2"'(k)"(k)=Z~.'(k) d.(k). (4.29)

Since all sites are equivalent it is reasonable to assume
here the molecular-field result

(~")=(~')=0
or

averages. "Expanding the d„(k) operators in terms of
the c„(k)'s as in Eq. (4.23), and then using Eqs.
(4.22) and the commutation relations (4.17) one finds

(d„(k'), d„(k)]=fg„„bye,

so that

'0 0.1

kT/19r

0.2 0.3

Fin. 2. The statistical averages (a, (k)ggg(k) ), (ggg (k)ggg(k) ),
and (ogt (k) bg (k) ) for k=0 as a function of ten)perature for the
6rst-order linear spin-wave theory.

orthogonal transformation

d„(k) =g V„„*(k)c„(k),

c.(k) =XV..(k)d. (k).

(4.23)

(4.24)

4.(k) =exp(P" (k) )-13 ', (4.26)

P = 1/kT, and the brackets ( ) indicate statistical

The excitation energies e„(k) =191'o)„(k) are found by
computing the eigenvalues o)„(k) of the 8&&8 matrix
3f(k). For arbitrary values of k the eigenvalues and
eigenvectors must be found numerically with the aid
of a computer. The matrix elements F„„(k) are calcu-
lated using Eqs. (4.14), (4.15), (4.11), (2.6), and
(2.9). A Table is given in Appendix 8 for values of
m, m=~1. Alternatively one may use the tabulations
of Miyagi and Nakumura' in the manner described in

Appendix A.
The excitation spectrum obtained here is somewhat

diferent from that of Homma et al." For example, at
k=0 the values of o)„(k) are 1.450(3), 0.784(3), and
0.649(2), where the numbers in brackets indicate the
degeneracy. Thus the excitation spectrum calculated
here spreads over a somewhat larger energy range than
the one predicted by Homma et al.

Thermodynamic averages involving the operators
d„(k) are easily calculated using the basic equations
(2.9a) and (2.9b) of the statistical perturbation method
of Wallace. "These equations apply here exactly since
the equivalent of Wallace's Eq. (2.1) is our Eq. (4.18) .
Following Wallace, one finds from Eq. (4.18) that

(4t(k), d. (k') )=(P (k') d.'(k) j)&p(k) (4 25).
where

(gs a;)=(ata)=(btb),

independent of the lattice sitei. Then

(~'~) = (4/&) Z (~'(-)'~'&.&»
i(0.)

=(4/&) Z( -'(k) -(k)),

=(1/~) Z(~.t(k) ~.(k) ), 0.=1, 2, 3, 4

(4.30)

where Eq. (4.30) follows from the transformation
(4.7) . In terms of the operators c„(k) one finds

(a'u) = (1/2') Q(c„'(k)c„(k)). (4.31)
&If,

Then with the aid of Eqs. (4.28) and (4.29) we have

(ata) = (1/2X) g@„(k),

where p=1, 2 ~ ~ ~ 8, and the sum on k extends over the
first Brillouin zone.

Statistical averages like (ata) can be estimated by
replacing the sum in Eq. (4.32) by an integral:

(4.32)

(glgg)(g/g) Z~ f g( )« (4.33)

where here the energy distribution function must
satisfy the conditions

(4.34)

The second of these relations follows from the property

TrM(k) = Tro)(k) =1, (4.35)

where o)(k) is the matrix with the matrix elements
o)„(k)g)„„. The energy state density g(o)) is determined
by an energy-sampling method over values of k dis-
tributed through the Brillouin zone.""

The matrices V(k) can also be calculated numeri-
cally. One can then use Eqs. (4.24) and (4.28) to 6nd
the thermodynamic averages (c„t(k)c„(k)), or by
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Eqs. (4.7) and (4.8) the correlation functions
(c;0& c &,~). As an example, plots of (a, (k)a, (k)),
(ait(k)ag(k) ), and (ait(k) bi(k) ) are shown in Fig. 2
for k=0 as a function of temperature. The results of
this approximation are of course only valid at very low
temperatures.

