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The Green’s-function method and decoupling scheme due to Nagaoka for dilute magnetic alloys in the
normal state is extended to include superconductivity. A general expression for the superconducting critical
temperature 7. is found for low-impurity concentrations #;. This expression involves unknown parameters
which occur in Nagaoka’s equations for the normal state. When 7>>the Kondo temperature Tk, the ex-
pression for the initial change in T, with respect to #; contains two terms: (i) the decrease in 7 of Abrikosov
and Gor’kov as corrected by Maki and Griffin for the Kondo anomaly, and (ii) a change in T, due to the
polarization of the impurity spin which depends on the sign of the coupling constant J of the s-d exchange
interaction. To order J3, the term (ii) corresponds to the Solyom and Zawadowski’s result. These results
are obtained by use of Nagaoka’s solution of his equations in the range T->>Tk. A solution of Nagaoka’s
equations due to Hamann is next used to find an expression for T valid for all Tk. This expression is ana-
lyzed and compared with experimental data in the range 7.K Tk.

1. INTRODUCTION

N a recent letter,! referred to as I, it was shown that
the decrease in superconducting critical temper-
ature 7, in a dilute magnetic alloy may be due to an
anomalous resonance at the Fermi level when 7' << Tk,
Tx being the Kondo temperature.? The interacting
Hamiltonian was taken to be the s—d exchange inter-
action between the spin of the conduction electrons
and the impurity spin.2 The Green’s-function method
used to obtain an equation for 7 was similar to that of
Takano and Ogawa.? There are many objections to
this method, in particular the nonconservation of the
number of electrons and the requirement of off-diagonal
long-range order in the normal state. However, the
equation for T, so obtained seemed reasonable in the
light of Nagaoka’s approximate solution? for the
normal state of dilute magnetic alloys at temper-
atures 7<<Txk. The purpose of this paper is to improve
the results of I by extending Nagaoka’s Green’s-
function method* to include superconductivity. The
reason is that Nagaoka’s decoupling scheme for the
higher-order Green’s functions does not suffer from the
difficulties of Takano and Ogawa® and the resultant
equation for T, will be correct for all Tx. The equation
for T obtained in I is only useful when 7.<Tk.
Nagaoka’s method*® has been subjected to a large
amount of careful analysis recently. In his first paper’,
Nagaoka obtains an expression for the one-electron
Green’s function involving two unknown averages

* Supported in part by the National Research Council of Canada
and by the Air Force Office of Scientific Research, Office of
Aerospace Research, U.S. Air Force, under AFOSR con-
tract, Grant number AFOSR-1138.
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(see Sec. 2) which must be determined self-consistently.
He first attempts a perturbation expansion of the
Green’s function in powers of the coupling constant
J of the s-d exchange interaction at temperatures
T>Tk. The residual resistivity calculated from the
approximate Green’s function is found to disagree with
the expression obtained by Abrikosov. For T'KTk,
Nagaoka solves the self-consistent equation for the
averages by an ansatz which lead to a resonance at the
Fermi level with a temperature-dependent width
T'(T). T'(T) is the solution of a nonlinear integral
equation. Analytically this solution corresponds to the
description of the conduction electron self-energy or
¢ matrix by a single pole. Hamann’ reduces Nagaoka’s
equations to a single nonlinear integral equation for the
{ matrix #(w) and is able to find an approximate solution
for #(w) valid at all temperatures. For T>>Tx this
solution gives rise to the same expression for the re-
sistivity that Abrikosov® obtains. For 7K Tx Hamann’s
solution for #(w) does not have the same analytic
structure as Nagaoka’s solution. In fact, the only
similarity between the two solutions is that both
give rise to the complete unitarity limit for s-wave
scattering at zero temperature. Hamann further
predicts that there is almost complete cancellation of
the magnetic moment on the impurity at zero temper-
ature for a spin-} impurity. He also states that the
contact s—d exchange interaction may not be applicable
to magnetic impurities of spin greater than %. In conse-
quence, we restrict our considerations to spin-3 im-
purities in this paper. Similar work to Hamann’s
has been done by Nagaoka,® for T>>Tk, Falk and
Fowler? and Fischer.? Bloomfield and Hamann have
been able to solve Nagaoka’s equations exactly and are
in the process of investigating the thermodynamic

8 A. A. Abrikosov, Physics 2, 5 (1965).

7D. R. Hamann, Phys. Rev. 158, 570 (1967).

