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Momentum Distribution in the Tomonaga Model*
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The momentum distribution function for the ground state of the one-dimensional Tomonaga model at
7=0 is derived. The applicability of the model is discussed. It is found that the restriction on the strength
of the interaction is actually much weaker than that suggested by Tomonaga. The behavior of the distribu-
tion function near the Fermi momentum is investigated.

1. INTROX)UCTION

t
INK of the pioneering steps in the theory of large

systems of interacting fermions was made by
Tomonaga, ' who showed, using Bloch's method of
sound waves, ' that a one-dimensional assembly of
electrons can be described in terms of collective degrees
of freedom which behave approximately as bosons.
Such collective modes are also manifested in three-
dimensional systems. In the case of the electron gas
they are generally known as plasmons. However, the
nature of the excitation spectrum in one and three
dimensions is essentially different. The main difference
lies'in the fact that the excitation spectrum of the three-
dimensional system consists of single-particle excitations
as welI as of collective modes, while in Tomonaga's
one-dimensional model there are only collective modes. '
Therefore the Tomonaga model can, and in fact does,
lead to some results which are not valid in three dimen-
sions. However, it provides an instructive and clear
demonstration of the collective modes sustained in
interacting-fermion systems.

The work of Little4 on superconductivity in long
organic molecules has revived the interest in one-
dimensional models for practical reasons. Such mole-
cules behave approximately like one-dimensional
systems, and it seems that the Tomonaga model applies
to this case. This model was used by one of us' to in-
vestigate the possibility of Qux quantization in a one-
dimensional ring.

The operators of the Tomonaga model which create
eigenstates of the total Hamiltonian obey boson
commutation relations only when evaluated within a
subspace of functions, all of which have a filled core in
k space, i.e., have no holes in a certain interval

L
—k*, k*7, k*(ke, where ks is the Fermi momentum.
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Tomonaga argues that for suKciently weak long-range
interactions and for sufficiently low temperatures, all
the relevant states belong to this subspace. The main
purpose of the present paper is to check this assumption
tt posteriori for the interacting ground state at T=O.
To do this, we calculate the momentum distribution
function in the ground state and thereby determine to
what extent the states within the core L

—k*, k*7 are
actually filled. We employ the method used by Mattis
and Lieb' in their treatment of the Luttinger model. ~

This is an exactly soluble one-dimensional model,
similar to the Tomonaga model, but one which avoids
the approximations inherent in the latter by an artificial
distinction between particles of opposite momenta and
the introduction of an infinite sea of negative energy
particles.

The Tomonaga and Luttinger models are reviewed
brieQy in Sec. 2, and their relation is discussed.

In Sec. 3, the momentum distribution function in the
interacting ground state is calculated. The results are
similar to those obtained in the Luttinger model. ' The
behavior of the momentum distribution at k=kp is
also discussed.

2. TOMONAGA AND LVTTINGER MODELS

Consider a system of fermions on a line of length L.
Assuming periodic boundary conditions, we may write
the second quantized particle field in terms of plane
waves as

f(x) = (1/QL) Qc„exp(ik„sc),

k„=(2sr/L) n, n=0, +1, ~ ~ ~ (2.1)

where c„andits Hermitian conjugate c„arethe fermion
creation and destruction operators obeying the anti-
commutation relations

Ic„,c *}=8„„.
The spin index will be omitted, as the spin plays no role
in our discussion. Similarly, the particle density may be
expanded as

p(x) =tP*(sc)P(sc) = (1/L) gp„exp(ik„sc), (2.2)

6 D. Mattis and E. Lieb, J. Math. Phys. 0, 304 (1965).
7 J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).

418



MOM ENTUM D I STRIB UTION IN TOMONA GA MOD EL 419

where
pn= ~Cl Cl+n.

