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We develop a detailed analysis of the metastable quenching problem encountered in our recent level-
crossing measurements in the n =2 state of atomic hydrogen. The analysis allows calculation of a previously
unaccounted systematic correction to the value of the Lamb shift 5 derived from these measurements.
This correction, together with refinements in the calculation of S from a measured crossing, decreases our
value to $=1057.86&0.10 MHz. Within experimental error, this value agrees with the original result as
measured by Lamb and collaborators. In addition, the analysis allows the calculation of a new upper limit
to the parity impurity amplitude in the 2S state of atomic hydrogen, namely ~ao~'&8X10 ', at zero
magnetic field.

I. INTRODUCTION

ECENTLY, we reported a remeasurement of the
Lamb shift S in the e= 2 state of atomic hydrogen

by a level-crossing (LC) method. ' The LC value of 8
exceeds the most recent theoretical value' by about 5+2
parts in 10'. Also, it exceeds the original Lamb value' by
about 3&2 parts in 104. The former discrepancy relates
to questions on the validity of quantum electro-
dynamics. 4 The latter relates indirectly to questions
regarding the value of the fine structure constant. '

These discrepancies amount to only a few tenths
of one percent of the linewidths of the metastable
quenching resonances measured in both the Lamb and
LC experiments. Clearly, in order to achieve such high
resolution, a rigorous analysis of the specific metastable
quenching problem encountered in each experiment is
needed. Lamb has developed the basic theory, and
derived the necessary detailed analysis of specific
quenching e6ects observed in his experiments. ' We have
outlined the application of the Lamb theory to the LC
experiments in our previous work. ~ However, we derived
only an approximate analysis of the observed meta-
stable quenching, as various estimates of possible sys-
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tematic effects were small, indicating that substantial
detail was unnecessary.

In this paper, we extend our previous analysis of
specific quenching effects observed in the LC experi-
ments to include a detailed treatment of "accidental"
quenching of the metastable beam by stray electrostatic
fields, and by motional electric fields generated when the
beam passes through a magnetic field. Initial motivation
for this work was provided by an attempt to calculate
the sects of a possible parity impurity in the meta-
stable state. However, as the calculation revealed a new
systematic correction to the LC value of 5, it became
clear that a detailed analysis of the LC quenching
problem was necessary. We present that analysis here,
not only to calculate the new correction, which recon-
ciles the LC value of 8 with the original Lamb value,
but also to provide a firm basis for a rigorous analysis
of present and continuing experiments employing tech-
niques developed during the LC work. Results derived
here provide a calculational method for treating all
systematic effects thought to be important in the LC
experiments and related work, and wi]l be used in future
publications in this series.

II. EXPERIMENTAL METHOD

A. General Remarks

The LC experiments have been described previ-
ously. ' We produce a beam of hydrogen atoms in the
metastable 2'S~~& state, and look for a resonant decrease
of metastable intensity as the result of inducing
2S —+ 2I' transitions by application of a static electric
field. The observed metastable quenching, plotted
against magnetic field, shows a characteristic broad reso-
nance at the P(2sstts, rg~ ———1) e(2'Prts—, rrtg +1)——
crossing points near 574G. Ke denote the observable
crossings in hydrogen by H(538) and H(605), which
correspond, respectively, to crossings between hfs
(hyperfine structure) levels P(nts =0)—e(nts =+1) at
5386, and P (rtts = —1)—e(rrts =0) at 6056. Location of
a crossing point to 1 part in 104, together with an
extrapolation to zero field along the Zeeman lines, ' de-
termines 8 to the desired 0.1 MHz precision (i.e., 1 part

' S. i. Brodsky and R. G. Parsons, Phys. Rev. 163, 134 (1967).
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FIG. 1. Diagram of beam trajectory through transition region.
The xy plane is the midplane of the Helmholtz coil. The Zeeman
magnetic field II is applied along the s axis, which is lined up with
the machine (geometric) axis. If the beam axis is "tilted" at angle 8
to the s axis, then a motional electric field Ez is generated.
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in 10'). This requires that the resonance line be resolved
to about 1 part in 10' of its FWHM (full width at half
maximum) .