V. NONLINEAR SPIN-WAVE APPROXIMATION

A. Equations of Motion

The problem now is to extend the formalism de-
veloped in Sec. IV to finite temperatures. Using the
complete Hamiltonian (3.15) and the exact commuta-
tion relations (3.3) to (3.7) one finds

+2

Hj 2p j p [3+. .Oma, +2+, ,+2mb, 7tl m.
tA—2

+~2 Q [~.+1m(1 2~ . I .) +~.—1mb, 'tg,jg.mI

(5 1)

and corresponding equations of motion for b;, a;~, and
b,t. In the molecular-field treatment one retains only
the 6rst term. Equation (5.1) illustrates the complexity
of the problem at this point. To facilitate a solution of
these equations of motion, one usually decouples these
equations in some manner. In such a decoupling scheme
certain groups of operators are replaced by their
average values. "

The simplest approximation one can make at this
point is the Tyablikov decoupling scheme, which was
used in the molecular-field treatment of this problem,
where a Green's-function formalism was used. " In
terms of the operators used in this paper one decouples,
for example,

where
H, ii =H'+H',

Ho Q~, .oog.og.o

(5.6)

(5-7)

is the molecular-field Hamiltonian, ' and

2, which shows that terms like (a;tb;) (iAj) could
become appreciable. The eRect of a higher-order
decoupling approximation must therefore be considered
ultimately. The decoupling scheme used by Ueyama
and Matsubara" seems to be equivalent to Eq. (53).

An application of the decoupling approximations
(5.2) and (5.3) then yields the much simpler equations
of motion

( ——:(8'&) 'La', HJ=19«'

y4Q[~. .+i—1(g. b.t) p, .+i+i(b. a.t)] (5.4)

where we have used the equation yo'0= —(19/144) I',
the nearest-neighbor restriction (2.13), and the equi-
valence of sites, together with the molecular-field.
result (J*&=0, as in Sec. IV, (a, ta;&= (ata)= (btb), so
that, by Eq. (3.12),

&a'a) = &b'b) = 3+6 (&') (5.5)

It is seen that except for the factor (—~ (0'&) ' and the
a;t and b;t terms, Eq. (5.4) is identical to Eq. (4.5) «
the first-order linear spin-wave approximation. Thus
again, as in Sec. IV, only the terms involving p;j™,
with m, m=0, &1, are retained in the equations of
motion (5.1) to yield Eq. (5.4). Ther'fore one may
replace the complete Hamiltonian (2.8) by an effective
Hamiltonian valid only within the decoupling approxi-
mation (5.3)

(( " '»'& »:& " ')«b", &)» (5.2)
n8 .mg. n.m nz, m=a1. (5 8)

where the single brackets ( ) indicate statistical aver-
ages, and the double brackets ((; )) the Fourier
transforms of the Green's functions. ' Similar expres-
sions are obtained for other combinations of operators.
However, at this point, one retains only those terms
where the averages ( ) on the right-hand side of Eq.
(5.2) have diagonal matrix elements when operating on
the states

I
I„,mb;&. Since we are ultimately only

interested in statistical averages, this decoupling
approximation can equally well be applied to an
equation-of-motion technique, where the equivalent of
Eq. (5.2) is

a;ta;b, ; - (a;ta;&b, , (Tyablikov decoupling), (5.3)i'
and similar expressions for other combinations of
operators satisfying the condition that the operators in
the brackets ( ) be diagonal for the states

I
I„., n~;&.

The fact that this decoupling scheme is not a particu-
larly good one for this problem can, for example, be
seen from the linear spin-wave results as given in Fig.