E

(2 3)

pn ~ Cl Cl+n)
l&—1/2n

pn = ~ C& Ct~n
l&—1/2n

(2.4)

The operators p„+ in general satisfy complicated
commutation relations, but Tomonaga showed that
these simplify considerably if it is understood that the
commutators are always to be evaluated acting on a
subspace S of functions in the neighborhood of the
noninteracting ground-state function. These functions
are specified by the absence of holes in a certain interval

[—e*, v*7, N*&ep, where nJ =(L/2m)k);. The low-

energy excited states of the noninteracting system are
characterized by the existence of particles and holes
near the Fermi level. The interaction causes virtual
transitions of particles and thus mixes into the unper-
turbed states complicated configurations of particles
and holes. Hopefully, if the force is not too strong and
its range not too short, the new states will still belong
to the subspace S. Within this subspace, the operators
p„+satisfy, for

~

m ~, ~

e'
~

&3m*, the following bosonlike
commutation relations'.

[p)) ) p)ee 7=I())),-)e )e
[p, p„-7=—~I)„,„,
[p)e ) p)ee (2.5)

Since our treatment is restricted to states with
particles and holes near the Fermi maximum, we can
approximate the free-particle energy which is quadratic
in the momentum by a linear expression

k'/2m = (1/2m) (kF+k —kF) '~(1/2m) (—kF'+2kkp) )

(2 6)

neglecting (k—kp)'. This results in the important
feature of the Tomonaga model that the excitation
energy of collective modes is proportional to the
momentum. Tomonaga showed that the expression

Following Tomonaga, we decompose the operators pn

into two parts:
pn=pn mpn+~

the kinetic energy of the 611ed Fermi sea, so that HK.E.
may be called the "excitation kinetic energy. " The
operators p n+, pn and pn+, p „arethe raising and
lowering operators of HE.E,, respectively.

Any two-body interaction of the form

G=iT' (8 /I) p „+p„—, (2.11)

where
8„=-,' 1 (1n+NJ„/2eg) . (-' 12)

The prime on the sum denotes that the term with m=0
is excluded, and S is the total number of particles.
Clearly, this transformation can only be valid provided
that J„)2eJ/E— (2.13)

for all e. Thus far there is only a restriction on the
strength of attractive interactions, while repulsive
interactions may be of any strength. In Sec. 3, we shall
derive more stringent conditions on the strength of the
interaction by requiring that the interacting ground
state belongs to S. The raising and lowering operators
of the interacting system ares

IHr = — p(x) p(x') J(~ x—x'
~) dxdx' —— p(x) J(0)dh

2 2

(2 g)

can be expressed in terms of the density-Quctuation
operators of Kq. (2.3) as

IJr 2 Q pxep ))J)e+—2PO JO 2poJ(0) ) (2 9)
n&0

where

J. J .=(1/L) f J(x) exp(i) x)dx (2.1.0)

For the Tomonaga model to be applicable, it is necessary
that the Fourier components of the interaction be
negligible for e)23n*, i.e., that the interaction be of
suSciently long range. Although all sums over n will
electively extend only up to a certain n~ 3m*, we shall
formally write them as sums over all m.

The full Hamiltonian HKF, +Hr+ const can be
diagonalized by a canonical transformation generated
by the operator

EEK.F..=(2m'/L)2(ep/m) P (p „+p„++p„p„)(2.2)
n)0

p +—g
—iGp +giG

=p„+cosh0„—.p„+sinh8„. (2.14)

is equivalent to within a constant to the Hamiltonian of
the noninteracting system. This constant is equal to

8 It is shown in Ref. 5 that if one takes the true quadratic-energy
spectrum, it is still possible to express the kinetic energy in terms
of the p„operators, but the expression also contains trilinear terms.
It may be shown that under conditions which justify Eq. (2.6),
the contribution of these terms is negligible, and one is left with
Eq. (2.7).