The LC experiments can be described generally as
Lamb experiments at zero frequency. However, there
are several important differences in the methods em-

ployed which substantially change the detailed quench-
ing analysis. First, by a state selection process, we pre-
pare the metastable beam so that only one of the hfs
states of level P is present in the transition region. This
reduces the P —& e quenching resonance from a super-
position of hfs transitions to a single hfs transition, so
that we can observe the H(538) and H(605) crossings
separately. Second, rather than applying the Zeeman
field transverse to the beam, we apply a longitudinal
magnetic field by aiming the beam down the axis of a
Helmholtz coil. In principle, this reduces accidental
quenching of the metastables by motional electric fields.
Finally, we work near a crossing point, where the meta-
stable quenching is extraordinarily sensitive to any
electric field. This arnplifies accidental quenching by
motional fields and by small stray electrostatic fields in
the transition region.

As a consequence of these differences in method, the
detailed analysis of the LC experiments is quite diBerent
from that of the Lamb experiments. The LC analysis is
simplified by resolution of the hfs, since we deal with a
single 25 —+ 2P transition rather than a superposition.
On the other hand, the LC analysis is complicated by
the extreme sensitivity to accidental quenching eBects
near a crossing point. Ke must deal very carefully with
the effects of all electric fields present in the transition
region.

B. Fields in the Transition Region

The transition region is at the center of the Helrnholtz
coil, where the magnetic Geld H is uniform. Here we

apply a transverse, well-localized electrostatic quenching
field E@. Figure 1 shows the relative orientation of E@
and H. During a run, H is swept through a particular
P—e crossing point, while a preset constant value of Eo
is switched on, then off, to determine its relative quench-
ing effect on the P beam. For our beam, an applied
quenching field Ec= rs V/cm provides about 30% P —+ e

quenching at resonance.
As indicated in Fig. 1, E@ may not be the only field

which quenches the beam. If the beam is accidentally
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Fro. 2. Beam-notch curve for H(538) crossing. The total P beam
is normalized to 1000 divisions at Zeeman magnetic field H=O.
Accidental beam quenching, exhibiting a quasiresonance at the
crossing point field II&, is due to stray and motional electric fields.
The experimental points are compared with curves calculated from
Eq, . (17). Curve parameters used are given in Table II.

tilted at a small angle 0 to the coil axis, then a motional
electric field E& is generated in the xy plane, of magni-
tude E& (v/c)H sine,——where v is the beam velocity.
Despite careful lineup, an accidental beam tilt of as
much as 8=1' is possible for the machine geometry.
Note that the component Ep, of Er which adds to Eo
may be positive or negative, depending on the beam
orientation. Additional beam quenching arises from
whatever stray fields Es may be present (from charged
insulating layers on electrode surfaces, contact po-
tential differences, etc.). Values of Er and Es of magni-
tude only 0.1 V/cm give measurable effects in the LC
experiments, namely order of 1% P~ e quenching at
resonance.

We can check for the presence of accidental quenching
fields such as Er and Es by monitoring the P beam
intensity versus magnetic field when E@ is set to zero.
Figure 2 shows the result of such an experiment during
the H(538) work. Similar results, which we call "beam-
notch" curves, were obtained during the H(605) work. '
While the 6% loss of P intensity at the crossing point
field H& is undoubtedly due to accidental fields of net
magnitude approximately 0.2 V/cm, a similar curve
would result if there were a small parity impurity in the
25 state. In any case, the beam notch constitutes a
varying background of P's available for quenching by
the applied field Eo.Appropriate normalization (namely,
measuring the fractional beam quenching by Eo) cancels
most asymmetry effects in the observed resonance line
shape due to this varying background. However, as the
x-axis components of E& and Ez effectively change the
magnitude of E@, we expect residual effects in the line
shape due to the presence of these accidental Gelds.

C. Effects of Accidental Quenching

Nonzero components of Ez and Es along Eo (x axis in

Fig. 1) can affect the line shape directly, as follows.