8 F, Falk and M. Fowler, Phys. Rev. 158, 570 (1967).
9 K. Tischer, Phys. Rev. 158, 567 (1967).
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168 MAGNETIC IMPURITIES
properties of dilute magnetic alloys in the normal state
on the basis of this solution.!”

Asmentioned above, the Hamiltonian used to describe
the interaction between the conduction electrons and a
magnetic impurity of spin % is the s—d exchange Hamil-
tonian.? Superconductivity is introduced into the
formalism by the inclusion of the BCS interaction in the
total Hamiltonian. In Sec. 2, the Green’s-function
formalism of Zubarev! is described and the equations
of motion of the one-particle Green’s functions are
written down. The extension of Nagaoka’s decoupling
scheme?* to superconductivity is discussed and used to
obtain a closed form of the equations. Expressions for
the one-particle Green’s functions of the system are then
written down in terms of four unknown averages which
must be determined self-consistently. One of these
averages is the order parameter A of the superconduct-
ing state. In Sec. 3 the equations of Sec. 2 are linearized
with respect to A. A general expression for the super-
conducting critical temperature 7 is obtained in terms
of the solutions of Nagaoka’s equation in the normal
state.

Nagaoka’s approximate solutions of his equations*®
are substituted into this expression in Sec. 4(a) for
T>>Tk. Then the expression for the change in T.
with respect to the concentration of impurities #;
contains two terms. The first term represents a decrease
in T, due to spin-exchange scattering by a localized
moment and corresponds to the results of Abrikosov
and Gor’kov,? Griffin,® and Maki.* The second term
gives rise to an increase in T, for J<0. To order J?
this term is identical to the result of Solyom and
Zawadowski® who ascribe the increase in 7. to the
virtual polarization of the impurity spin. Hamann’s
solution? for the ¢ matrix is substituted into the general
expression for T, in Sec. 4(b). The resultant equation
for T is valid for all temperatures and gives a decrease
in T, with #; when T« Tx. Section 5 contains a com-
parison of the results of Sec. 4 with experimental data
and a discussion of further extensions.

2. THE GREEN’S-FUNCTION FORMALISM FOR
DILUTE MAGNETIC ALLOYS IN THE
SUPERCONDUCTING STATE

We begin by considering a single spin-% impurity in a
metal matrix. The impurity position is taken as the
origin of configuration space and the metal is assumed

0P, Bloomfield and D. R. Hamann, Phys. Rev. (to be
published).

1 D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960); [English
transl.: Soviet Phys.—Usp. 3, 320 (1966) 1.

12 A. A. Abrikosov and L. P. Gor’kov, Zh. Eksperim. i Teor.
Fiz. 39, 1781 (1960) [English transl.: Soviet Phys.—JETP 12,
1243 (1961) 7.

13 A, Griffin, Phys. Rev. Letters, 15, 703 (1965).

14 K. Maki, Phys. Rev. 153, 428 (1967).

1 J. Solyom and A. Zawadowski (to be published).
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to be an isotropic superconductor with transition
temperature To in the absence of impurities. The
Hamiltonian for the system is given by

H=Hy+ H;a+Hgcs. (2.1)

H, is the unperturbed Hamiltonian for the conduction
electrons and is written

H0= Z E}chaTqu.

k,o

(2.2)

Ci.' and Cy, are creation and destruction operators for
a conduction electron of momentum %, energy e, and
spin o. ¢ is measured from the Fermi level of the pure
metal. Hy; is the s—d exchange interaction between the
conduction electron and impurity spins and is given by

Ho=—(J/2N) Y {Sz(Ciy1C14 —Ciy1Cyy)
kl

+S_Cot TCU+S,CitCil.  (2.3)

Sz and S, are the components of the spin operator of
the impurity, V is the total number of atom in the
crystal and J is the coupling constant of the s—d ex-
change interaction. Hpgcs is the model Hamiltonian
of BCS® which describes the superconducting state of
the conduction electrons and is written

HBCS= - l gl % akﬂa_kﬂa_mak/,. (24)
g is the coupling constant of the BCS interaction and is
always negative.

Let A(f), B(f) be two fermion operators in the
Heisenberg representation. Then the retarded double-
time temperature Green’s function associated with 4
and B is written!!