As in Sec. IV, Eq. (5.4) can be Fourier-analyzed
with the result

=a-(k)+Sf-s(k) [as(k) —4'( —k) 3

—Za-s(k) [bs(k) —s'( —k) j
where a (k) and b (k) are given by Eqs. (4.7) and
(4.8), and f p(k) and g s(k) by Eqs. (4.14) and (4.15),
respectively. The corresponding equation for b (k) is

( ——', (8'&191')-'[b.(k), Hj
=b-(k) —Zg-n*(k) [a~(k) —bs'( —k) 3

+Zf.~*(k)[4(k) —e'( —k) j (5 1o)

The equations of motion for a t( —k) and b t( —k) are
found by taking the Herrnitian conjugates of Eqs.
(5.9) and (5.10). In terms of the operators c„(k), de-
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fined by Eq. (4.12), Eqs. (5.9) and (5.10) are

(-l(6')191)-'[., H]= .+Z(F.. .+F..",'),
related to the c„(k) 's by

d„=g U„„*c„, (5.20)

(5.11) 2Vlivdvy (5.21)

where the matrix F is defined by Eq. (4.13) and F'
is the 8&(8 matrix

(5.12)

where p, , v=1, 2 ~ ~ ~ 8. Here the orthogonal transforma-
tion that diagonalizes the matrix M(k) is

QV„.*M„,V,), =(v„'b„„, p, v, 0, X=I, 2 ~ ~ ~ 8, (5.22)

Here and below, for the sake of simplicity, the indices k
have been left oG. Following Sec. IV, the problem now
is to solve the equations of motion (5.9) and (5.10), or
equivalently (5.11), in order to obtain the elementary
excitation operators and energies for the system. This
method seems at first sight to involve the diagonaliza-
tion of a 16&(16 matrix, since the sixteen operators
ai(k), &(k) ~ ~ b4t( —k) are coupled by the equations
of motion (5.9) and (5.10). This problem can however
be reduced to an 8&8 diagonalization in a manner
indicated below.

Taking the commutator of Eqs. (5.9) and (5.10)
with the Hamiltonian one finds

( ——', (8')191') '[[a, H], H] =a +2+ (f pa~ gsbp), —

(5.13)
(—;(eo)19r)-[[b., H], H]

=b-+2K( a-s*ap+f-—~*bs), (5 14)

where a=1, 2, 3, 4. Equivalently, in terms of the
operators c„

(——',(6')191') '[[c„,H], H]=Q(b„„+2F„„)c„, (5.15)

where p, v=1, 2 ~ ~ ~ 8.

B. Elementary Excitations

As in Sec. IV, the elementary excitation operators
must obey equations of motion of the form

[f„,H]=e„f„,

[f.' H]= ~.f.'
(5.16)

(5.17)

where e„(k) are the elementary excitation energies of
the system and p = 1, 2 ~ ~ 8. Combining Eqs. (5.16) and
(5.17) one finds

[[d„,H], H]=e„'d„, (5.18)

du =~.f.+&.f.". (5.19)

Following the arguments of Sec. IV one Qnds from
Eqs. (5.15) and (5.19) that the operators d„(k) are

where here d„ is a linear combination of the operators
f„and f„t:

where

.(k) = (-(8')191') '.(k) (5.23)

The equations of motion for the operators d„(k) do
not have the same form as Eq. (4.18), since the d„(k) 's

are not the elementary excitation operators when one
goes beyond a first-order perturbation treatment. In-
stead one finds, from Eqs. (5.16), (5.17), and (5.19),

( ——',(6')19r)—'[d„, H] =P„d„+n„d,", (5.26)

where Eq. (5.18) is satisfied by

2 2 (5.27)

Equations (5.16), (5.17), and (5.26) are jointly satis-
fied for the choices

~.= 2[1+(4/~.) ], &.= —n./(2~. ) (5 28)

so that, from Eq. (.5.19),

4= (n./2~. ) I [(4+~.)/~.]f. f.'I—(5.29)

Here cu„(k) is specified by Eq. (5.22), and $„(k) and
g„(k) have yet to be determined. d„t(k) is found by
taking the Hermitian conjugate of Eq. (5.29). The
inverse transformations are

f.=4+[(4 ~.)/~.]d' (5.30)

and its Hermitian conjugate.
The quantities P„(k) and p„(k) are evaluated as

follows. By Eq. (5.20) one has

[d„, H] =g V„„*[c„,H]. (5.31)

An application of Eq. (5.11) yields

( —-'(8')191')-'[d„, H]
=Q[(b,z+F,),) ,V„* gc+„F'x,V*i),c']. (5.32)