~ See Fig. 5 of Ref. /.
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The induced P~ e transition rate is proportional to
~

E~', where E=P (Es), is the net electric 6eld perpen-
dicular to the magnetic field (xy plane of Fig. 1)."The
observed P~ e quenching line shape F(H) is pro-
portional to the rate difference when Eq is switched on,
then off."Thus

E(&)"(1+2L(Er*+Es.)/Eoh)Eo'&(&), (1)

where 2 (H) is a Lorentzian resonance function, centered
on the crossing point field B~. As we sweep through a
resonance, the cross term in Eq, remains constant, and
so does not asymmetrize the line. However, Ey does
change. Depending on whether it increases or decreases
the effective Eo (beam tilted up or down in Fig. 1),
either the right or left wing of the line is raised. This
shifts the apparent line center, and results in an errone-
ously high or low value for S. Estimates show that the
shift can be as large as ~0.1 MHz in 5, for a beam tilt
angle 8= 1'.

Although we were unaware of this possible shift
during the H(605) work, we found out in time to
eliminate it during the H(538) work. "We did this by
switching the E@polarity at a rate fast compared to the
beam signal readout interval, but slow enough to avoid
line broadening. The cross terms in Kq. (1) are thereby
time averaged to zero. The line is symmetrically broad-
ened by at most the equivalent of a 0.2 MHz shift in S;
this amounts to only 0.2/0 of the line FWHM. A
switching rate of 30 cps is suitable, and was used during
the H(538) work to eliminate the direct motional field
asymmetry. "

We have now discovered that an indirect motional
6eld eGect may be an important source of line asymme-
try. This occurs as follows. A motional 6eld scales as eH,
so that it preferentially quenches high-velocity meta-
stables. "This quenching becomes more pronounced as
the magnetic field increases. As we scan a resonance, the
metastables contributing to the observed E@ quenching
on the right wing of the line spend more time, on the
average, than those contributing to the left wing. Since
the fraction of metastables quenched is proportional to
transit time, the right wing of the line is raised relative
to the left. The apparent line center shifts upward,
which results in an erroneously high value for S. The
shift is dependent on the size of such motional 6elds as
Ez. We now believe that these fields were large enough

This is the geometry for hmJ = —1 transitions. A possible
component of Eq parallel to the magnetic 6eld drives Amp=0
transitions. These have a negligible effect on the P ~ e quenching
line shape, as Eg is small, and the Amp=0 transitions are far off
resonance.

"See Appendix I of Ref. 7.
is The author is indebted to Professor W. E. Lamb, Jr., for

pointing out the possibility of this Lamb-shift shift.
'8 We measured neither the size nor the sign of this effect during

the H{605) work {Ref.7}.Certain indirect evidence indicates the
shift was bounded by 68= &0.05 MHz. However, the H(605)
value of S is clearly less reliable than the H{538) value.

'4 After thermal dissociation and electron bombardment excita-
tion, the metastable beam follows a Maxwell v distribution, with a
beam most probable velocity o= 6.8X10' cm/sec.

in the LC experiments to systematically shift all 8
values upward by at least O. j. MHz.

Motional 6eld distortion of the beam velocity distri-
bution resulting in such line asymmetries has been
discussed by Lamb. " The question of whether such
sects are important in the LC experiments depends on
our knowledge of what fraction of the beam notch in
Fig. 2 is due to motional fields, as distinguished from
stray fields. The stray fields do not cause line asymme-
try, since—although they preferentially quench low-
velocity metastables —they distort the beam velocity
distribution symmetrically with respect to the crossing
point. On the other hand, whatever motional fields are
present cause the line asymmetry discussed above,
precisely because they distort the velocity distribution
asymmetrically about the crossing point. During our
earlier work, we mistakenly estimated that most of the
beam notch was caused by stray 6elds. Consequently,
we made no correction to the observed line centers for
motional field distortion of the velocity distribution.
Now, by careful analysis of the beam notch, we have
learned that motional fields are the main cause. After
determining the size of these 6elds from that analysis,
we can calculate the new correction to S resulting from
the previously unaccounted indirect motional field line
asymmetry.

III. QUENCHING ANALYSIS

Here, by an analysis of possible metastable beam
quenching due to accidental 6elds, we devise a 6t to the
beam notch curve (Fig. 2) which allows a determination
of the motional fields present in the transition region.
Before proceeding to Sec. IV, where we calculate the
resultant shift in 5 due to the indirect motional field line
asymmetry, we apply the analysis to the problem of
determining an upper limit to the parity impurity in the
metastable state.