Gas(t)=((4 | B)):
=—i() {4(), BOL). (25

6(1) is the Heaviside step function and (++-) denotes
the statistical average for the system. Gap(w)=
({4 | B))o is the Fourier transform of Gaz(f) with
respect to time #. The equation of motion of Gap(w)
is written!!

wGap(w) = (1/2m) (CA(0), B(0) 1+
+{[4, H]-| B))o. (2.6)

H is the total Hamiltonian of the system given by (2.1)
in our problem.
We define the following Green’s functions:

G () ={{Crt | Cirt"))ay (2.7
Frar(w) = {({CoiT | Cirt )y (2.8)
T (@) = {{S2Crt +S=Cry | Cir11))ay (2.9)

Dyt (0) = ((S2Cry T —S-Ciy T | Crr4 )Y (2.10)

16 J, Bardeen L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).
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Using (2.1) through (2.6) we obtain equations of motion for the Green’s functions defined in (2.7) through

(2.10). These are

(w—e) G — APy = (8a/2m) — (J/2N) 2 T,
!

(wte) Fuir—AGr = — (J/2N) 3, &t

(2.11)

(2.12)

(0—e) ((SzCrt | CuryT))o=—(J/2N) { ; L{USZ2Cat | Cort D)ot 5(S-Cy | Ciry )]

+ l; [—{(S=CesCiy TCry | Cirt 1) )at {(S+Cet CuyTCrry | Cort ")) 11+ g | ZZ (SzCi'CrriCrry | G ))oy  (2.13)

(0—e) ((S-Cuy | Curt 1) )o=—(J/2N) { Zl:[%GUc'—((SzzCzt [ Cort ™o t-3(S=Cy | Cort "))t {(S2C04 | Cirt "))
+ § LUS-CuilCuy TCry | Curt ) )o— {(S_CriCuy'Cry | Cirt T))a—2((S2CiiC0y'Crry | Ciry ")) 1}

-zl ZZ, {S-CtTC_\Crry | CoryT))oy  (2.14)

(wte) ((SzCuiT | Crrt 7))o= (J/2N) { Z [—={{(S2CyT | Cery 1) Dot 5 ((S=Ciy T | Cory 1) )]
= 2 [ ({S-CrTCiy1Cuy | Ciry ) ut ((S4CayTCTCury | Cort ) ) 1} ] 8 | Z ((S2Cu 1 TC_1rTCpy | Cirt 7))y (2.15)

w

(wte) ((S_Cit T | Gt T))o=(J/2N) { ; [—

FUS_Cit T | Gy 1))o—=((S22Cty | Cirt )

+EUCUT | Cury ) )t {(S2C0T | Crry ) )u]— %_; L{S-Cat TC1 TCury | Crrt 1) )o— ((S-Cit TCLTCy | Crrt ) )

—2{(SzCxt 1Cyy*Crry | Gy T))u1} — | 2] ; ((S_Cuy41C1TCy | Cory 1) o

In the derivation of (2.11) to (2.16) we have used the
following relations for spin-% operators?

S1Sz= SZS:i:=:l:%S:i:)
SpS_=3+Sz— 57,

and we require (Sz)=0 in the absence of a magnetic
field. The decoupling scheme due to Gor’kov¥ has
been used to derive (2.11) and (2.12). A is the order
parameter defined by

A=|g| 20 {CitCih).

The next step is to make the following approximation:
Certain sets of operators occurring inside the Green’s
functions in Egs. (2.13) to (2.16) are replaced by their
average values. This is done after the manner of
Nagaoka* and the only nonvanishing averages are taken
to be those which conserve spin. The relations between
these averages are

FS4,
(2.17)

(2.18)

(Ciy1Cry)={(Cu'Cuy), (2.19a)
(CiyTCyTy=—(Cr)TCn1), (2.19b)
(S_Ciy1Cu)={(S:Cy'Cuy)
=2(52C1y'Cry)
=—(SzCyCry), (2.20)

7L, Gor’kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
[Enghsh ‘transl.: Soviet Phys. ———JETP 34, 505 (1958).

