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The electron-spin-echo phase memory T~ has been studied both experimentally and theoretically for
the specific case in which it is limited by the lattice relaxation processes occurring in the sample. The relevant
mechanism is as follows. Lattice relaxation of any spins, whether or not they belong to the species being
observed, causes fluctuations in the local fields and so destroys the relations between precessional phases
which lead to the generation of echoes. The eGect of these Quctuations on the echo amplitude can be cal-
culated by taking an ensemble average for the precessing spins and for all the environmental spins which

give rise to significant time variations of the local fields in the sample. The problem reduces to that of
findin a time and a space average, The space average has been obtained here by assuming a random
distribution of spins in the paramagnetic sample, and by applying the statistical methods of Margenau.
In order to obtain the time average, two models have been chosen to represent the time variation of the
components p, for the relaxing spins. In one model, the p, are treated as Gaussian random variables (Gauss-
M«ko& model), and in the other the spins are assumed to mak. e sudden jumps at random times between
the "spin-up" and "spin-down" quantum states (sudden-jump model). Diferent forms of echo envelope

are derived for the two models. Further differences in behavior will be observed, according to whether the
sample is singly or doubly doped. If the sample contains only one spin species, T~ becames shorter as
the temperature is raised and as the lattice relaxation time T& is reduced. Initially, T~ is limited by local
field fluctuations and may be considerably shorter than T&. Eventually, as the lattice relaxation of the
precessing spins themselves becomes the dominant factor, T~ and T~ tend to the same value. If the sample
contains two species A and B, where B relaxes more rapidly than A, then Tsr (A) and Tjr (B) both begin

by shortening as T&(B) is reduced. For very small values of T&(B), however, T~(A) lengthens again.
The rapidly Quctuating local fields due to the B-spins produce a diminishing effect on the A spins, the
phenomenon being analogous to motional narrowing. The form of the 2-spin echo envelope in the limit of
rapid B-spin relaxation does not depend on the model chosen to represent the time variation of II,, during
the relaxation of the B spins.

Experimental results are presented for two-pulse and three-pulse echoes, and are compared with the
calculations. The material is Ca%04 doped with Ce and Er or with Mn and Kr. At the lower temperatures,
the results are in moderately good agreement with the Gauss-MarkoB theory. At higher temperatures, the
results can only be explained by assuming that the transition rate between the levels of the Er ground
doublet is an order of magnitude higher than the transition rate inferred from Tj measurements. It is
tentatively suggested that this may arise from the fact that T~ depends on the arithmetic sum of the

upward and downward transitions, whereas T& merely measures the algebraic sum, i.e., the excess of dovm-

ward over upward transitions. If some form of spin-spin interaction is taking place, or if there is a phonon

bottleneck (or any other mechanism causing transfers of energy within the spin system), the absolute and

the net transition rates will cease to bear the usual thermodynamic relation to one another. In the present
case it is suggested that energy transfer in the Er spin system is accelerated by the exchange of real phonons

as soon as there is a significant population of the first excited doublet. The possible effects of spin clustering
and of nonmagnetic dipolar interactions on the form of the echo decay envelopes are also briefly discussed.

I. INTRODUCTION

N this paper we present calculations and experimen-
. . tal measurements of the decay function or echo
envelope for two-pulse echoes when decay is controlled
by lattice relaxation processes. ' ' The echo phase mem-

ory time, T~, cannot exceed the lattice relaxation time
T2 of the spin species which is being observed. Echo
phase memories can, however, often be considerably
shorter than T& even in a regime where they are vary-
ing rapidly with temperature and are thus clearly de-

pendent on lattice relaxation effects. They are, more-
over, sensitive to the lattice relaxation of other spin

* Present address: Department of Physics, University of Cali-
fornia, Los Angeles, Calif. 90024.

'This problem has been discussed previously in a theoretical
paper by J. R. Klauder and P. W. Anderson, Phys. Rev. 125, 912
(196Z).

'Earlier experimental results are given by W. B. Mims, K.
Nassau, and J. D. McGee, Phys. Rev. 123, 2059 (1961).

species present in the sample, the phase memory of

any resonance line being a function of the behavior
of the total paramagnetic environment in the host
material. The effect of the paramagnetic environment

can be understood as follows. Let us divide the spins
in the sample into two groups: a group A which has
been prepared for echo generation by the application
of microwave pulses and a group 8 which consists of
the remaining spins. ' Groups 2 and 8 interact via the
5,(A) 5,(B) term in the dipolar Hamiltonian. If group
8 relaxes to the lattice, the effect is to generate a

fluctuating local 6eld acting on group A which causes
the Larmor frequencies to undergo small shifts and
the precessional phases to be randomized. This mecha-

nism may be operative even if there is only one spin

species present. Suppose, for example, that a fraction

' A discussion in terms of A- and 8-spin groups of some analo-
gous problems in NMR is given by S. Herzog and K. I.. Hahn,
Phys. Rev. 103, 148 (1956).
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of the spins which have been prepared by the micro-
wave pulses relax to the lattice before the echo signal
appears. These spins are, of course, lost to the A-spin
group and do not contribute to the signal. There is
thus a certain degree of A-spin attenuation. If, how-
ever, the relaxation of these spins causes an appreciable
change in the local field configurations in the sample,
then, the same spins, acting as 8 spins, will cause some
additional attenuation of the echo signal. In many
cases this 8-spin effect is larger than the A-spin atten-
uation.