The basic features of the Tomonaga model are the
boson commutation relations (2.5) and the linear free-
particle spectrum. Both features are approximate. The
Luttinger mode16' shares these two features with the
Tomonaga model. In this model, however, they are
exact, since a linear spectrum is assumed from the be-
ginning, and since boson characteristics of the corre-
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relations:
[Pl»& Pln' j 22()nn, —'&

[P2n& P2n'j 22()n,—n. '&

/Pin& P2n' j (2.20)

SEA

sponding operators are achieved by assuming two kinds
of particles, one with the energy spectrum e(k) =k, and
the other e(k) =-k. The particle field is

(pi) I)'ei.)
I

= (1/V'L) P «p(2k. x) I I, (2 13)
)s4'2&& ke2n)

where cl, c2 are the destruction operators for the two
kinds of particles, which satisfy the usual anticom-
mutation relations

I esn& es'n' I =ess'& f)nn& (2.16)

and all the other anticornmutators are zero. The
Hamiltonian of the free system is

&&, = (v/»)f dsp"(s)supp(s)
0

=2)g(eln eln e2n e2n) kn& (2.17)

where p is the ordinary momentum operator, and 02 is
the Pauli spin matrix. To ensure a finite ground-state
energy, Luttinger postulates the existence of a filled sea
of negative energy particles as in the Dirac theory of
electrons. The two-body interaction is taken to be of
the form

H;„g=X dxdx'pg x p2 x' J x—x' . 2.18
0

Mattis and Lieb, in their treatment of the Luttinger
model, defined certain operators which, in order to
stress their similarity to the p„operators of the
Tomonaga model, we write as

(b)

FIG. 1. Comparison between the Luttinger and Tomonaga models.
For explanation, see the text.

4+(x) =(1/v'L) Q e. exp(2k. x),
n&0

4 (x) =(1/&I) g c„exp(ik.x),
n&0

(3.3)

with similar expressions for &I&+*(x) and )p *(x). The
function I(x', x) can be decomposed into four terms as
follows:

I(x', x) =I+++I+ +I +gI (3.4)

The operators py,„,pq, „andp~, „,p2,„arethe raising
and lowering operators for Ho. The full Harniltonian

may be written as a bilinear form in these operators
and diagonalized by a canonical transformation similar
to Eq. (2.11), but with different 0„.

The similarity between the two models can be
visualized graphically. Figure 1(a) shows the single-
particle spectrum of the Luttinger model, with the two
lines corresponding to the two kinds of particles. The
Tomonaga model assumes holes and excited particles
only near kp and replaces sections of the parabola
e(k) =k2/2222 by straight lines. Since there are no holes
and excited particles if

I
k

I
differs appreciably from

kp, the single-particle spectrum in those regions makes
no diGerence, and we can continue the straight lines
indefinitely, obtaining a spectrum identical to that of
Fig. 1(a), provided that 2) is chosen to be the Fermi
velocity 2)p=hkp/222 [Fig. 1(b)$.

3. MOMENTUM DISTRIBUTION

To calculate the momentum distribution in the
Tomonaga model, we introduce a Fourier transform
like that in Ref. 6, but instead of calculating 22(k„)—the
number of particles of momentum k„—we prefer to
start with the expression for the number of holes.
The number of holes is given by

I /2

1—22(k„)= I- 'dxdx' exp[-2'k„(x x') jI—(x', x),—LI2

(3.1)
where

I(x' x) =(0I 0(x')0*(x)
I 0)

= (0 I
e'~&P(x') &P*(x)e '~

I 0). (3.2)

Here
I 0) is the exact ground state,

I 0) is the non-
interacting ground state, and G is given by Eq. (2.11).
The particle field is separated into positive- and nega-
tive-momentum parts

pe,e= ~Ca, l Cs, l+ny s= 1) 2. (2 19) where

I++= &0 I &+( ') 4~*(*)
I 0) (3.5)

These operators satisfy the following commutation The expressions I+ and I + are easily seen to vanish.
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from which we conclude thatFor example,

I+ (x', x) = (1/L) g exp(ik„x')
n&0,m&0

&( exp( i—k„x)(0 I
c„c~*

I 0) (3.6)

(3 9)I++(x', x) =I (x, x').