(2.16)

(S_CyCuy)=—(S:C;yCry)
=—2(SzCy Cry)
=2(SzCuCry),

(S_Ciy1Cry 1) =—(S:CyyCyyT)
=—2(5zCyTCu4 1)
=2(SzCuyTCriT).  (2.21D)

Use of the decoupling scheme and the relationships
between averages in (2.19) through (2.21) enables
us to derive a set of equations in closed form from
(2.11) through (2 16). These equations are more
simply expressed in terms of the Nambu-Schrieffer
matrix formalism® for superconductivity. To this
purpose we define the following matrices:

(2.21a)

. G}ck' Fklc'
G = , (2.22)
Frt G’
~ Ty Dy
Tipr = . (2.23)
By Topt
Then the equations for Gy and T are
(0—exrs—Ary) Tt (/) Cra(me—3) 180T
= (J/ZN) [(mk—%) "‘1'191;]@);1, (2.24)
(w—eirs—Ar) G = (8u/21) — (J/2N) T (2.25)

18 T R. Schrieffer, Theory of Superconductivity (W. A. Benjamin
and Co., Inc., New York, 1964).
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In (2.24) and (2.25) mx, 9k, 1, Ay, are defined as follows:

me=3 Y (S_Ci4'Ciy), (2.26a)
1
me= D, (Ciy1Ciy), (2.26b)
l
Av= Y {CyyiCiyy, (2.26¢)
1
0 2 (SiCyiCyt)
Op= . (2.264)
2 {SCuCu), 0
l
71 and 73 are Pauli spin matrices and
f‘lc’: Z flk; Gk= Z le- (2.27)
7 7

Nagaoka’s equations for the normal state! are re-
covered from (2.24) and (2.25) if we take #p=A;=
A=0.

The following results are obtained for T and Qv
from (2.24) and (2.25):

G (@) =Cor () [ B/ 27) +8(w0) Gows (0) ], (2.282)
Tp(w) =— (2N/D)i(w)Gu(w),  (2.28b)
Gox (w) = (w - EkTs—Aﬁ)'—l. (228C)

(w) is the ¢ matrix for the superconducting state and is
given by

1(w) = — (J%/4N?) A (o) (14 (J/4N%) F (0) A () ),

(2.29a)
where

A(w) =[14 (/N) (G (w) +m:A (@) )T
X[T1(w) ~T2(w)] (2.29b)

and
Glw) = ; (1:—%) G (), (2.30)
A(w)= ; AGoi(w), (2.31)
Ti() = 2 (m—Bu(w), (2.32)
Ty (w) = Ek;kaOk(w), (2.33)
Fo)= zkj Gor(w). (2.34)

Equations (2.26) through (2.34) form a complete set
of equations for the problem of a single spin-§ mag-
netic impurity in a superconducting matrix. These
equations are generalized to the case of a finite con-
centration of impurities in Sec. 3. An expression for
T, is then derived by linearizing with respect to the
order parameter A.

3. THE GENERAL EQUATION FOR T,
We first perform the transformation w—iw,, where
wn=(2n+1)7kT. 3.1)

The conclusion of a finite concentration #y of im-
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purities!® gives the following form for the one-electron
Green’s function Gy :

G =G (3.2a)
Gy =[iwn—exrs— Ari—nit (i) T (3.2b)

We next assume a solution of the form
G.= [iZ wwn—exrs—Anri ] (3.3)

Z, and A, are functions of w,. Finally ao]c which occurs
in the definition (2.30) to (2.34) must be replaced by
G in (3.3). From (2.18) and (3.2) the equation for
A becomes

An
A=aN(0) | g |+ 2 e

after integration over momentum space. To find the
equation for T,, we begin by linearizing (3.4) with
respect to A,. The result is

A=7N(0) | g| BT X (An/Zalwn]),  (3.5)

(3.4)

where Z, is independent of A. In order to obtain ex-
pressions for Z, and A, from (3.2b) and (3.3) it is
necessary to obtain an expression for { (iw,) which is
linearized with respect to A. Now

m,=n9+0(A?),
mp=mX+0(A?),

7, Ar=0(4). (3.6)

0 and 0 are the solutions of Nagaoka’s equations in
the normal state4 m,0 is an even function of ¢ and
(n®—%) is an odd function of . The use of these
congiderations give the following linearized forms for
G, Ty, and F in (2.30), (2.32), and (2.34) using (3.3)
and (3.6):

750 (iwn) = — G, (3.7
£ (iwn) =300~ 2,97, (3.8)
F(4wn) =iF1n—Four, (3.9)
where
Gi= § (w0 &/[Z202+62];  (3.10)