A. Quench Integral
With state selection, we observe beam quenching via

a single 2S~ 2P hfs transition. Let such a beam, at
velocity e, pass through a magnetic 6eld where the
2S —& 2P transition frequency is vBI . With 4 the
pathlength along the beam (s axis in Fig. 1), let the
beam detector and source be at 4= ~l.. Suppose there is
a net electrostatic field E along the beam which couples
the 2S and 2P levels via a Stark. matrix element. A
straightforward application of the Bethe-Lamb theory'
of 2S quenching gives the fraction of metastables
reaching the detector as

+L
b =exp —— C (E/Eo)'dE/$1+ (4s. sp)'j . (2)

ST L

Here, ~ is the 2P natural lifetime. ' The scale electric

» See Sec. 64 of HIII and Sec. 93 of HV, Ref. 3.
'6 We ignore the 2S natural decay rate, since it is nonresonant

and negligibly small compared to the 2I' channel.
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Geld Eo measures the 2S—2I' Stark coupling strength;
Eo——22.5 V/cm for P —+ e transitions. C accounts for the
magnetic-Geld variation of the Stark matrix element
calculated in a (J,mg) representation. We call the
exponent in Eq. (2) the "quench integral. "In general, it
must be evaluated numerically, as the integrand is a
complicated function of 4, due to the variation of C, E,
and vq~ with beam pathlength and magnetic field.

Here, as we are mainly interested in effects due to
varying electric fields, we make several convenient
approximations to Eq. (2). Near the Q—s crossing
point, the Inagnetic Geld H~5746 is small compared to
the fine structure decoupling 6eld (7.SING in hydrogen).
Consequently, C varies slowly with H; we evaluate C at
the crossing point Geld H~, and take it outside the
integral. As well, the variation of vz& with H is nearly
linear, so we set

4~rvsr =go[1 rh($)].— (3)

Further, as the quenching is well localized at coil center
(over a region of size «L), we extend the integration
to ~. Finally, since the fields are symmetric about coil
center, we need only integrate from 0 to ~. Thus
Eq. (2) becomes

(=g/R is a dimensionless pathlength parameter, with R
the Helmholtz coil radius. k($) is the fractional coil field
on the beam axis. r=H/Huis a dimensionless magnetic-
field variable, with H the coil Geld at center. The con-
stant ~p krrS measures the 2$—2I' separation at zero
magnetic 6eld. By use of Eq. (3), the quench integral
now contains the resonant function

is an example; in convenient notation

Ei /Eo ——ug~h(() sin8,

where 8 is the tilt angle, and Q~ ——(a/c)Ho/Eo is a
constant. Another type of motional Geld, E&, acts on
those metastables which travel o6 axis and explore
transverse components of the coil field. With q the ratio
of off-axis distance to coil radius E, the magnitude of E~
is conveniently written as

Ei/Eo= ugii, rk, (g,g) .
Here h& is the ratio of transverse Geld to coil central
field; k, is an odd function of $, and is zero on the axis
(&=0). The vector E& lies in the xy plane of Fig. 1.
Finally, we parametrize whatever stray Gelds are
present by

Es/Eo= (Qs,gs„)ss($), (10)

where Qs, and Qs„are the component stray field quench
levels at coil center, and es(P) is the fractional stray field
along the beam axis. We assume es($) is an even func-
tion of $, and is about as well localized as the applied
quenching field. '7

Combining the fields Er, E„and Es, we find we can
write the beam-notch integral as a sum of terms

&(r,u) =up(~)+u 'Ps(~)+ (Qn)k-X(r), (11.)
where the constant k=4RC/(+or)no. The terms are as
follows:
(1) X is a complicated cross term which depends on the
azimuthal angle y of a metastable trajectory in the
beam, as

X(r) =Qirr(gs, sinoo —Qs„cosy) sine

b(r, u) = exp —(2RC/un') (E/Eo)og((, t)d$ . (5)' k(k)ss(5) g (6r)d8 (12)

M(u)du= (4/Qvr)u'e "'du. —

B. Beam Notch

(6)

u= e/n is a dimensionless velocity parameter, with «he
beam most probable velocity. '4 We anticipate averaging
b over the beam velocity distribution, which (to
sufhcient approximation) is