I,et us now proceed to calculate I++. We de6ne a
"state" vector If.(x) ):

vanishes, since all the matrix elements in the sum
vanish because of momentum conservation. The re-
maining two terms are

I++=(1/L) p exp[ik„(x'—x)](0 I
c„c„*

I 0),
n&0

I- -= (1/L) 2 exp [ik.(x' —x) l(o I c.~-'
I 0& (3 7)

n&0

Since we have not introduced any external potential to
affect the symmetry of the momentum distribution, it
follows that

I f,(x) )= exp(i0G)f+*(x) exp( —i0G)
I 0), (3.10)

so that
I++(x', x) =(f (x) If (x)) =i

Differentiating with respect to 0, we obtain

(3.11)

(a/a~) If.(x) ) =i exp(i~G) LG, y+*j exp( —inG) I o).

(3.12)

(o I
~.~.* I o&=(0 I

~ .~ .* I o&,

To proceed, we need the following commutation
(3.8) relations:

fp„+,f+*j= exp( —ik„x)f+*(x)+ exp( ik„x—) (1/gL) g exp( —ik~x) c~*,
—n/2&1&0

= —exp( ik„x—) (1/gL) Q exp( ik(x—) cP,
0&l&(n)

fp„,tP ~(x) j= exp( —ik„x)(1/QL) g exp( —ik x)c*,
-n&«—ni2

=0

n&0

n&0

n&0

m&0. (3.13)

These commutation relations are rather complicated,
but they appear in Eq. (3.12) in the commutator

[G, f+*g, which acts on the state exp( —ioG) I 0). For
0 =1, this is the exact ground state of the system, and
we assume that it has no holes in the interval f—e*, e*g.
The e8ect of multiplying G by a positive number 0 is,
according to Eq. (2.12), to replace J'„bya fictitious

J„(0)which is related to J„by
(1+XJ„/2ep)'=1+XJ„(&r)/2ep (3..14)

The 6ctitious interaction is weaker or stronger than the
actual one for cr less or greater than one, respectively.

It is clear that if our assumption on the absence of
holes in the core f—e*, N*j holds for 0 =1, it certainly
holds for 0&0 & 1, and we assume that it is also valid for
values slightly greater than one. It is now straight-
forward to evaluate the right-hand side of Eq. (3.12).
The creation operators c~*, with

I
l

I
(e(e*, give zero

when acting on the state exp( —io.G) I 0), and the
commutation relations (3.13) reduce to

fp„+,P~*(x)j= exp( ik„x)f„*(x—),

fp 4+*(x)j=o (3.15)

Using Eqs. (2.11) and. (3.15) and the definition of

I f,(x) ), Eq. (3.10), one obtains from Eq. (3.12)

(~/~~) If.(&) &

= exp(ioG) I g' fe(m)/ej exp( ik„x)p„}—

which is a differential equation for
I f,(x) ), with the

boundary cond. ition

Ifo(x) )=4,*(x)
I
o).

The commutation relations (3.15) hold in the
t.uttinger model as operator identities, if one replaces
p„+,p„byp», p», and f+* by P&*. A differential-
equation equivalent to Eq. (3.16) arises there, and the
evaluation of I++ proceeds from this point exactly like
that of I(x, y) in Ref. 6, with the result

I,+=(0 I 4+(x')4+*(x) I O)

)& expt g (2/e) sinh'8„[cosk„(x—x') —1j}. (3.17)

The ground-state matrix element is

(0 I
P+(x') f+*(x)

I 0)= (1/L) Q exp fik„(x' x)$—
n&ng

(3.18)

We can immediately write down the expression for
I from Eq. (3.9), and we finally obtain

I(x', x)

=(1/L) Q Iexpfik„(x' x)g+ ex—pf —ik„(x'—x) j}
n&ng

&( expI g (2/e') sinh'g„.fcosk„.(x—x') —1)}, (3.19)
n~&0

&& exp( —iaG) I f, (x) &, (3.16) or, on replacing the summation over n by integration
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over k,

I(g', g) = exp[—Q(x—x') $2r
' cosk(x —x') dk

where
b
—'=4(22r/L) ' g sinh'g

n&O
(3.28)

where

From Eqs. (3.26) and (3.27) we obtain
(3.20)

n(0) = erf(kpb).