T0=—Z.wn Z (m®—32) /[Z2w2+e2]; (3.11a)
P

D@ =—(An/Z0,) T, (3.11b)
Fy=—7N(0)ws/ | wn |;
Fy=—aN(0)An/(Zn|wal). (3.12)

The calculation of A and T in (2.31) and (2.33) is
somewhat more complex. From (2.26c) and (3.3),

19 See, for example, G. Rickayzen, International Spring School of
Physics, 1961 (W. A. Benjamin and Co., Inc., New York, 1964).
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Ay, becomes
Av=—kT Y A /[ Znwn?+e2+0,7]. (3.13)
n/
Substitution of (3.13) into (2.31), linearization with respect to A,, and integration over momentum space, yields
il (i) = —ind,®, (3.14)
where
An(l) = Z Arm'An’; (3.15)
and
Ay =—71N(0) kTwn/[] Wy | l Wyt I ([ Wyt [—H W [)] (3.16)
To obtain f‘z, we must first calculate 7, which is defined by (2.26d). From (2.23) and (2.26d) 7, becomes
2e=kT( D T%) o, (3.17)
!
where od implies the retaining of off-diagonal matrix elements only. T, is given by
Tp=— N/ [(1=Z,) iwnt (Au—A) 711Gk (3.18)
from (2.28c), (3.2b), and (3.3). Then from (3.18) and (3.19)
b= —RT(2/T) 3 ers(Aw—A) /[Zuwn e 4An?]. (3.19)
Substitution of (3.19) into (2.33) and linearization with respect to A and A, yields
f12 (1/60,,) = An(s)’ (320)
where
20,® = D BuwA—BoA (3.21)
and
Buw=— 2,/ kT > &¥/[(Z,2wt+ea2) (Zn2on+e2) ], (3.22a)
%
Bo= Y Bu. (3.22b)
!

We now have enough results to evaluate the ¢ matrix defined in (2.29a) to first order in A. We begin by evaluating
A (iw,) defined in (2.29b). Substitution of (3.7), (3.8), (3.14), and (3.20) into (2.29b), linearization with respect
to A and some tedious matrix algebra yields

A (jwy) =140+ Agyry, (3.23)

where
AL=[1—(J/N)G 9T, (3.24)
Asp=—[1—(J/N)G [ (J/N)T0A0,P+[1— (J/N)GL] (AP +4,@) ]. (3.25)

This substitution of (3.23) and (3.9) into (2.29a) and linearization with respect to A yields the following result for
the ¢ matrix:

1(iwn) =1t Tatan, (3.26)
where
L= —(J/2N)[1— (J2/4N?) F1,4,0] 4.2, (3.27)
bon=— (J/2N) L1 — (J2/4N?) Fiu A [ Ayt (JY/AN%) Fy(A,9)7]. (3.28)
t.0 is the ¢ matrix for the normal state.?’ Substitution of (3.26) into (3.2b) and comparison with (3.3) yields
Z non, =, — 11,0, (3.29)
Ap=A+nrly,. (3.30)

% H. Suhl, Phys. Rev. 138, A515 (1965).
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Finally substitution of (3.24), (3.25), (3.7), and (3.28) into (3.30) yields the following linear integral equation for

An:

A= Gn(I)A+nIGn(2) Z Cnn’An’~
l

(3.31)

The coefficients G,® and G,® are determined by further substitution of (3.11b), (3.12), (3.15), and (3.21) into

(3.25). The result is

C.®, C,® and C,, are given by

GO =[ (1= (J*/4) F1, 4,0 Y —nJ?C, O JAN* [ (1 — (J?/4N?) F1, 4,0 +niJ*C,® [4N7], (3.32)
GO =[ (1= (J¥/42) F1, 4 02— niJ'C,® /AT 2/ 4N?. (3.33)

Co® = —(T,0/ Zwn) (1= (J/N)G2) 4 (J2/4N2) [N (0) (4,0)2/Z | wn |1, (3.34)

Cn(2) = (1_ (j/N) Gno)—le (3'35)
Conr=1—=(J/N)GL)[(J/N) T4 pn+ (1= (J/N)G0) By . (3.36)

(3.31) cannot be solved analytically. However, to
lowest order in the impurity concentration #;, only
the first iteration need be retained, i.e.,

Da=[GO+mG,® 3 ConGw®IA.  (3.37)

The equation for the superconducting critical temper-
ature T is given from (3.5) and (3.7) by