M„„(k)=b„„+2F„„(k). (5.24)

Here the matrices 3f and V are of course different from
those defined in Sec. IV, however they do satisfy the
same orthonormality condition (4.22) . Using Eq.
(4.22) one may invert Eq. (5.22) to obtain

M„,=Q V„),V„y*o))P. (5.25)
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Also

(„d„+ri„d„t=P ($„V,„*c,+ri„V,„c,t) . (5.33)

Substituting Eqs. (5.32) and (5.33) into Eq. (5.26),
and equating coeKcients of cq and cq~, or alternatively
d„and d„t, one finds, with the help of Eqs. (5.25),
(5.24), and the orthonormality condition (4.22), that l.o-

~.(~) =-:I:1+.(k)'j,

C. Excitation Spectrum

(5.34)

(5.35)

VL CALCULATION OF ((J')')

A. Statistical Averages

The calculation of statistical averages follows in the
same manner as in Sec. IV. It follows from Eq. (5.21)
that

&c„tc„)=g V„x~V„.&dxtd. ). (6.1)

Using Eq. (5.29) one finds

&dx'd. )= I ex'./(4~x~. ) j
X &I fx—L(/x+~i)/gx$ fx'} I f.' f((.+~.)/n. jf.}—)

(6 2)

Again applying Wallace's result, one obtains from Eqs.
(5.16) and (5.17)

The elementary excitation energies e„(k) can again'be
calculated numerically from Eqs. (5.22), (5.23), and
(5.24) by diagonalizing the matrix M(k). The eigen-
values obtained agree well with those found by Ueyama
and Matsubara. " For example at k=0, the values
obtained for oi„(k) are 1.378(3),0.754(3), and 0.546(2),
where the numbers in brackets indicate the degeneracy.
One should note that these results are close to the
6rst-order perturbation values obtained in Sec. IV.
Thus at k =0 and 7=0 the energy gap is Ae(0) = 10.41'.
For a value of eQ=0. 1348&&10 "electron cms (free-Hs
molecular quadrupole moment), or I'=0.982'K', one
Gnds Ae(0) =10.2 K. A discussion of the possibility of
an experimental observation of this energy gap is given
in Sec. VIII. As an example of the energy spectrum,
Fig. 3 shows o&„(k) as a function of k for the L1001
direction. It follows from Eq. (5.23) that the energy
levels e„(k) have the same temperature dependence as
(8'), as discussed in Sec. VI.

0.5-

l = , (o( OO)

0
0.5 I.O

Fio. 3. Excitation spectrum for the (100$ direction. The numbers
in brackets indicate the degeneracy.

which is valid within the decoupling approximation
described in Sec. V. It then follows from Eqs. (4.22)
and (5.20) that

&Ld„, d„'])= —-', (8')8„„
so that, by Eq. (5.30),

(6.6)

&9'„f'j)= —:«')Il—L(4—.)/~.l '}~"

&If.,f.3)=o. (6.8)

An application of Eq. (6.3), (6.7), and (6.8) yields for
Eq. (6.2)

&dx'd. )= —s &8')I:nx'/(4 x') jI1—L(b —~x)'/nx'j}

X I I+LI+(6+tex) '/nx'jA}4' (6 9)

Using Eq. (5.27), one reduces Eq. (6.9) to

&dx'd, ) =-; &8')I 1—(Px/o~x) coth(Peg/2) lsd. , (6.10)

so that, by Eq. (5.34), one finds for Eq. (6.1)

(c„'c„)
=sr &8')QV„„*V„xI1—r L(1+oi&,')/o&x] coth(Pe&/2) }.

where
a 0) X &) (6.3)

As in Sec. IV it is seen then that
(6.11)

gx(k) =I exp(Pex(k) )—1] '. (6.4)

The statistical average of the commutator in Eq.
(6.3) is found from the relation

=-,'(8')I1 —(1/4N) +L(1+ „')/ „]coth(P „/2) }.

