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Calculation of the Superconducting Transition Temperature
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An explicit expression is derived for the superconducting transition temperature in an isotropic super-
conductor. The calculation includes three improvements over previous work. Firstly, strong-coupling effects
are included; secondly, both normal and umklapp contributions are evaluated in detail in calculating the
electron-phonon interaction; and thirdly, a more realistic approximation to the lattice is obtained by
including a Coulomb pseudopotential and correcting the jellium ionic plasma frequency with the use of the
measured sound velocity. The theory is applied to the case of the lanthanum selenide system, in which
one can vary the electron concentration independently of other material parameters and measure the
superconducting transition temperature as a function of this variation. The theory accounts very well for
the observed transition temperatures over the who1e measured range from 1 to 10'K.

and experiment. The description of this system and
its various desirable properties are described in the
following paper. ' In the present paper, with the goal
of a good experimental test in mind, I will proceed to
describe a calculation which allows a close comparison
with the functional behavior of T,.

INTRODUCTION

i 'lHERE have been a few moderately successful
J.attempts in the past at the quantitative deter-

mination of the superconducting transition tempera-
ture (T,) in metals. ' 4 These calculations, however,
have been more of an order of magnitude or, at best,
a factor of 2—3 estimate rather than a precise quanti-
tative calculation. The main reason for this is that
the detailed knowledge of the electronic and lattice
properties necessary for a good calculation is available
only for the elements, which means that one must
perform a calculation yielding a single number (i.e.,
T, of the element in question). Since there are, in
general, unknown or not reliably known constants in
any many-body calculation, a single number is not
a good check. on the theory. What one really needs is a
system where one parameter of interest may be varied
independently of the others (or at least relatively
so) in order to study the functional dependence of
T,. The alloy systems in which this can be done are
usually quite complicated and the present theory has
not been adequate for calculating these.

The discovery that the lanthanum selenide system' 7

has particularly simple electronic properties and a
high T, has given us a material which is simple enough
to calculate the properties of interest but allows ex-
tensive and quantitative comparison between theory

CALCULATION OF T,

The starting point for the calculation is the work.
of Morel and Anderson, ' in which the Eliashberg gap
equation is solved, including both the electron-phonon
attractive coupling and the Coulomb repulsion. They
then calculated the electron-phonon and Coulomb
repulsion coupling parameters using a jellium model
of a metal. The results obtained for T, from this calcu-
lation are of the right order of magnitude but do not
exhibit real quantitative agreement with experiment.

There are three improvements that must be made
in the calculation. Firstly, strong-coupling corrections
must be included. In fact, for the calculation of T„
these corrections are not negligible for materials with
T,)0.5'K. Secondly, Morel and Anderson calculated
the electron-phonon coupling constant X for monovalent
metals by considering only normal processes, and for
polyvalent metals by considering only umklapp proc-
esses over one zone. These assumptions greatly under-
estimate the proper contribution and, in fact, predict
X&-,'. The present calculation will consider each zone
in the reciprocal lattice separately and calculate the
contribution of each zone over the part of the Fermi
sphere appropriate to that zone. Thirdly, corrections
to the jellium approximation will be made by replacing
the Coulomb potential with a pseudopotential contain-
ing a core-repulsion term and by replacing the plasma
frequency by the Debye frequency in the jellium
phonon spectrum.

The inclusion of the strong-coupling corrections has

*On leave for 1967-68 at the Department of Physics,
University of Indiana, Bloomington, Ind.' David Pines, Phys. Rev. 109, 280 (1958).' J. M. Ziman, Phys. Rev. Letters 8, 272 (1962).' P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962);
Pierre Morel, J. Phys. Chem. Solids 10, 277 (1959).