1=wN(0) | g | kT 22 (Za | wne | )~
X[Gn(1)+ﬂ16n(2) Z C'nn’Gn'(D:l- (3'38)

w, is replaced by w,*=(2n4-1)wkT. on the right-hand
side of (3.38) and Z, is given by (3.29). From (3.38)
the equation for 7. may be written in terms of T,
the critical temperature of the pure metal, using the
BCS formula In(1.14 kT,/wp)=—N(0) |g|. Here
wp is the Debye frequency. Then, (3.38) becomes

In(Too/Te) =wkTe D, (Zn | wa®] )™
X[ Zn=Gn® =11G,® Y CoGr @], (3.39)

From (3.11b), (3.16), (3.22), (3.27), (3.35), (3.36),
and (3.39) we obtain the following expression for 7 to
lowest order in #z:

In(To/Te) =wntkTo(J/2N)2 D (w0 | @t | )2

X (11— (J¥/4N?) F1,4,.0)2A4,2{24+=N (0) (J/N)
X(A=(/N)GL)™ | wn | kT
X 2 Llowe | (o |+ [owe [ )T (3.40)
Here A4,°F;, and G, are defined in (3.12), (3.24),

and (3.10), respectively. (3.40) is a general expression
for T'.. The only unknowns are 7;® and 7;° and they have

to be determined by solving Nagaoka’s equations in
the normal state. This problem is considered in Sec. 4.

4. EVALUATION OF T. FOR PARTICULAR
SOLUTIONS OF NAGAOKA’S EQUATIONS

In this section the approximate solutions of
Nagaoka’s equations? due to Nagaoka?® and Hamann?
for the normal state are substituted into (3.40). The
results are then analyzed in the light of previous results
for T, in dilute magnetic alloys.2

A. Nagaoka’s Solution for T:>Tx

In this limit the function 4,° defined in (3.12) is
given by?®

AL=[37N(0)w,/4 | wa | J(1—(T/N)G2)2. (4.1)
Here G, is given by
G= 2 (fi—%)a/ (wtea?).
%
The form (4.2) for G,? is obtained from (3.10) by
replacing 70 in (3.10) by the Fermi distribution func-
tion f. The term J2F;,4,0/4N? on the right-hand side

of (3.40) is neglected. We define the dimensionless
quantity %, as follows:

hat=nN(0) (J/N) (1= (J/N)GL) ™.
Then, from (4.1) and (4.3), (3.40) becomes
In(Teo/Te) =[3nkT:/16N (0)] D (| wn® | ha2) 2

(4.2)

(4.3)

X 2 Lwwe | (lon [+l owe DT (44)

2P, Hohenberg, Zh. Eksperim. i Teor. Fiz. 45, 1208 (1963);
[English transl.: Soviet Phys.—JETP 18, 834 (1964)].
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Now where D is the width of the conduction band. From
fi—i=—kT Z &/ [wn2+e?]. (4.5) (4.3), (4.6), and (4.7)
Then from (4.2) and (4.5) k"t =N (0) (J/N)[14+N(0) (J/N) In(D/| wa [) I
GO=—aN(0)ET X [l wn |+|ww |TL  (4.6) (4.8)
n Also
At low temperatures we may replace the sum over n by pp Dol wn | (Jon |+ @ N 1=T(20+1) /7 | 0, |
an integral, i.e., n ’
+D (4.9)
4T T Clon [ [Pt [ where
" ¥ (%) =¢(3+3%) —¢(3) (4.10) -
D
=71 ln( ), (4.7)  and Y(x) is the digamma function. Then from (4.4),
en | (4.8), and (4.9) the equation for T, becomes
Tco) 37LIN(O)J2 [ N(0)J { D }]
)= 2n+41)2 L
ln( 7.) = Tterrae 2 @t N | @nt 1)kt

{+N” w<2+1>[

The decrease in T, with respect to #; arising from the
first term in the curly brackets in (4.11) is essentially
that obtained by Griffin®® and Maki.** To lowest order
in J this term reduces to the classical result of Abrikosov
and Gor’kov?® for the initial decrease in T, due to s—d
exchange scattering in the Born approximation. The
remaining term in (4.11) represents an increase in 7,
for 7<O0 and a decrease in T, for J>0. To third order
in J this term reduces to the change in 7' obtained by
Solyom and Zawadowski'® and its significance is dis-
cussed in their paper. The important point is that the
general expression (3.40) reduces to the known changes
in T, found by previous investigations in the range
T>Tk.

