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Superheating of the Meissner State and the Giant Vortex
State of a Cylinder of Finite Extent*
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The superheating field and the size-dependent critical field of the Meissner state for a cylinder of radius
R, with Ginzburg-Landau (GL) parameters e between 0.3 and 2.4 and size parameters R/li between 2.5 and
20, have been calculated from the GL theory. For very large values of R/X the superheating field of the
cylinder approaches that of the semi-infinite half-space. Similiar studies of the giant vortex state show that
the superheating fields are smaller than for the Meissner state. Under certain conditions, as the applied
magnetic Geld is increased, the solutions to the GL equations may cease to exist for the Meissner and giant
vortex state for a constant value of the Auxoid quantum number before the Gibbs free energy of the super-
conducting state reaches that of the normal state.

I. INTRODUCTIOH

Y magnetic superheating of a superconductor, one
usually means that as the magnetic field is in-

creased, the total energy of the specimen is increased
beyond that of the normal state while the specimen is
still superconducting, so that the nucleation of the
normal state is delayed. Early' experiments and
theories on type-I superconductors met with little
success in demonstrating this effect reliably, and the
6rst serious theoretical treatment of superheating was
given by Ginzburg, ' who has solved the Ginzburg-
Landau (GL) equations' for a semi-infinite half-space.
Others4 have followed the same approach or similar
ones. Essentially, it was found that Qux can be de-
layed from entering the Meissner state beyond H,
for a type-I superconductor, beyond H, & for a type-II
superconductor, that the maximum superheating field
B,h=a, for z—+~, and that for A:

—+0 the value of
P,h

—+ co. For example, for a= 1 the value of II,h/H, =
1.27 and for &=0.3 it is 1.81, which means that large
superheating effects should have a good chance of
being observable. A recent calculation' of the super-
heating field of a cylinder with x=0.5 and R/X=14.4
(A=radius of cylinder; X =low field penetration depth)
is in agreement with that of the semi-infinite half-space.

However, Galaiko' has calculated that the superheated
Meissner state of a bulk specimen is stable up to
approximately 0.8 II, when ~))1, and Taka, cs~ finds
that Qux can be delayed from entering the Meissner
state of a semi-infinite half-space with ~))1 up to
approximately 0.5 II,. It was shown' experimentally
that Qux cau. easily be delayed from entering type-II
specimens for applied magnetic 6elds IIg& II.1, and that
for materials with ~ values of about 3.6 the maximum
experimentally observed field for Qux delay beyond
B,» is in the close neighborhood of H, . Other experi-
menters, who have worked with small type-I spheres,
with bulk type-II superconductors with ~ values of
about unity, and with thin type-I cylinders seem to get
fair agreement with the above theory. '

Ke have already calculated the maximum super-
heating fields for a slab"" of 6nite thickness 2L as a
function of z and L/X. This calculation' is based on
a method employed in computing the giant vortex
state" "and is different from that of Marcus '4 who has
also computed the superheating Geld of a slab of finite
thickness, though over a very limited range of param-
eters z and L/X.

Here we have calculated, for a very long cylinder of
radius R, the size-dependent critical Geld H, of the
Meissner state, the maximum superheating field H,h of
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The definitions of the symbols are: the order param-
eter%'(r, 0) =F (r) e'~, where F=F (r) is assumed to be
real function and b is the Quxoid quantum number
(integer); r=p/R, where p is the distance from the
symmetry axis of the cylinder and R is the radius of the
cylinder; 8 is the angle around and in the plane perpen-
dicular to the symmetry axis; ~=X/P, where X is the low
field penetration' depth and P is the coherence
le~g~h; ~=R/~; 7t/. =R/); h=h(r) =H(r)/H. =h+
(1/2r) (~/dr), where H is the internal magnetic field
parallel to the s direction and B, is the thermodynamic
critical field; hp Hp/H„where Hp is——the applied mag-
netic field. g=—g(r) is defined through the vector
potential A=—(0; Ap, 0), 2Ap ——RH, phpr+p/rj; j
Xj (r)/H„where the current density j(r) Rows in the 8
direction; V is the volume of the specimen; and