4 J. C. Swihart, D. J. Scalapino, and Y. Wada, Phys. Rev.
Letters 14, 106 (1965); and Low Temperature Physics (Plenum
Press inc. , New York, 1965),VoL 9, Part A, p. 607; D. J.Scalapino,
Y. Wada, and J. C. Swihart, Phys. Rev. Letters 14, 102 (1965).' R. M. Bozorth, F. Holtzberg, and S. Methfessel, Phys. Rev.
Letters 14, 952 (1965).' G. L. Guthrie and R. L. Palmer, Phys. Rev. 141, 346 (1966).

7 P. K. Seiden and F. Holtzberg, in Proceedings of the Tenth
International Conference on Low-Temperature Physics, Moscow,
.1966 (Proizvodstrenno —Izdatel'skii Kombinat, VINITI, Mos
USSR, 1967).
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recently been simplified by the work of McMillan. '
He has obtained a new solution of the gap equation
which gives the relation for T, as

surface, and therefore
I
k

I
=

I
k'

I =ks, we can write
y=sin-,'8, and Gnd Q'=4k&'g'. Then using Eqs. (3)—(5),
Eq. (2) becomes

T,=8~ exp
(1+i~)

(X—ts*—((o/(og)) Xtt*)

xxsr tt&

(,+,), I, +, Ix x,

where eD is the Debye temperature, p* is the Coulomb
repulsion of Morel and Anderson, and or and co~ are
an average phonon frequency and the Debye frequency,
respectively.

Using this equation for T, reduces the problem
to obtaining a more accurate calculation of the electron-
phonon coupling constant I,.

ELECTRON-PHONON COUPLING CONSTANT

From Morel and Anderson' the electron-phonon
coupling parameter is

esr Z 2g Q2
E(0) — V'(Q) sin8 d8, (2)

gm 4M cd
where X(0) is the density of states at the Fermi
surface, cVis the number of ions/cc, M is the ionic mass,
Z, t is the ionic charge, Q is the momentum transfer
k —R', a@ is the corresponding phonon frequency,
V(Q) the Fourier transform of the electron-electron
potential, and 0 is the angle between k and k'. This
equation gives the contribution of both normal and
umklapp processes. The integral is to be evaluated
under the restriction that the momentum change in
the scattering of electron of wave number k to k'
satis6es the equation

jt—k'—=Q =q+K,
where q is the phonon wave number and K is a recip-
rocal lattice vector. This equation determines the limits
of integration 0~ and 0 . A finite reciprocal lattice
vector K denotes an umklapp process, whereas K=O
gives the normal contribution. The total coupling
constant is given by

x= Qxx,

where each XK is a term of the form of Eq. (2).
Taking V(Q) as the Fourier transform of the screened

Coulomb potential, we have

V(Q) = —47rer/Qse(Q) = —4s.es/(P+k s) (4)

where e(Q) =11k,s/Q' is the dielectric constant and
k.'=4sre'1V(0) is the Fermi-Thomas screening constant.
The jellium ionic plasma frequency cog is equal to co,

by the periodicity of the lattice and is given by

(4srZ2e&Q/~) EV&/(0&+k 2) j ($)

Noting that the scattered electrons are at the Fermi
' W. L. McMillan, Phys. Rev. 167, 331 (1968).

where a'=k, '/4ke'. For normal processes q'=4ks'x',
and&P

XOM g~Xp=, , y dx. (7)
p X+tt

The integrals of Eqs. (6) and (7) are easily evaluated
for a spherically symmetric zone structure. Since all
anisotropy has been neglected in obtaining the solution
to the gap equation, as well as in deriving Eq. (6),
it is consistent to also neglect it here. The first step,
then, is to use the spherical zone approximation"
and replace the actual Brillouin zone by a sphere
containing the same volume as the actual zone. The
radius of the sphere is the Debye wave vector q&.
The reciprocal lattice" then appears as Fig. 1(a).
We can now eliminate the remaining anisotropy of the
reciprocal lattice by replacing the distribution of
Brillouin zones in Fig. 1(a) by a spherically symmetric
distribution as shown in Fig. 1(b) . The spherical shells
have midpoints at a distance E from the center and
are of thickness 2'. The proper phonon density of
states at any momentum transfer Q is assured by a
weighting function (the fractional solid angle calcu-
lated below) to be inserted in the integrand of Eq. (6) .