If we assume a uniform intensity distribution over p, I
averages to zero.
(2) Ps measures the quenching due to stray fields. As
these fields are well localized [that is, es(P) is appreci-
able only near the coil center, where the magnetic field
k(0) =1j, we evaluate the resonance function g(P, r) at
(=0. Then fs is symmetric about the coil center, as

Evaluation of eke Integral

The quench integral which determines the detailed
shape of the beam notch is

where

fs=kQs' ss'(q)dg, g(o, r) =++~ (1—r) j- (13)

d(r, u) = (2RC/un') PE(g, r,u)/Eoj g(g, r)dg, (7)
0

with E the residual electric field present when the
applied quenching Geld E@ is set to zero. This E may
depend on beam orientation, as well as pathlength $,
magnetic Geld r, and velocity u. The beam tilt Geld Ez

fs is the fractional stray field quenching loss at the
crossing point. g(0,r) exhibits a Lorentzian resonance,
centered at the crossing point, r=1.
"This is reasonable, as the quench electrodes which supply Eq,

and are expected to be the source of Eg, are precisely the surfaces
nearest the metastable beam during transit.
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(3) p measures the motional field quenching, in terms of
integrals over the Helmholtz coil magnetic field, as

p(r) = (v ~/2)Lfrvr(r)+ fiVq(r)$, Curve No. ' fr
% beam loss

f~

TmLE I. Seam-notch parameters.

where

with
7(r) = r'mt(r)/mY, (1),

1
2
3

0.0
2.0
4.0
5.5

0.5
0.5
0.5
0.5

5.5
3.5
1.7
0.0

mt (r) = k'(k)g(k, )dk

To Grst order, ORt, is independent of the o6-axis distance
rl. We have evaluated the y(r) numerically, using field

functions for a perfect coil. Finally, the coefficients are

fr =kQsr mrr(1) sin'0, f,= kQsr'ml:, (1)rl'. (15)

They are the fractional motional Geld quenching losses
at the crossing point, and can be calculated directly
from apparatus parameters.

Fit to the Beam-Potch Data

Having calculated the beam-notch integral 0, we can
now fit the beam notch (Fig. 2). The fractional beam
loss due to accidental quenching is

1—expl —0 (r,u) 7 8 (r,m) . (16)

The approximation is reasonable since most of the beam
survives transit. We average over the beam velocity
distribution of Eq. (6), and over the azimuthal angle &p.

The cross term X drops out, and we get

(F(f)),y —fT'yT (r)+f i y i (r)+fsg (0,r), (17)

as the over-all fractional loss. The coefficients fr, fi, and

fs are the fractional quenching losses due to the acci-
dental fields Er (beam tilt), E„(moti onlatransverse),

and ps (stray electrostatic), respectively. For the

H(53g) crossing we calculate fr=4% for a tilt angle
g= 1', and f,=-,'% (averaged over beam cross section)
for a beam of maximum radius g= 0.07."If stray fields

are of order 0.1 V/cm, then fs 1%.
In Fig. 2, we fit H(538) beam-notch data by curves

calculated from Eq. (17).Although the coefficients f can

be estimated, they are considered here to be best Gt

parameters. Table I gives the f values used. Curve 3
provides a satisfactory Gt, with

fr=4.0a0.5%, fi——0.5%, fs=1.7W0.5%. (18)

The quoted errors span f values obtained from a number

of H(538) beam notches. Variation of the fit with f, is

not shown. Doubling the calculated value f,=0.5%
produces a curve which falls off much too quickly with

Ig Relevant apparatus dimensions are: 2=4.95 cm, Helmholtz
coil mean winding radius; d=6.8 mm, beam diameter in the
transition region. The maximum radius parameter used here is
ri =0/2R.

a These curves correspond to those plotted in Fig. 2.

s=p/$(Es Ep)+r', (k/2—r)$. (19)

The effect of p (assumed to be independent of magnetic
field) is "magnified" at a crossing point, where the
2S—2P energy difference E8—EI is zero. Predicted
values of p give an unobservably small eGect in the LC
experiment. We can set an upper limit on p, , however, by
claiming that it induces a beam loss at the crossing
point which is not larger than the stray field fraction fs
determined above.