When the A- and 8-spin groups belong to the same
resonance line, the phase memory becomes shorter as
T~ is reduced and as the local field Quctuations become
more rapid. Eventually a point is reached when direct
lattice relaxation of the precessing spins (i.e., the A-
spin effect) becomes more important than the local
field effects (the B-spin effect) and the echo envelope
follows the lattice relaxation curve. If the 8 spins
belong to a diGerent, and more rapidly relaxing species
a new feature may appear. As Ti(B) is reduced, the
A-spin phase memory will first shorten and then
lengthen out again. This is an eGect analogous to
exchange or motional narrowing4 and is due to the
rapid averaging of the local field fluctuations. Altogether
the phase memory of the A-spin group in such a doubly
doped sample will show the following changes as the
lattice temperature TI. is increased:

(a) The phase memory will shorten because of local
field "noise" generated by 8-spin relaxation.

(b) There will be a subsequent lengthening as B-spin
relaxation becomes too rapid to have any effect.

(c) The phase memory will fall once more as the
A spins themselves take over the role of 8 spins until
finally T~ and Ti(A) tend to the same value.

In practice it is quite difficult to study ranges (a),
(b), (c) in isolation from each other, and to eliminate
the eGects of other processes such as spin-spin Qips
which also create local field noise. Spin-spin Aips can
occur within the A- or 8-spin groups or amongst the
nuclei in the host lattice, and the analysis of their
eGects poses a difficult theoretical problem which is
not treated here. As far as possible, these complications
have been minimized in the present experimental stud-
ies by.choosing suitable samples, and by selecting ex-
perimental conditions under which a particular mecha-
nism predominates. Phase-memory times have been
measured in the three ranges and echo-envelope-decay
curves have been obtained which illustrate the two
different types of behavior found in ranges (a) or (c)
and in range (b) .

The phase-memory time T~ in a two-pulse spin echo
experiment is here defined as the time between pztlse I
and the echo which must elapse to bring about an e '

z A. Abragam, The PrzzzczP/es of Nuclear Magzzetzsnz (Oxford
University Press, New York, 1961).See also Ref. 9.

attenuation of the echo signal. 5 T~ conveys only a
limited amount of information, since the echo is not,
in general, exponential and does not always have the
same mathematical form, but it is useful as a rough
measure of the time scale of the decay. An echo enve-
lope of nonexponential form cannot, of course, be
properly described by a relaxation time T2. Neverthe-
less it may sometimes be convenient to treat T~ and
T2 as equivalent in rough calculations. It should also
be stressed that, even when T~ is controlled by Aip-

Rop processes, it does not normally give a direct meas-
ure of the Qip-Qop transition time. Control of T~ by
fop-Qop transitions is, like control of T~ by lattice
relaxation processes, usually an environmental or 8
spin rather than a direct or A-spin eGect.

Interactions between A spins and B spins can lead
to echo attenuation in three-pulse as well as in two-
pulse experiments. In a three-pulse, or stimulated echo
experiment the echo signal attenuation depends on
the times r and T which elapse between pulses I and
II and between pulses II and III, respectively. When
Ti(B)))T the decay during time T is interpreted in
terms of a spectral diGusion process which arises from
changes in the local fields. The same basic considera-
tions apply as in the case of the two-pulse phase mem-

ory, so that the assumptions of the models which we
discuss here can be tested by performing either type
of experiment. This is no longer true, however, when
Ti(B) is short. Local fields are then averaged and the
concept of spectral diGusion has no useful meaning.

Theoretical calculations are given in Secs. II and III
and in the Appendices. Experimental results are pre-
sented in Sec. IV and are discussed in Sec. V.

II. TWO-PULSE ECHOES —THEORY

We begin by showing how the envelope decay func-
tion can be factored out of the general expression for
spin echoes, and indicate the conditions which must be
satisfied if this function is to be independent of the
linewidth and of the pulse power. Let us first consider
the generation of echoes by A spins in the absence of
8 spins. Bipolar interactions between A spins are ig-
nored, and, in the event of the A spins having a multi-
level system, we select only those two levels which are
involved in the resonance. The state of the system of
Ã A spins after the first applied microwave pulse can
be described by a 2E)(2X density matrix consisting
of S 2&2 submatrices of the form

a e'"'

~r e '"
p22

arranged along the diagonal. Acr is the energy difference
between the two states and az depends on the inter-