&L., "'3)= —:&8')&... (6.5) (6.12)
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Eq. (6.12) can be rewritten in terms of (8') entirely:

(8o)=4+ (3(8o)/4Q) gL (1+oo„')/oo„j cath (Po„/2),

where o„ is specified by Eq. (5.23):
(6.13)

o„(k) = —-'(8o)191'co (k) . (6.14)

((I*)') is found from Eq. (2.7):

By simply setting a&„(k) =1 in Eq. (6.13) one obtains
the molecular-held result of Ref. 10. One should note
that Eq. (6.13) differs somewhat from the equivalent
result of Ueyama and Matsubara, " and thus leads to
the diferent results obtained below.

As in Sec. IV, Eq. (6.13) can be solved for (8'), or
((I*)'), by replacing the sum of p, and k by an integral,
defined as in Eq. (4.33), where now, however, the energy
density g(cv) must satisfy the conditions

g((u) doi =1, QPg (co) doo = 1. (6.16)

The second of these relations, again, as in Eq. (4.35)
follows from the invariance property of the trace.
Again g(cv) can be determined numerically in the
manner described by Homma et al. ,

"and Ueyama and
Matsubara. " Evaluating these sums one finds small
but nonzero deviations from the molecular-field results
at all temperatures. These deviations are calculated
below for both zero temperature and the branching
temperature.

B. Zero-Temyerature Results

At T=O, Eq. (6.13) reduces to

&8')o=4+(3(8')o/4&) Zr(1+~.')/~. ], (6 17)

where

=4+(3(8'),/2) (I„,PI,), (6.18)

I„=(1/2E) +Leo„(—k) j"—+ &u"g(co) d(u, (6.19)

with e a positive or negative integer. Here the subscript
0 indicates evaluation at T=O. Equation (6.18) is
solved for (8')o.

(8')o ———8/3 (I„,+I i) —2j—'. (6.20)

From the approximate energy density of Ueyama and
Matsubara" one finds I+~=0.994 and I &

——1.035, so
that (8o)o=—1.957. Since the molecular-field result is
—2, one has

(8 )o—((8 )o) MFA—+0.04, (6.21)

or aboiit a 2% deviation from the molecular-field result.
This deviation is due to the spin-wave zero-point
motion.

C. Branching Temyerature

An indication of the e6ect of the spin-wave excita-
tions at higher temperatures is given by a determination
of how the branching temperature for Eq. (6.13) com-
pares with the corresponding value for the molecular-
field approximation. The branching temperature is de-
fined as that temperature at which a nonzero solution
to Eq. (6.13) first occurs. For second-order transitions
the branching temperature corresponds to the critical
temperature. For first-order transitions, as is the case
for solid ortho-H&, the solution to Eq. (6.13) very close
to the branching temperature is not a stable solution. ' '

For large temperatures the coth in Eq. (6.13) can
be expanded:

coth(Po„/2) =2/(Po„) +Po„/6 —~ ~ ~, (6.22)

so that

(8') =4—6(kT/19I') (1+I o)+O((8')), (6.23)

where I & is specified by Eq. (6.19) with e= —2. Again
using the approximate energy density of Ueyama and
Matsubara" one finds I ~ ——1.102. One defines T=Tb
when (8') =0, thus Eq. (6.23) gives kTo=0.95(19I'/3),
or a deviation of about 5% from the molecular-field
value 191'/3. The actual transition temperature T,
between the ordered and disordered phases can be
expected to deviate by about the same amount. '

Except for these small deviations, the qualitative
behavior of ((I')') versus T is the same as calculated
for the molecular-field approximation. ' "It is thus seen
that because of the large energy gap in the excitation
spectrum, using a Tyablikov decoupling scheme as
outlined in Sec. V, the k-dependent spin-wave excita-
tions have only a very small effect on the thermo-
dynamic properties of the system, both at low and high
temperatures. Further discussion is given in Sec. VIII.