Define the dimensionless matrix element p'= (2r/k) p.
The expected fractional beam loss due to p,

' is

g(tr)dt, (20)

where k is defined in Eq. (11). If we claim this "un-
accountable" loss is not larger than fs at the crossing
point, then

I
p'I'& fs/k g(&, 1)&(=1.87&(10-'fs. (21)

We have evaluated this expression for the H(53g)
crossing; the value of the integral is 0.527. Using
fs=1.7% from Eq. (18), we get Ip'I'&3&&10 '. The
amplitude at zero magnetic field is then

I«l'=
I p, 'I'/(1+~o')&8)(10 s (22)

' E. E. Salpeter, Phys. Rev. 112, 1642 (1958); R. A. Carhart,
ibid. 1M, 2337 (1963);F. C. Michel, ibid. 138, 3408 (1965);P. G.
H. Sandars, Phys. Letters 14, 194 (1965).

increasing magnetic Geld. We believe the calculated
value is good to &0.1%.Although it is not possible to
decisively resolve the contributions from Ez and Ez
quenching, we believe that within the above error
limits, we have determined reliable values for the
quenching fractions in p of Eq. (14), and for the stray
field fraction fs. This conclusion is strengthened by the
fact that the estimated f values agree quite well with
those determined by the curve fitting.

C. 28 Parity Impurity Amplitude

The possibility of a parity impurity in the 2S state of
atomic hydrogen has been discussed by several authors. '9

If the 2S state wave function contains some 2P state, so
that it becomes Cs'=Cs+aCi, then the 25 decay rate is
augmented by Ial'/r, where r is the 2I' natural life-
time. The LC experiments are particularly sensitive to a
possible parity mixing matrix element p, between 2S and
2P states, as the amplitude a is
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where the "magnification" factor teo= (2r/&) (&8—&i )o
= 19.6 for the H(538) crossing. This value of as consti-
tutes a new upper limit to the parity impurity amplitude
in the 2S state."Sandars and Lipworth have established
a much more stringent limit in the ground state of the
cesium atom. "

A. General Line Asymmetry

We ignore accidental quenching for the moment, and

suppose that the applied field Eo(() is the only im-

portant source of beam quenching. The fractional beam
surviving transit LEq. (5)j can be written as

b(r, uP)=exp[ —(1/u)A(r)f(r) j,
where

P()= (2&C/ )Q' '(k)dk g(0, )
0

(23)

The symmetric resonance function f, similar to fs of

Eq. (13), measures quenching by the applied field,

which is known to have a well-localized distribution

e($) along the beam axis. Q=Eo(0)/Es is the applied
field quench level at coil center. We introduce A (r) as a
general line asymmetry factor. An example of such a
factor is the Stark matrix-element correction C in

Eq. (2).
The fractional beam quenched when Eq is switched

on, then off, is

f(r,u; f)= b (r,u; 0) b(r,u; f) . —(24)

The expected quenching resonance line shape is obtained

by averaging f over the beam velocity distribution of

Kq. (6). Using the beam signal of Eq. (23), we get the
line shape function

F(r,g) =G(rpP)/G(r, eo) (2/+re)AQ (Af)'+ ~ ~ . —

"Compare with [ae[s&7X10 ', obtained by W. L. Fite et al
Phys. Rev. 116, 363 (1959)."P. G. H. Sandars and K. Lipworth, Phys. Rev. Letters 13, 718
(1964). See also J. P. Carrico, E. Lipworth, and P. G. H. Sandars
in Proceedings of the Berkeley Conference on the Physics of Free
Atoms, Berkeley, California, $966 (unpublished}; C. O. Thornberg
and J. G. King, ebjd. (unpublished).