B. Hamann’s Solution

The advantage of Hamann’s solution is that it is
valid over the whole range of Tx. Hamann’s expression
for 1, as defined in (3.27) is given by

B M

(4.12)

when J<0. From (3.12), (3.27), and (4.12) we ob-
tain

(11— (J2/4N?) F 1, 4.0) = (147N (0) wnt,d/ | wa )71 (4.13)

We make the following approximation® for ease of
calculation:

i (e (gt oo

From (3.27), (3.40), (4.12), (4.13), and (4.14), we

N(0)J D -1
N 1“{(2n+1)7rkn}] } (4.11)

obtain

To—T=—[nz/kN(0)7] Zijo (2012 (2,)

X[1=¢(xn) /2]{1 =¥ (2n+1) [InZx,+ 372112}, (4.15)
where

= (2n+1)7Te/ Tk, (4.16)

¢ (x) = {1 —Ina[Ina2+372 102}, (4.17)

We note that the change in T, is a function of Tw/Tx
only. (Tew—Ts)N(0)k/nr versus Tw/Tx is plotted in
Fig. 1, which indicates that there is an initial decrease
in T, for all values of Tk. For T->>Tk, Inx,>>1. Then
(4.23) reduces to the expression (4.11) for T, if only
terms of lowest order in (Inz,)~! are retained and if
Tx is defined as in Ref. 4. For T:<<Tk, | Inx, [>>1 but
Inc, is negative for values of # for which (2n-+1) 7T >
Tk. Since the convergence of the series in (4.15) is very
rapid, only a negligible correction is introduced if we
assume Inx, is negative for all # in (4.23). Then to
lowest order in (Inx,)! (4.15) becomes

3%1 & i
TomTa=— AN (0) nzﬂ,, (2n+1) | Inw, ?
x{1+ ‘IM} , (4.18)
| Inx,, |

where «,=(2n+-1)xT,/Tx. The relationship of this
result to experimental data is discussed in Sec. 5.

5. CONCLUSION

We have been able to derive a general expression for
the superconducting critical temperature 7, of a
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Fic. 1. The initial de-
crease in 7 as a function of
the Kondo temperature
Tk. The solid curve shows
—EN(0)(8T./dnr)o versus
In(7¢/Tk). The dashed
curve shows the binding en-
ergy A of the singlet state
in units of the order param-
eter A versus In(7./Txk)
after the work of Hone
(Ref. 22).
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dilute magnetic alloy for any value of the Kondo
temperature Tx. This expression depends on the
averages 7;° and m, (see Sec. 2), which are determined
by solving Nagaoka’s equations for the normal state.?
Nagaoka’s solution® for 7> Tk was substituted into the
expression for 7T, and the result was found to agree with
previous theoretical work. Hamann’s solution was next
used because of its validity for all 7 with respect to
Tk, and a simple equation for 7. was obtained in the
limit 7.<<Tx. Hone in a recent paper® calculates the
ground-state energy of a superconductor containing
one magnetic impurity. His work compared favorably
with our results obtained by use of Hamann’s model”
(see Fig. 1).

Extension to higher-impurity concentrations and to
temperatures T<7. involves the solution of various
integral equations [for example, (3.31)]. In addition
use of the exact solution of Nagaoka’s equations due to
Bloomfield and Hamann® should give an improved
result for 7. These considerations will be dealt with in
a future publication.

A comparison with experiment presents difficulties.
In the case of dilute magnetic impurities, it has been
shown® that the coupling constant g of the BCS
Hamiltonian described by (2.4) must be replaced by
an effective coupling constant which is dependent on
the concentration of impurities. This results in a further
decrease in T, for low-impurity concentrations. Further,
Schrieffer®* has suggested that the Zn- and Al-iron

2D, Hone (to be published).