Vrr. ZERO-XODENT EmERGV

The zero-point energy due to the spin-wave excita-
tions can be calculated by evaluating the statistical
average of the Hamiltonian effective in this decoupling
approximation. This effective Hamiltonian is given by
Eqs. (5.6), (5.7), and (5.8). Decoupling in the usual
manner one obtains

(IIo) = —191'E(-',—2(ata)+3(a"a)') (7.1)

The statistical average of H' is most easily found in
the following fashion. Using the transformations (4.7)
and (4.8), II' is written

II'=2 g Ly p+' '(a tap+b, bpt a tbpt bap)— —
nPk

—y p+'+'(a tbp+b apt a tapt bbp) +H.c—.7 (7.2—)

where, as before, H.c. indicates the Hermitian con-

jugate, and the variables k, as in a (k), have been left
off. In terms of the operators c„(k), given by Eq.
(4.12), and the matrices F(k) and F'(k), given by
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Eqs. (4.13) and (5.12), respectively, the statistical
average (H') is then

(H') = (191'/2) g (F„„(c„tc„)+F„„'(c„tc,t)+H.c.) .

Using the values of I+i and I, given in Sec. VII one
6nds

(Ho)o+ (H')o= —1.015(191'E/3), (7.14)

It follows from Eq. (6.1) that

QF„„(c„tc.) = g F„„V„&*V„(d&td&)

(7 3)

(7 4)

or a decrease of the ground-state energy due to spin-
wave zero-point motion of about 2% of the molecular-
field value 191'X/3.

vm. coNn, VSromS

Again replacing F„„by s(M„„8„„)—, as by Kq. (5.24),
and using Kqs. (5.25) and (5.34), one finds

Z "("")
= (1/16) &8')Z(1—")(1+ ") .-i coth(P"/2).

(7.5)
The other term in (H') is

ZF. '&.".') = Z F..'V..*V..*&d"d. ), (76)
pv pvX

=Qn~(A'4, '). (7.7)

Combining Eqs. (7.5) and (7.10) one has

= (19I'/8) &8o)QL(1—co (k)')/ro (k) i coth(8e„(k)/2),

(7.11)
where again

e„(k) = —-', (8')191'ro„(k) . (7.12)

Equation (7.11) is the same as the equivalent result of
Ueyama and Matsubara. " (H) = (H )+(H') can again
be estimated by evaluating the sum in Eq. (7.11) in the
manner discussed in Secs. VI and VII. For example, at
T=0, (Ho)+ (H') is given by

(IP)o+ (H')o = —191'EI rs —sr~(8o) (1—Iyr)

+ (3/16) (8o)'L1 —s (Igni+I i) O'I . (7.13)

The second step follows from Eqs. (4.22) and (5.35).
One must now evaluate (di, tdqt). This is done in a
manner similar to the calculation of (d„td„) in Sec. VI.
Using the Hermitian conjugate of Eq. (5.29), one
finds

&d.'d, ') = (n,'/4, —') [(4+ .) /n. l(Lf. f' j)(1+2&.) .

(7.8)

From Eqs. (4.22), (5.27), and (6.7), it then follows
that

(d.'d. ') =-'&8')L(4' —.')/( .n.) 3(1+24.), (7 9)

so that

gP„„'(c„'c„")

= (1/16) (8o)g (I—rois) &ro&,
i coth(pe&/2) . (7.10)

An equation-of-motion treatment of the spin-wave
approximation for fcc solid ortho-H2, using a degenerate
perturbation treatment based on the statistical per-
turbation theory of Wallace, "has been used to calculate
the excitation spectrum, long-range order, and ground-
state energy of fcc solid ortho-H2. When the appropriate
limits are taken, the results obtained here reduce to
those of the molecular-6eM theory, derived pre-
viously. ""There is some disagreement with the linear
spin-wave results of Homma et al. ,

" and the Green's-
function treatment Ueyama and Matsubara, " as dis-
cussed in detail above.