'~ We have found, as in Refs. 14 and 5, another solution in
addition to that of the usual Meissner state which corresponds to
that of a superconducting core and a normal surface of the cyl-
inder and the slab. This solution is marginally stable when H,&&
H. &H,h, it exists between H,g and H,b and it is stable when
H,~&&H,h. In the latter case the lower Geld limit of this state is
smaller than H,h and in the vicinity of this lower Geld limit the
solution is marginally stable. When H, m is in the vicinity of H&
and H,h we could not Gnd a stable or marginally stable solution
of this state. In the present work we have disregarded this state
as not being characteristic of the Meissner state. Similarly, a
superconducting state has been found whose order parameter is
zero at the center and at the surface of the cylinder but Gnite
near the surface of the cylinder. In the present work we have
disregarded this state as not being characteristic of the giant
vortex state.

the Meissner state", and the superheating field of the
giant vortex state' '5 for g values between 0.3 and 2.4
and size parameters R/X between 2.5 and 20.

G. THEORY AND RESULTS

We follow here the same notation and definitions as
in Ref. 12 except for the normalized energy, which we
choose to be larger by a factor of 4. The GL equations
and the normalized energy for a very long cylinder in
an axial magnetic field are

1 d dF—r ' —r-
df

In Ref. 12 we have disregarded, as stated, any overshoot
and undershoot of hg near hg 0; thus we have
neglected superheating effects. The example which was
discussed in detaiPs (X=3 and «= 1) had only a very
small amount of overshoot. However, we have found
that this is not correct in general for arbitrary param-
eters g and g, in what follows we shall deal with this
point in detail.

We have solved Eqs. (1) and (2) by the same method
as in Ref. 12 with improved accuracy in the vicinity of
kg~0 with the boundary conditions: dF/«=0 and
~/«=0 at r= 1 for all b values, and with F=0 and
&=0 at r=0 for b/0, and with dF/«=0 and &=0 at
r= 0 for b= 0.

The functions F(r) and p(r) and their derivatives
were calculated and from these hg $Eq. (3)j was
calculated. Figures 1—3 show the results for ~g as a
function of ho for various values of the Quxoid quantum
number h for R/X=5 for values of ir equal to 0.707,
1.4, and 1.7, respectively. For the Meissner state, b=0.
In large magnetic fields (H s &Hp(H s) we have the
exact equivalent description of the surface sheath on a
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Fzo. 1. Shown is the diBerence between the normalized magnetic
Gibbs free energy of the superconducting state and the normal
state ag LEq. (3)) as a function of hp=Hp/H (Hp is the applied
Geld) for R/X=5 and ~=0.707 for all possible fluxoid quantum
numbers b. For b=8 only the magnetic Geld interval is indicated
because b g is too small to be signiGcantly di6erent from zero. Note
the regions where Ag collapses to zero for constant b. Note also
that there are no undershoots of b,g near kg =0.Near h,3 there are
no overshoots in 5g.

Gg~ —G~II is the difference between the Gibbs free
energies of the superconductor in a magnetic field and
that of the normal state (assumed nonmagnetic) in a
magnetic field.

The magnetization per unit volume AM is de-
fined" by

4~m= H,y(1) .
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macroscopic cylinder. It is found that hg(hs) is not
t '

pt for b=0. For the latter case, h.h can
be larger than h, Lwhich is defined as that field for whic

pendent critical field h, (this is approximately satisfied
in Fig. 2), or smaller than the extrapolated" value of

( h
'

Fig. 3).The values h, (b=0) and h.h(b=0)

slab of finite thickness' " though there are numerica

tion of hg at h, h was observed (shaded area), whic, or
smaller values of R/X, becomes more distinct. It ap-

E/X))1, the value of f4—+1, and the values o,h/
h hat of the semi-infinite half-space, w ich

happens to be already satisfied when R/X is

reached.
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FIG. 3. This figure is similar to Fig. 1 except that ff.'=1.7. or
the sake of clarity, not all possible quantum states b are shown.
Note that for the smaller values of b including b=O (but not for
b values near h,a) hg undershoots. ,
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FIG. 2. This figure is similar to Fig. 1 except that ~=1.4. For
the sake of clarity, not all possible quantum states are shown.
Note that for b=0, the overshoot in d g is small, and for larger b
values (but not for b values near b~) ag undershoots.