Q(g —x') = P (4/n) sinh'O„sin'~k„(x—x') . (3.21)
nyO

Inserting I(x', x) from Eq. (3.20) into Eq. (3.1), we

get

Hence, for n(0) to be close to unity, (kpb) must be
large. Using the asymptotic expansion for erf(x), we
write

n(0) ~~1—(2r'/'kpb) ' exp[ (—kpb)'j (3.29)

n(k) =1—(2rL) ' L/2

—LI2
dxdg' exp[—Q(x—x') 7

For nonzero values of k deep within the core, the major
contribution to the integrals of Eq. (3.25) still comes
from the region of small r, so that n+(k) is given by

&& exp[ik (x—x') j cosk'(x —x') dk'. (3.22)

Lj2

(2rL) -' dxdx' exp[—Q(x—x') j—LI2

X exp[ik(x —g') j cosk'(x —x') dk'= 1.

Thus

n(k) =(2rL) '
Lj2

—L/2

dxdx' exp[—Q(x—x') j

&& exp[ik(x —x') $ cosk'(x —x') dk'. (3.23)

This is simplified by noting that Q(0) =0, so that

n+(k) =-', erf[(kpak) bj.

Defining x =k/kp and using the same asymptotic
expansion for erf(x), we obtain

n+(k) = 2i —2i[m'/'kpb(1+)() ] ' exp I
—[(1~x)k pbbs'I.

(3.30)

Note that this approximation is very good, provided
that the magnitude of (1+K) is greater than or of order
unity. In particular, for k kp or x +1, the above
approximation for n+(k) is excellent, although the
approximation for n (k) fails. Thus Eq. (3.30) repre-
sents the momentum distribution everywhere except
for a narrow interval around kg.

From Eq. (3.29) it can be seen that the major
assumption of the Tomonaga model will be an excellent
one, provided that

Making the change of variable x'—+x—r, integrating
over k' and x, and going to the macroscopic limit Ã,
L~ ~, we finally obtain ol

(kpb) '»1,

1&)(4/kp') (22r/L) ' g n sinh'0 .

where

n(k) =n+(k) +n—(k), (3.24)

Using Eq. (2.12) and setting kp=2rlV/L, we obtain, in
terms of the interaction

n+(k) =2r '
OO

—'—1P))Q'I (1+1VJ /2ep) '/2+ (1+1VJ /2ep) '"—2I n

e(0) =(2/ ) f dr(e p(' —Q(sr)i/r) sicker. (3.26)
0

The main contribution to this integral comes from the
region r& kp '. We expand Q(r), an even function of r,
for small r:

Q(r) r'/4b' (3.27)

For the noninteracting system, Eqs. (2.12) and (3.21)
yield Q(r) =0, so that n(k) =0 for

~

k
~
)kp and

n(k) =1 for
~

k
~

&kp.
We are now interested in the value of n(k) deep

inside the core. Let us take k=0 for convenience:

(3.31)

It is interesting to note that this is exactly the condi-
tion given by Tomonaga for the applicability of his
method, but it was derived by him in a completely
diferent manner. Tomonaga argues that the state with
the highest excitation energy, which is compatible with
the ulled-core assumption, is the state in which'all
particles in the interval [~ n*

~, ~
np ~j are excited to

single-particle states in the interval [~ np ~, I np+n* [j.
He then requires that the average excitation kinetic
energy per particle be smaller than the excitation
energy in this special state and obtains the result of
Eq. (3.31). By this reasoning, Eq. (3.31) is only a
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J„=VR/L for
~

e
~

&N~=L/R

=0 otherwise.