We can calculate this weighting function in the
following manner. The solid angle subtended by a
given Brillouin zone (Fig. 2) at a momentum transfer

Q is

sine dg dP= 27r(1+cos8 ),
p

where 8 and P are the usual spherical coordinates.
Now the total solid angle is 4m, and if we denote the
number of zones at distance K by p& we And that
the fractional solid angle m of k space in which a
momentum transfer Q with a reciprocal lattice vector
E can occur is

5'f = s ptr (1+cosH~) .

Eliminating cos0 by the cosine law for triangles, m

becomes

~=-,'p~l 1+(z —Z —Q )/2zQ].
The limits yK~ and gK are, in the spherical zone

'0 Morel and Anderson used an inconsistent expression for co,~

I see P. G. deGennes, Sgperoonductseety of 3IIetals artd Alloys
(W. A. Benjamin, Inc. , New York, 1966), p. 104j and therefore
Eq. (7) di6ers from their result.

"H. Jones, in Baldblch der I'hysik (Springer —Verlag, Berlin,
1956},Vol. 19.

"The figure shown is for a {100jplane in a simple cubic lattice
with i't in a (100l direction.
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model of Fig. 1(b), replaced by zz+ and zz, where

err~ = (IL+q&) /2kp.

The remaining step requires the replacement of q2

in Eq. (6) by its two di-memsiowat average over the actual
range of g's encountered since now E and q are colinear
in the new spherical zones, i.e., the absolute value of
Q is

) q ~
& )

K (. Therefore, we must average q' over
the spherical shell of radius Q in zone E.

QD QD

(q')= q'dq q dq
x—Q X—Q

= lLqn'+ (IL —Q) 'l. (9)

Finally, defining IL =
b(qz» fi= (4Z) —"'=qn/2', where

FLG. 2. Coordinate system
for calculation of the fractional
solid angle (weighting func-
tion) subtended by a given
zone g at momentum transfer

ZONE K

CENTRAL ZONE

ta)

$llri CENTRAL BRILLOUIN ZONE
ihh% NEAREST NEIGHBOR BRILLOUIN ZONE
==:NEXT NEAREST NEIGHBOR BRILLOUIN ZONE

Fro. 1. Reciprocal lattice. (a) shows a section of the reciprocal
lattice including the central Brillouin zone, one of the PI nearest
zones at distance E'I, one of the p2 next-nearest zones at E'2, and
the Fermi sphere (unshaded region) . (b) is the equivalent isotropic
zone scheme used with the weighting function m.

which results in an additional factor in Eq. (10) of
(1—ny'/fb')'. The second modification involves the
use of the actual phonon velocity of sound rather than
the plasma velocity of sound. The plasma velocity of
sound entered through Eq. (5). In the low-frequency
limit (q—+0),

S~' =47rZ'e'Jt'//k, 'M. (12)

One then corrects for the actual sound velocit b
~ ~

c'y y
multiplying Eq. (10) by a factor o'= S '/S' where S
is the measured velocity of sound. This correction
gives us the correct magnitude of the phonon frequen-
cies involved, but keeps the simple jellium for f

e dispersion relation, determined by the factor
(q'+k, ') '. In reality, of course, one must use (r&'=

Z is the valence, " and substituting Eqs. (8) and (9)
into Eq. (6), we find

PirgS )( br+

4A„'5 K— X2 g2 2

2a
X

I,b+, ,)
tb'-( b-x)'j bx (I)

4

NON-JELLIUM APPROXIMATIONS

There are two further improvements we can make
to obtain a more realistic approximation to the lattice.
The first is to take a pseudopotential for V(Q) in
Eq. (2) which includes a core-repulsion term. This
replaces Eq. (4) by"

V(Q) = —L4~e'/Q'e(Q) ]L1—n(Q'/qi)') j, (11)
"This de6nes the valence generally as the number of conduction

electrons per Brillioun zone and is consistent with the usual
definition for elemental metals (see Ref. 11).