In particular, it is found that an energy gap of
several degrees exists. The excitation energies should in

principle be observable by either neutron diGraction,
as suggested by Ueyama and Matsubara, " or by in-

frared and Raman spectra of solid ortho-hydrogen, in a
manner similar to that of solid para-hydrogen. " It is
also seen that the thermodynamic averages &(I*)') and

(H) differ only slightly from their molecular-field
values, the zero-temperature values deviating by
about 2%, and the transition temperature by approxi-
mately 5%. The latter change is in the right direction
but not nearly big enough to bring agreement between
the theoretical and experimental values of the transition
temperature. Using a value of eQ =0.1348)&10-i'
electron cm', as in Sec. VI, the present theory gives
T —6.40'K, with only nearest-neighbor interactions,
compared to an extrapolated experimental value of
about 2.8'K for pure ortho-H2. However, four important
facts have to be kept in mind. First, in this and previous
papers, '""only the fcc lattice was considered, while
the actual transition is one which also involves a change
in the molecular lattice from fcc to hcp. ' Second, in
all calculations we have used for Q the value for the
quadrupole moment of a free-H& molecule. The effective
quadrupole moment could well be smaller when the
molecule is bound in the solid. Third, one should note
that a replacement of the Tyablikov decoupling scheme
used here by a higher-order approximation could lead to
an improvement in the value of the transition tempera-
ture. Finally, the eGect of lattice vibrations must be
considered in a complete theory. '

Thus, experimental observations of the energy gap
and the excitation energies would yieM additional
important information as to the correct value of F, or

"J.Van Kranendonk, Physica 25, 1080 (1959);Can. J. Phys.
38, 240 (1960).

r7 J. C. Raich and R. D. Ktters, Phys. Rev. 161, 493 i1967l.
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the value of the molecular quadrupole moment Q, in a comparison of Eqs. (2.5) and (A2), and Eqs. (2.8)
addition to a measurement of the transition tempera- and (A1) yields then
ture.

a=-', g PZ„'~„„(R,—R,)Z„',
'bJ Pv
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APPENDIX A: RELATIONSHIP TO NAKAMURA'S
HAMILTONIAN

The Hamiltonian used by Nakamura and others'
has the form, in the notation of Nakamura, e

Z„~'= QA„(n-') „0", (A5)

y,;""=A A„Q(n ')„(n ') „„P„„(R;—R;). (A6)

APPENDIX B: TABULATION OF E(k)

0 x y z

x* 0 .* y

y* ~ 0

z* y*~*o

N 0 m*

0 N

m ~* N 0

where, for nearest neighbors only,

The 8X8 matrix P(k), given by Eqs. (4.13), (4.14),
and (4.15), is specified in terms of the 4X4 matrices
f(k) and g(k). A numerical evaluation of Eq. (2.9)
yields

where, for the coordinate systems used in this paper,
&„„(R;—R;) is given by Nakamura's' Eqs. (4.4) and
Tables II and VII. Z„' is the pth quadrupole component
of the ith molecule and is speci6ed by Nakamura's'
Table I. Equations (A1) and (2.8) are of course the
same. We can thus find the relationship between 8, and
Z„&, and the matrices y and F. Using the operator
equivalent equation" (for states with J=1)

F2iii ( j)~pn~pZp (A2)

Here
where n~„, M = —2, ~, +2, @=1,2 ~ ~ 5, is the 5X5
matrix"

x=+0.08185(Ci+C2) +0.01519i(Ci+C2),

y = —0.05849(C3+C4) +0.02534i(C8 —C4),

s = —0.02779 (Cg+ C6) —0.07852i (C5+C6),

u = —0.05849 (Ci+C2) —0.02534' (Ci—C2),

v = —0.05411(CS+C4)+0.06332i(C&+C4),

w = —0.05849 (Cg+C6) +0.02534i(CS —C6) .

C;= cosk r;,
1/&2 0 0 0 i/42—where the vectors r, are given by

0 0 i/K2 —1/v2 0

n = —L (3/10) $'" 0 1 0

0 0 i/v2 ——1/&2 0

1/v2 0 0

r'= (a/2) (1» o) r = (a/2) (1 —» o)

ra ——(a/2) (1, 0, 1), r4 ——(a/2) (1, 0, —1),

r&
——(a/2) (0, 1, 1), r&

——(a/2) (0, 1, —1)

measured relative to the crystal (x, y, s) axes, and
where the nearest-neighbor distance is R =v2a, so that a

(A3) is the length of the edge of the fcc cell.