I .4

From Figs. 1—3 it can be seen when b) 0 overshoots
and undershoots of dg exist in the vicinity o gi of 6 0.
F 1 ge magnetic fields (near H,s) the overshoots andor argem
undershoots virtually disappear, because at, & e
value of Gq~=G~B. ln general, it was found that the
overshoot in the Gibbs free energy is largest for b=0
and becomes smaller for b) 0, which means that if
superheating exists in the sheath and giant vortex state,
it should be considerably smaller than in the Meissner
state. Therefore, the amount of superheating should e
corr espondingly smaller above II,2. The critical current

as theof the surface sheath'7 above H,2 is dehned as e
maximum lossless current in the sheath h when the
metastable superheated states are disregarded. Experi-

MIn ig. o e.F . 10 f R f 12 the extrapolated values of Jt4 were plotted.fFi. 4.These should be modified by the results o Ig.
'~H. J. Fink and L. J. Barnes, Phys. Rev. Letters 15, I92

{1965).
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FIG. 4. Shown is the ~ dependence of the critical field H, at
which the Gibbs free energy difference ng LEq. (3)) becomes zero,

l h fi ld H above which a solution of the Meissner
~ ~ rR X. Forstate ceases to exist, as a function of the size parameter / .

R/) =2.5, second-order phase transition of hg at H, h was
observed, and the region of uncertainty of H, h is indicated by the
shaded area. Other uncertainties and extrapolations are indicated
by broken lines.
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FIG. 5. Shown is the dependence of the absolute value of the
order parameter at the surface of the cylinder as a function of the
applied magnetic Geld Hp(hp=Hp/H, ) for R/X=S and x=0.707
for all possible Guxoid quantum numbers (see Fig. 1).

FzG. 6. Shown is the dependence of the normalized magnetiza-
tion per unit volume ps(1) )Eq. (4) g as a function of the applied
magnetic Geld Hp(hp=Hp/H ) for R/X=S and x=0.707 for all
possible fluxoid quantum numbers (see Fig. 1).

ments"" on bulk specimens do not seem to indicate
any appreciable superheating effects in the sheath state.

The Ag-versus-hs curves for
~

b
~

= const) 0 are
unsymmetric, which is a consequence of the unsym-
metric behavior of F and P as a function of hp. For
R/X = 5 and x =0.707, the order parameter at the surface
of the cylinder F(1); the P function at the surface of
the cylinder g(1) are shown in Figs. 5 and 6, respec-
tively. p(1) is the normalized magnetization per unit
volume of the cylinder Lsee Eq. (4) $. Results similar
to Figs. 5 and 6 were obtained for other R/X and x

values. As to irreversibility, Qux locking, etc., the same
conclusions apply here as in Ref. 12 for the giant vortex
state. '0

When b is a noninteger value, solutions for Ii and

P PEqs. (1) and (2)j exist, and they are similar to
those obtained for the integer b values. For an equilib-
rium solution such as we have here and in Ref. 12, a
noninteger value of b is not permissible because the
order parameter 0' would be multivalued. However,

' L. J. Barnes and H. J. Fink, Phys. Rev. 149, 186 (1966).' R. W. Rollins and J. Silcox, Phys. Rev. 155, 404 (1967).
~ In Ref. 12 it was stated incorrectly, due to computational

errors, that no solutions for the giant vortex state exist for inter-
mediate b values and R/$&10. Mathematical solutions for
R/c& 10 do exist for all b values.

during the transition process from one quantum state
to another, b could temporarily be a noninteger value
and similarly when Quctuations should occur.

III. CONCLUSIONS

We have calculated the size-dependent critical field
and the superheating field for a long cylinder for which
demagnetization effects can be ignored. We find as
R/)t becomes very large, that the H.h/H, values of the
cylinder approach that of the semi-infinite half-space.
Similar superheating effects were found for the giant
vortex states when the Quxoid quantum number is larger
than zero and the specimen is of finite extent. Under cer-
tain circumstances, namely, for larger ~ values, the
Meissner state and giant vortex states for the smaller
(and constant) fluxoid quantum numbers may cease to
exist for Gibbs free energies GqII &G~~ when the speci-
mens are comparable in thickness to X. In large magnetic
fields, there is very little or no overshoot and under-
shoot, and at B,3 the Gibbs free energy" G&II ——G&II.
Therefore, in a type-II bulk specimen the amount of
superheating above H, 2 is considerably smaller than
that of the Meissner state.

"For details near H, 3 which are beyond the accuracy of our
calculations see: R. Doll and P. Graf, Z. Physik 204, 205 (1967).