I4a=PgD2/4~e'Z~g, where P is the usual pseudopotential con-
stant. See W. A. Harrison, I'seudopotentials in the Theory of
Metals (W. A. Benjamin, Inc. , New York, 1966).

.3

0 1 1 I 1

2 3 4 5xlO~'

n (I/cc)

FIG. 3. Electron concentration dependence of the supercon-
ducting coupling parameters for the case of lanthanum selenide.
Results are shown for both the normal () 0) and umklapp ()U)
contributions to the electron-phonon interaction. The dashed
curves show the Morel-Anderson results (Ref. 3) f th
e ers. e curve labelled ) gives the total electron-phonon
interaction. The upper two curves show the screened Coulomb
repulsion (p*) and the net-interaction parameter (X~).
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FIG. 4. Superconducting transition temperature of lanthanum
selenide as a function of conduction-electron concentration.

S~'/Sz, ', where Sz, is the longitudinal sound velocity,
for the normal processes Xs and o, '= S„'/S„', where

S, is the average sound velocity over the longitudinal
and two transverse modes for the umklapp processes.
With these additions the final expression for the
umklapp terms (EWO) becomes

p~g2~ 2 Xx+

4I(b

x' 2a'

(x2+g2) 2 b2+ (~$ x) 2'
1+

with
&&4&'—( & —x)'jt-1 —( /&')x'j' dx (»)

x~+ =&(~~1).

The normal contribution is

g2 A
Xp =0-1.' 1- —x' dx (15)

x2+g2 $2

There is the additional condition on the upper limits
that gK~& 1. Therefore, if ~+ or b) 1, it is to be
replaced by 1. These integrals can be evaluated ana-
lytically, but the resulting expression is quite com-
plicated and sheds no further light on the behavior of
P, so they will be left in this form.

The contribution of these two terms to the electron-
phonon interaction is shown in Fig. 3, where the
normal contribution Xp and the umklapp contribution
X~ Lthe sum of Eq. (13) over all E~Oj are plotted

IO

a {A)

FiG. 6. Dependence of transition temperature on lattice param-
eter and electron concentration at axed valence.

as a function of electron concentration. "For compari-
son the results of using the Morel-Anderson expres-
sions' are shown. The results of the present work are
quite different. The reason is that the dominant effect
is the change in overlap of the Fermi surface with the
various Brillouin zones, which was not considered by
Morel and Anderson. Since they only considered A, p

and XU separately, assuming that one or the other
strongly dominated, it may be more proper to compare
their results to X(=As+A~), which is also shown in
Fig. 3. This curve still differs appreciably from Morel-
Anderson.

The upper two curves in this figure show the screened
Coulomb repulsion p* LEq. (16)j and the total inter-
action parameter P z, which is just the inverse of the
exponent in Eq. (1) and is essentially a net super-
conducting coupling constant. This latter curve shows
some rather interesting behavior in that below 10't e/cc
the slope of the curve decreases, and a small bump
appears before Xz proceeds to decline again below
about 5&&10" e/cc. This peak, which is even more
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FlG. 5. Dependence of transition temperature on valence.

Frc. 7'. Dependence of transition temperature on eGective mass.