IV. LINE SHAPE ANALYSIS

Here we treat the problem of calculating the line
center shift in an observed metastable quenching reso-
nance resulting from any one of a number of factors
which slightly distort the line shape. Since even the
largest line asymmetries encountered in the LC work
generate shifts of order only 0.1% of the line FWHM, a
perturbation approach proves satisfactory, and we can
derive a general line center shift formula in closed form.
This analysis is applied to a calculation of the previously
unaccounted line shift resulting from the indirect
motional Geld asymmetry described in Sec. II C. We
then discuss the resultant new correction to the value
of 3.

where

G(r,g) = f(r,u; f)M(u)du. (25)

As we normally work at low quench levels, the Grst term
of this expansion represents the observed quenching
resonance quite well, A better approximation is obtained
by using the line shape function

F(rg)=1—exp) —(2/gs)A(r)P(r)$, (26)

which differs from F by a small term second order in f.
A typical resonance line fits F to within 5% of the line
FWHM.

We measure line centers from the observed quenching
resonance by locating the midpoint between magnetic
fields at "working points" on the line. These are defined
to be points at the same fractional quenching XF~,
where Fsr=F(1') is the observed maximum quenching
fraction, and 0&X(1.Normally we work at the X= 4
points on the line, which is the region of greatest slope.
As the line is quite symmetric, the working points are
almost equally disposed above and below the crossing
point field Bg. However, the measured line center is
shifted from II& if any line asymmetry is present. Using
the approximate line shape function. of Kq. (26), we
calculate the fractional shift

b(r, u; f)= exp ——P(r)+d(r, u)+cross terms . (28)

Here rt is the beam-notch integral of Eq. (11). The
cross terms between E@and the accidental Gelds Eq and
Er are similar to I of Eq. (12) s' In first order, they are
averaged to zero either by the E@ polarity switching
scheme, or by an average over the beam azimuthal
angle y.

The velocity averaging function of Eq. (25) now
becomes

G(r,y) = (4/~~)e-(~ l

e &"&+& t "&$1 e t' ~)u'e ~'du. —(29)

~~ There is no cross term between Eg and Eg, as the latter 6eld is
an odd function of g about the coil center.

(~&el&a) s(b&o/&c)s(—(&A/dr)//A], =tB(),F~),
where

B(&,F~)= ln(1 —Fsf)/ln(1 —XFsr) . (27)

Here bHs~2Hc/&s is the line FWHM for the Lorentzian
resonance function f. The approximation is good to
within the 5% linewidth discrepancy between F and F
The shift is positive for any asymmetry factor A (r) for
which dA/dr) 0 at the crossing point, r = 1.

B. Motional Field Asymmetry

If we include the accidental quenching Gelds as well
as the applied Geld Eq, the beam signal becomes



While the cross term in X cancels in the ratio which

gives the line shape function F, the term in p and Ps
effective]y distorts the beam velocity distribution. To
the extent that this distortion is asymmetric about the

crossing point, the measured line center is shifted. We

find the appropriate asymmetry factor by employing the

new Q function in the F expansion. To first order in the

small quantities p, p and its, we get

where

g (y) = 1+(2jQa')A tp(r) —A 2$s(r) (30)

Here g, and g i= 1—(s/4) are numerical constants. As

the ps derivative is zero at the crossing point, only the

motional field term in p can shift the measured center.

Using Eq. (27), we calculate the motional field

asymmetry shift

(A&c/&c) i=a (fi&oj&c)'~() ~sr)

X iDr(&vrj«)+ f i(~V i/«)l. =i (31)

The p derivatives are quite insensitive to the specific

crossing point in question; they are (dye/«) = 7.16 and

(dy &/dr) = 13.7 at r = 1.Calculating for a typical H(538)
resonance, with SH0=55G, X=4 and F~=0.30, and

using the f values in Eq. (18), we find (8Hc/Ho) 140

~20 ppm. The measured H(538) resonance center must

be dppppazed by this amount to account for the new line

asymmetry.
The shift calculated in Eq. (31) is independent of

crossing point field Hc For, from . Eqs. (15), both f
values scale as nHo', in terms of parameters (other than

geometry) which vary from crossing to crossing. The

dependence on beam velocity a predicts the beam notch

for deuterium should be roughly (1/g2) as deep as for

hydrogen. We have observed just such a ratio. Using

this in Eq. (31), where the factors See and 8 are about

the same for all crossings, we find

(32)

~h~re p and q are numerical constants. The ( ) a«
averages over beam geometry. The shift should be

roughly (1/+2) as large for a deuterium crossing as for

a hydrogen crossing, due to the velocity dependence.