As previously noted, it is essential for the Tomonaga
method that e~((eF, which implies

necessary condition, while having derived it directly
from the momentum distribution 'function, we have
also established its suf6ciency. Moreover, the condition
of Eq. (3.31) arises because we want the exponentials in
Eqs. (3.29) and (3.30) to be small, and this is our
primary requirement; while in the Tomonaga treat-
ment, the condition of Eq. (3.31) appears as it stands.
If it can be assumed that the error involved in the
Tomonaga method is proportional to the number of
holes in the core, then the error connected with any
acceptable value of the right-hand side of Eq. (3.31) is
actually much smaller than implied by Tomonaga's
argument.

To obtain a qualitative understanding of Eq. (3.31)
in terms of the strength and range of the two-body
potential, consider a slowly varying potential of
strength V and range E. The Fourier components of
such a potential can be approximated by

for all m. Note that this inequality is more restrictive
than the weaker inequality (2.13). By examining the
energies of the collective modes of oscillation of the
system, one can easily show that the weak inequality
(2.13) guarantees the stability of the system against
collapse under attractive forces. ' The content of in-
equality (3.35) is that it is necessary but not sufhcient
that the system be stable in order that the use of the
Tomonaga model be justi6ed.

We shall next discuss the behavior of the momentum
distribution function N(k) near the Fermi energy. For
definiteness, we shall consider the region k +k». Let
us mention once more that results qualitatively similar
to most of those derived below were obtained in Ref. 7
for the Luttinger model. From Eq. (3.24)

e(k) =»4+(k)+»4 (k).

As noted previously, the approximation of Eq. (3.30) is
very good for I+(k) for k~k», so that »4+(k) is an
analytic function of k in the neighborhood of k=kp,
and is nearly constant there. Its value at kp is, from
Eq. (3.30) with (4=+1,

I+(k) =-' —(4~"k»b) ' expL —(2k»b)'] (3.36)

R/»p))1, (3.32)
Any discontinuity in the momentum distribution
function at k=kp must come from the function

where»o is the average interparticle separation L/S.
On evaluating Eq. (3.31), one has to distinguish be-
tween repulsive and attractive interactions. In the
former case, the first term on the right-hand side of
Eq. (3.31) is dominant, while in the latter case it is the
second term which may become prohibitively large.
Keeping this in mind, we obtain, after some simple
manipulations,

(R/4», ) '»V/2~,

for repulsive interactions and

1—4(2»,/R) 4))
~

V
~
R/2~,»

(3.33)

for attractive interactions. Because of Eq. (3.32), this
last inequality may be written as

»,/R»
(

V (/2„. (3.34)

For repulsive interactions, one sees that the longer the
range, the stronger is the permissible interaction. There
is practically no limit on the strength of the interaction,
provided that the range is suSciently long. For attrac-
tive interactions, on the other hand, a shorter range
implies a stronger permissible interaction. In either case,
the range of the interaction must be much larger than
the average interparticle separation.

The inequality (3.34) expressed in terms of the
Fourier components of the interaction potential becomes

Q'(») =2 sinh'8(0)/»+0(1/»'), (3.39)

which implies

(3.40)

for large r. Therefore, the asymptotic behavior of
exp' —Q(») ]/» is

Q(») —h2 sinh'8(0) ln»+C+0(1/»')

exp/ —Q(») ]/»~e ~/»'+" (3.41)

co g
—Q(&)

e (k) =n. ' sin(k» —k)»d». (3.37)
0

The behavior of »4 (k) at k =k» is clearly determined by
the behavior of expt —Q(») ]/» for large». To determine
this latter behavior, we rewrite Eq. (3.21) for Q(»),
replacing summation over e by integration over k:

Q(r) = f (4/3) ~inh'g(g) sin'(-hr)dg. (3.38)
0

The derivative of Q(») with respect to» is

g'(r) =3f sinh'g(g) singrdh.
0

Integrating by parts three times and keeping in mind
that J(k) and hence sinh'0(k) vanish for large k, we
6nd

X
( J.~/2e»((1 (3.35)

QA similar inequality with the same content arises in the
Luttinger model.
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'n(k) I

~l
I
I
I
I

kF
ha 0

n(k)

jLC I

;L
„

kF

n(k)

)LP I

FIG. 2. The possible patterns of behavior of N(k) near k=k».

where
X=2 sinh'8(0) &0. (3.42)

Note that X can only equal zero when Jo, the space
integral of the interaction potential, vanishes. In the
general case, 'A is positive.

Given the behavior expressed in Eq. (3.41), we

rewrite u (k) in the form

n {i)=w 'f {expt—Q{r)]/r{ sin{k~ —k)rdr
0

+(e-'/~)
~ sin(k» —k) rdr

(3.43)
N

sgn(k» —k)
~

k» —k ~"(e /s. ) (sinu/u'+") du.
)r ~s yr

where S is some large number, independent of k, such
that exp) —Q(r)7/r may be replaced in the interval

PX, eo7 by its asymptotic form The .first term is linear
in (k» —k) near k=k» In t.he second term we sub-
stitute (k» —k)r=u and write it as

is also continuous there, we conclude that the dis-
tribution function is continuous at the Fermi energy
regardless of the strength of the interaction. The value
of e (k») is zero, so that N(k») =u+(k»), which is
given by Eq. (3.36). Taking the derivative of Eq.
(3.45), we find that the derivative of the distribution
function is infinite if ~&1. In this case the behavior of
n, (k) at the Fermi energy is determined by the second
term of Eq. (3.45), which dominates for small I k» —k ~.

For X)1, the derivative is finite, and the distribution
function is linear at k =kp. There is practically no trace
left of the Fermi surface. For attractive interactions,
the condition of applicability fEq. (3.35) 7, combined
with Eqs. (2.12) and (3.42), implies X(1, so that, in
this case, the distribution function has an in6nite
derivative if the Tomonaga model is at all applicable.

Lastly, we consider the special case in which X=0.
According to Eqs. (3.45) and (3.46), the distribution
function now has a discontinuity" at the Fermi energy
of magnitude e ~. The quantity C, defined implicitly in
Eq. (3.40), is determined as a function of the interaction
in the Appendix. In the general case, C is given by

P ~ sinh~e P —sjnh~o 0 cosP gP. 3.4
0

For the case
X=2 sinh'8(0) =0,

in which we are interested,

(3.44) C=2 Lsinhs8(k) /k7dk &0 (3.48)

It is easy to show that Eqs. (3.43) and (3.44) imply for
kp"

C,(0) = se- , (3.46)

where C is the same constant as in Eqs. (3.40) and
(3.41), will be of interest to us.

The behavior of the distribution function e(k) =
n+(k)+I (k) at the Fermi energy is now completely
determined. We consider first the general case for which
X t Eq. (3.42)7 is positive. According to Eq. (3.45),
u (k) is a continuous function of k at k=k». As u+(k)

I Strictly speaking, Eq. (3.45a) is correct only for X(3. For
higher X, new terms appear whenever ) passes an integer 2n+1.
These terms cannot be neglected with respect to ) k» —k )X. We do
not, however, go into such details, because for ) &1 the leading
term is linear and all other terms can be neglected. The expression
(3.45b) for X=2n+1(n&1) is also modi6ed, but the behavior at
k=kp is again determined by the dominant linear term.

rr-(k) = (k» —k) Ci(X)+ sgn(k» —k)
~

k» —k ~'Cs(X),

X~2m+ 1 (3.45a)

u-(k) =(k» —k)C, (X)+(k,—k) ln
~
k,—k ~,

(3.45b)

where Ci(X), Cs(X) depend on X but not on k. The
quantity

Thus the magnitude of the discontinuity at the Fermi
energy decreases with increasing interaction strength.