"The parameters used in evaluating Eqs. (13)—(15) are those
suitable to lanthanum selenide (see next section and Ref. 8). As
discussed in the last section of this paper, it is not possible to
display a simple curve demonstrating all the implications of these
equations.
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striking on the curve for X, arises from the'change in
slope of the Ao curve which occurs when, anally, the
whole Fermi surface lies within the central Brillouin
zone, and the disappearance of the umklapp contri-
bution which occurs when the Fermi surface ceases to
overlap any higher-order zones. The bump is atten-
uated somewhat on the Xz curve since in the region of
electron density where the bump occurs p* is also
beginning to increase rapidly. This bump has not yet
been observed experimentally. The measurements dis-
cussed in the next section extend down to only 1'K
and therefore above the region of the bump (see Fig. 4) .

EA

2

O

IOO

IO—

03 IO

LANTHANUM SELENIDE

We are now prepared to calculate T, directly from
Eq. (1). Lanthanum selenide will be used as a test
case since it appears that it is a fairly simple super-
conducting system and allows a measurement of T,
as a function of electron concentration. 8 The study of

l00

Fro. 9. Dependence of transition temperature on velocity of
sound. The solid curve takes into account the velocity of sound
dependence of ) only. The dashed curve includes the dependence
of en on ~n (and thereby on the velocity of sound).

then ending S and n by itting T, and the slope of T,
versus e at the point m=5&&10'r e/cc. The results
are in Fig. 4, where the theory is shown as the solid
line along with the experimental points. The values
obtained for the parameters" are

0.=0.08, S=43X10' cm/sec.

.005 ~Ql ,05 O. l

We cannot say much about the value for 0. since no
pseudopotential calculations have been performed for
a material such as lanthanum selenide. It is a reason-
able value however, being within 10j& of the value
calculated for the simple bcc metal, sodium. The value
for 5 is also very reasonable for the velocity of sound
in a solid.

DISCUSSION
FIG. 8. Dependence of transition temperature on the pseudopo-

tential core repulsion.

this functional dependence provides a more reliable
comparison with experiment than the single point
obtained in predicting T, for an element.

In order to determine T, we must know" the electron
concentration e, band mass m~, SL,, S, , n, OD, the
lattice parameter +, and the crystal structure. The
Coulomb repulsion as well as X can be calculated from
these parameters. "It is given by Morel and Anderson'
as

Is*=Is/(1+Is inEp/keg)),

where Eg is the Fermi energy and

The expression for X is too complex for one to deter-
mine easily by inspection the behavior of T, as a func-
tion of its various parameters. To get a feel for the
behavior of the theory, we can calculate T, as a func-
tion of the various parameters and then present the
curves of these results. This does not necessarily
illustrate all the possible situations since the curve of
T', as a function of parameter 1 can in principle be a
strong function of the constant values chosen for
parameters 2, 3, etc. Nevertheless, plots of this kind
will certainly give some insight into the behavior of T;.
The curves presented in Figs. 5—9 are calculated using
the parameters given in Table I (exclusive of the

p = -'a' ln(1+a'/a') (17) Tzsz,z I. Values of the parameters used to calculate the functional
dependence of T..

All the above parameters except a, S~, and S, have
been experimentally determined. ' These latter param-
eters are obtained by erst assuming Si,——S, = S and

I=10"e/cc
Z=2

m~ ——1 electron mass

"These arameters are sufhcient to determine all the quantities
in Eqs. (13 —(15). qD and & are determined by ao and the crystal
structure (see Ref. 11), k is found from qn and k„=(3s'I)'Ie,
and a' is obtained from ks' and ks'=4ne'N(0) =1&re'asks/ks."The behavior of ) and p,

* for these parameters was discussed
in the previous section and is shown in Fig. 3.

'8 The measured values (see Ref. 8) of the parameters used in
the calculation are my=1. 3, @0=9.049 L, and eD ——193'K. The
crystal structure is bcc.
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parameter being varied). From these curves one sees
that any parameter may be of great importance (i.e.,
there is a region of large slope in the curve for all
parameters), and one cannot easily make any general
statements of the importance of one parameter or the
other without a careful evaluation of all parameters
for the substance in question. It is clear, however,
that for lanthanum selenide the parameters to which
T, is most sensitive are a and Z.ts A change of 10/o
in a causes a change of about 20% in T.. For the super-
conducting elements, on the other hand, it would

appear that ao, nag, and 0. are of greatest importance.
Regularities in the dependence of superconductivity on
material parameters were pointed out by Matthias''
about 10 years ago. In particular, the valence depend-
ence he observed is in good agreement with that
shown in Fig. 5 and the dependence on lattice param-
eter" is accounted for by the curve in Fig. 6.