C. Lamb-Shift Shift

In the LC experiments, the derived value of the Lamb
shift S is (very nearly) directly proportional to the

measured crossing point field H~. The immediate eGect

of the above motional field asymmetry is to decrease the

T25 m.z II. Corrected Lamb-shift values.

Crossing point in hydrogen

Original S value, ~ MHz
MF asymmetry correction
Correction due to Qpb
Final 8 value, MHz

H(538)

j.058.04+0.&0—O.~S~0.0&—0.05
1057.84+0.&0

H(605)

1058.07&0,10—0.17&0.05—0.01
1057.89W0.15

a Taken from Eq. (2) of Ref. 1, and Eq. (20) of Ref. 7, respectively.b Calculated from Tables IV and V of Brodsky and Parsons; see Ref. 8.

H(538) value of S by 0.15~0.01 MHz. Similarly, the
H(605) value is decreased by 0.17~0.05 MHz."

In Table II, we give values of S originally derived
from the LC experiments. ' ' These values resulted from
a perturbation calculation by which we extrapolated
from a measured IIg to the zero-field interval which
determines S. The Bg values used were corrected for all
line asymmetry eGects known at that time. The next
entry in Table II is the new correction due to the
indirect motional field asymmetry. Next, we include a
correction to the perturbation calculation relating Bg
to S. We use the results of Brodsky and Parsons (BP),'
which claim an intrinsic accuracy of 0.001 MHz in S.
The 0.05 MHz difference between our result and the
BP result for H(538) is due to several errors in our
calculation"; after correcting them, we agree with BP
to within 0.02 MHz. The Ip result has been confirmed
to this accuracy in an independent calculation by
Rebane. "The last entry in Table II is the final value of
S from the LC experiments, corrected for all known line
asymmetries.

The weighted average LC value of S in hydrogen is
now

S(LC expt) = 1()57 86+0.10 MHz. (33)

"The H(605) beam notch (Fig. 5 of Ref. 7) is 6tted according
to the theory of Sec. IU above. The derived quenching amplitudesare: 5.5&0.5, 0.7, and 1.7%0.5 jo, in the same order as Eq. (18).
The calculated shift is 6$= —0.17&0.02 MHz. The somewhat
larger error quoted in Table II allows for the uncertainty as to the
direct motional 6eld asymmetry effect (Ref. 13).'4 See Sec. IV of Ref. 7. %e used an incorrect value of gg/g~
(see Ref. 55). Additional higher-order hfs terms, with inclusion of
the nuclear gl value, account for the diGerence.

'5 T. Rebane (private communication).
'6 $(Lamb expt) =1057.77&0.1,0 MHz. See HV Ref. 3.
27 W. H. Parker, B. N. TayLor, and D. N. Langenberg, Phys.

Rev. Letters 18, 287 (1967).

The quoted accuracy is at least twice the standard
deviation of the mean of the means of ten independent
runs comprising over 200 line center measurements. We
believe that all known systematic eBects have now been
calculated to an accuracy of better than ~0.03 MHz in
S. This value of S now agrees, within experimental
error, with the value measured by Lamb and collabo-
rators. "The average of the experimental values exceeds
Soto's result' by about 3~2 parts in 10'. If the value of
the fine structure constant derived from the recent ac
Josephson effect experiment'r is used in the theory, this
discrepancy is reduced to 0.25~0.15 MHz.
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7. SUMMARY

In the present paper, we have extended our previous
approximate analysis of the level-crossing experiments
in the e= 2 level of atomic hydrogen, so as to establish a
firm basis for the high resolution claimed in that work.
We have developed a quantitative treatment of ob-
served quenching of a beam of metastable atoms near a
crossing point by accidental electric fields, which pro-
vides information regarding a possible parity impurity
in the metastable state. More importantly, the detailed
analysis shows that the beam velocity distribution may
be substantially distorted near a crossing by the pres-
ence of small motional electric 6elds, previously esti-
mated to have a negligible effect on beam quenching.
This distortion results in a new systematic correction to

the value of the Lamb shift 8 derived from the level-
crossing measurements. The correction reconciles the
level-crossing value of S with the value originally
measured by Lamb and collaborators, and considerably
reduces the apparent discrepancy between experiment
and theory for S.
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