We have found various patterns of behavior of the
distribution function near the Fermi energy, which are
illustrated in Fig. 2. It is worth pointing out, in con-
clusion, that the significance of X may be understood on
physical grounds. It indicates that at the Fermi surface
it is only the very-long-range part of the interaction Jo
which counts.

4. SUMMARY

In Sec. 2 we reviewed and compared the Tomonaga
and the Luttinger models. The conclusion is that the
Luttinger model is not as unphysical as it may appear
from first sight. Suitable interpretation shows that it is
essentially equivalent to the Tomonaga model.

In Sec. 3 we checked the basic assumption of the
Tomonaga model. The number of holes in the core was
found to be negligibly small, provided that Eq. (3.31)
is satisfied. Since the right-hand side of Eq. (3.31)
appears in an exponential, the condition is in fact much
weaker than implied by the "much less than" sign,
The forces which are generally believed to be involved

"This possibility was not pointed out explicitly in Ref. 7,
although it is implied by formula (77) of that paper.
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P.(k) —X(0) cosk]k 'dk T(r—), (A4)

whereACKNOWLEDGMENT

in superconductivity seem to be of such a strength and Using the relationship
range as to satisfy this condition. Although the deriva-
tion is valid only for the ground state (at 7=0), we can
safely assert that thermal excitations at suKciently low
temperatures will have a negligible eGect on these
results. It thus seems that, as far as the strength and and Eq. (A3), Eq. (A2) may be written
range of the interaction are concerned, the application
of the Tomonaga model in Ref. S is justified. Q(r) =2 stnh'd(0)»r

In conclusion, we point out that the core L
—I*,rt*]

is not completely 6lled, and it is an open and interesting
question to estimate the eGect of a few holes present in
the core.

The authors are grateful to Professor F. Bloch for
many helpful discussions.

APPENDIX

r(r) = f s '[x(s) —x(0)j coskrss.
0

Integrating by parts twice, we 6nd

(AS)

It is convenient to rewrite Q(r), given in Eq. (3.38), as

The quantity C is defined in Eq. (3.40) by the
asymptotic behavior of the function Q(r) for large r: 2'(r) ~o(1/r')

Q(r) - 2 sinh'(l(0) lnr+C+O(1/r'). (A1) for large r Com. bining Eqs. (A4) and (AS) and com-
paring with Eq. (A1), we obtain

Q(r) = )t(k) (1—coskr) k 'dk— (A2)
C= k'P k —Xo coskdk.

0

X(k) —=2 sinh'e(k) .
Using Eq. (A3) to express this in terms of 0(k), one

(A3) obtains Eq. (3.4S) of the text.
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An equation-of-motion formalism is used to give a nonlinear spin-wave treatment of fcc solid ortho-
hydrogen. The elementary excitations in ortho-hydrogen are librational waves and can be treated in a
manner similar to spin waves in magnetism. The excitation spectrum, long-range order, and ground-state
energy are calculated. It is found that the spin-wave excitations have a nonvanishing effect on both the
long-range order and the ground-state energy. But, because of a large energy gap, the spin-wave-theory
results deviate only slightly from their molecular-6eld values.

I. INTRODUCTION

t 1HE cooperative orientational ordering of ortho-H2
J .molecules on a rigid fcc lattice has been described in
terms of a molecular-Geld approximation by Raich and

j'ames. ' ' This treatment was based on a knowledge of
the molecular equilibrium orientations, as found from
the ground state of a system of classical quadrupoles on

t J.C.Raich and H. M. James, Phys. Rev. Letters16, 173 (1966).' H. M. James and J. C. Raich, Phys. Rev. 126, 649 (196'/).