'4 For LosSe4, Z=2, and r4=5.4X10" e/cc Zva. ries as
2N/t4(LasSe4) across the lanthanum selenide series (see Ref. 3).

'0B. T. Matthias, in Progress in Jozv Temperature Physics,
edited by C. J. Gorter (North —Holland Publishing Co.,
Amsterdam, 1957), Vol. 11."Matthias and Pines discuss the interelectron spacing r, which
is just rl =op/Z.

In closing, it is interesting to observe that in spite
of the simplicity of their approximations, Morel and
Anderson' did obtain, for the most part, reasonable
values for T,. This is due to the fact that the two
largest corrections to their calculation tend to cancel.
They underestimated X but used the weak coupling
equation

T, eD expL —1/(X —l4*)],
which overestimates the value for T, for a given X.

The agreement obtained here in the lanthanum-
selenide case should give us enough confidence to try
to apply the theory to other systems. Also, it is clear
that further improvements, such as taking into account
more complicated band or phonon structures, can be
made.
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Superconductivity in the Lanthanum Selenide System
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Lanthanum selenide has been found to be a very good system in which to investigate the dependence of
superconductivity on various material parameters, since in this system one can vary these parameters in
a relatively independent manner. This investigation reports on the behavior of the superconducting transi-
tion temperature as a function of electron concentration and on measurements of some relevant electronic
and lattice properties of the system. Crystallographic, Hall-eBect, Pauli-susceptibility, and specific-heat
measurements have been made and were found to be in accord with a model of lanthanum selenide as a
free-plectron-like metal. Using this model, the electron-concentration dependence of the transition tempera-
ture was calculated and found to be in excellent agreement with experiment over the whole experimentally
measured range of 1 to 10'K, corresponding to a variation of electron concentration between 0.8 and 5.4)&10»
electrons/t'cc.

INTRODUCTION

ANTHANUM selenide (LasSe4) has been shown to
~ be a superconductor with a transition temperature

of 10'K.'2 This material has the thorium phosphide
crystal structure and is isostructural with gadolinium

selenide, which has proven to be a very fruitful system
for magnetic studies 3 Since we believed that the

*On leave for 1967—68 at the Department of Physics, University
of Indiana, Bloomington, Ind.

~ R. M. Bozorth, F. Holtzberg, and S. Methfessel, Phys. Rev.
Letters 14, 952 (1965).

'P. E. Seiden and F. Holtzberg, in Proceedings of the Tenth
International Conference on Low-Temperature Physics, 3foscow,
ggg6. (Proizvodstrenno-Izdatel'skii Kombinat, VINITI, Moscow,
1967).

3 F. Holtzberg, T. R. McGuire, S. Methfessel, and J. C. Suits,
J. AppL Phys. 35, 1033 (1965).

electronic properties which made the magnetic system
of interest would also be present in the superconducting
one, we decided to carry out a systematic investigation
of this system. We had hopes that this investigation
would provide an extensive quantitative check on the
theory of superconductivity. As we will show here this
has indeed been the case.

The main properties that make lanthanum selenide
an unusually interesting system are the following.
Firstly, the two materials La3Se4 and La2Se3 have the
same crystal structure and lattice parameter. Secondly,
one can prepare a continuous series of solid solutions
between these two end members without any change in
crystal structure or lattice parameter. We may write
the composition as Las,L j,Se4, where L j denotes a
vacancy and 0&a&-s'. LasSe4 is metallic while LasSes