2 J. Appelbaum, V. Celli, and M. J. Zuckermann, Phys. Letters
25A, 24 (1967).

2 J, R. Schrieffer, J. Appl. Phys. 38, 1143 (1967).

group alloys which appear to be nonmagnetic, may have
a very high Kondo temperature of the order of the
Fermi temperature. In consequence, T.<KTx for these
alloys since Te~1°K. The initial decrease in 7. with
nr in the limit 7.7k is approximately given by

To—To=—[3n1/32kN (0) J[In (v Tx/T.) I

oLV LE A+ (Bt U Tin( 22, (5.1

kT e
The first term on the right-hand side of (5.1) is obtained
from (4.18) under the assumption that the series in
(4.18) converges very rapidly. The second term is the
decrease in T due to the effective BCS Hamiltonian.”
V, E4, and U are the coupling constant of the s-d
admixture interaction, the energy of the localized d-
orbital on the impurity relative to the Fermilevel, and
the coupling constant of the d-d Coulomb interaction,
respectively. All these parameters appear in Ander-
son’s model.?® ¥V and E, are of the same order of mag-
nitude and E;<U. Since Tw~1°K and Tx>10°K,
these considerations imply that the dominant term is

the first term on the right-hand side of (5.1).

It is important to comment on the nature of the result
for T, in Eq. (5.1). Hamann’ argues that there should
be complete cancellation of the magnetic moment on
the impurity at 7'=0. His expression for the magnetic
susceptibility x of the localized spin-i impurity at
temperature To(KTk) is

X (Teo) =2x0(Teo) N (Tx/Te0). (5.2)
Here xo is the Curie-Weiss susceptibility of the alloy.
2% P, W. Anderson, Phys. Rev. 124, 41 (1961).
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From (5.2) we may infer that the effective magnetic
moment uesr at temperature 7' is

tett(Te0) =2Y2up In™V2(Tx /Ty), (5.3)

where up is the Bohr magneton. Then the first term on
the right-hand side of (5.1) gives rise to an initial
decrease in T of the form

(aTc/é)nI) o~ — (3/128]\7(0) k) (/.leff(Tco) /,U,B)4. (54)

We can therefore speculate that the initial decrease in
T, is related to the residual magnetic moment on the
impurity at temperature To when T, <&KT%, but this
statement requires further proof.

For general values of 7 with respect to 7, the initial
decrease is T, with #y, i.e., (87/dnr)o1s given by Fig. 1.
It is seen that —(97./dn1)o increases as the binding
energy M of the singlet state (between the conduction
and localized electrons at 7’=0) decreases.2 This is
reasonable since the destruction of the singlet state gives
rise to an increase in the effective impurity magnetic
moment. When the singlet state is nearly destroyed,
—(38T/dnr) reaches a maximal value and then de-
creases again as Tk increases further. This is due to the
logarithmic character of the Kondo anomaly for
T.>Txk. Figure 1 may be used to obtain values of
Tx for Zn-Iron group alloys from the data of Boato
et al?® If we use Tx~1°K for Zn-Mn, then Tx~
10*5 °K for Zn-Fe. This is in agreement with Schrieffer’s
theory? since Zn-Fe is a “nonmagnetic” alloy.” A

1296 G. Boato, G. Galinaro, and C. Rizzuto, Phys. Rev. 148, 353
( 27616‘2 is also possible to obtain the effective magnetic moment
uess on the Fe impurity in dilute Al-Mn at temperature 7= T¢q
from (5.4) and the data of Ref. 26. The result is that pess (7o) =
/S where p is the bare moment of the ion. There is no evidence at
present for the existence of such a moment which is required

if Schrieffer (Ref. 24) is correct. Measurements of the suscepti-
bility of Al-Mn should resolve this question.
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more detailed comparison with experiment will be
included in a further publication when the calculations
of Bloomfield and Hamann® become available. We
conclude that the best result at present for 7 in dilute
magnetic alloys is obtained by use of Hamann’s
solution” of Nagaoka’s equations? in the normal state.
This result bears no resemblance to the expression for
T. obtained in I by use of the method of Takano and
Ogawa®. This is to be expected since Takano and
Ogawa’s solution for normal state of dilute magnetic
alloys is very unreliable and in disagreement with every
other solution. In addition to this, Hamann’s ap-
proximate solution’ does not appear to contain the
anomalous resonance®® in Nagaoka’s solution for
T<Tx™® The exact solution of Nagaoka’s equation
due to Hamann and Bloomfield” seems to include terms
due to such a resonance. It is hoped that these terms
will appear in our expression for T, when the f-matrix of
Ref. 10 is substituted into equation (3.40). Finally we
reiterate that the s-d exchange interaction with
momentum-independent matrix elements between con-
duction electron states may only be valid for a spin-3
impurity and that extension to higher spins requires
inclusion at such momentum dependence in the
formalism.”
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