' The word "signal" is used as an abbreviation for "precessing
magnetization. "The voltage output signal obtained from a super-
heterodyne receiver is essentially proportional to the precessing
magnetization in the sample.
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action with the microwave 6eld during the pulse. When the second microwave pulse is applied at time r, each
2&2 submatrix is changed to

ps& e irene-era(t g)+—$ cere(t g)-

a a 4eirare ire(t—r)+—f) 8e ira(—t g)— 1
P22

where azz depends on the interaction with the second
pulse. The echo signal is found by calculating Tr(pM', )
and arises from the terms with coeScients az*azz. As-
suming that the number of systems having an energy
separation Sco can be speci6ed by means of a distribu-
tion g(~) we have that

Tr(pgg) Re ( g( )ar*( )arr( )e'r' r'rgre) (5)

The echo signal is generated at' 3 = 2v- and its form is given
by the Fourier cosine transform of g(ru) az (&v) azz(or).
The functions az(~), azz(~), which must be calculated
by considering in detail the motion of a spin in the
applied microwave field H~ for a given cv, are generally
somewhat involved and the echo signal can assume a
variety of complicated forms. ~ A picture which is ap-
proximately correct under normal pulsing conditions
can, however, be obtained by taking az and azz to be
Lorentzian functions with a half-width at half-height
of yH~. In NMR work it is often possible to make the
further assumption that yII~ is several times greater
than the width of g(co) . The factors az(cu) and azz(~)
then vary slowly over the range of interest and can
be taken outside the integral in Eq. (3), leaving the
echo waveform as the Fourier transform of g((0) . This
very simple situation cannot always be reproduced in
KSR work, where strains and other inhomogeneous
broadening mechanisms sometimes result in wide reso-
nance lines. At practicable microwave power levels

g(~) is often wider than. yH), causing the form of the
echo signal to depend primarily on the pulsing condi-
tions via the factors az and azz in Eq. (3). In general,
however, the echo waveform does not vary as 7- is
increased. Also, as is shown in the next paragraph, the
measurement of decay times is not affected by the
pulsing conditions, prot)ided that changes il the Bspirt-
local fields during a tAne 2r are less thart yIIT.

The lattice relaxation of the 8 spins and their inter-
action with the A spins might be introduced into the
problem by expanding the density matrix so as to
include the 8 spins and the lattice modes. A rigorous
solution would then be obtained by following the evolu-
tion of Tr(pM, ) at time 2r as a function of r. The

For simplicity it is assumed here that v.))t„,where t„is the
duration of the applied pulses. Detailed calculations show that the
peak of the observed signal may move by ~-', t„according to the
pulsing conditions {see also Ref. 7).' The motion of spins in applied rf 6elds has been analyzed by
A. L. Bloom, Phys. Rev. 98, 1105 {1955).Some numerical com-
putations of echo waveforms have been made by W. B. Mims,
Rev. Sci. Instr. 36, 1472 (1965).

enormous complication inherent in such an approach
can however be largely avoided by adopting a physical
model as outlined in the Introduction. We suppose that
the interaction with 8 spins changes the frequencies
~ by an amount

AM(t) =y~ gy;(t) (1—3 cos'8)/rgt,

where tt;(t) is the time-varying component of mag-
netization parallel to the Zeernan 6eld Hp of the jth
B spin, i.e., the matrix element of gztPS, t(t) . The other
quantities in (4) are defined in Appendix A. Since,
under the action of 8-spin local 6elds, the A spins no
longer preserve their frequencies co, the exponents ~v,
o)(t r) in —the off-diagonal term in (2) must be re-
placed by integrals. The az*azz term becomes

27

az*(gdo) a»((0,) exp i s(t') ~(t') dt'

where ~p, co, are the values of co at times 3=0, t =r, and
where s(t') is the function introduced by Klauder and
Anderson' to take into account the phase reversal oc-
curring at time r s(t) has .the value +1 when t(r
and —1 when t) r. Equation (3) now becomes

Tr(pgg, ) Re( g( .)ar'( )arri, )

Xesp i s(S') (S )gr' gar) . '(5)

The summation (or average) over A spina denoted by
the first integral can be simpli6ed if we assume that
az and azz vary only slightly over the interval co,—cop.

Under normal pulsing conditions this requires that
o), o)(g(yHz. We can the—n write azz((0, )—azz(coo), and
the integral (5) may then be factored to give

2V'

+exp i s t' Aor 3' —Ace 0 dt' . 6
0 Av

The first factor in (6) is then the same as the integral
(3), and the echo signal is a product of the two factors,
a waveform factor depending on g(o&) and on the puls-
ing conditions, and a "phase-memory" factor depending

5) See Ref. 1, Eq. (1.8).
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on an average calculated from the individual frequency
changes, vAvo3(/), due to the local fields.

Substituting (4) in the second factor of (6) we ob-
tain the phase memory factor, or echo decay function

E(2T) =
2%'

expi (s(f)y g (ft;(1') —p;(0) )
0 j

X(7—3cos'8)/rP337) . (7)
Av i Av ii

The meaning of the double average is as follows. Aver-
age i is taken over a subensemble of A spins, all of
them having 8 spins at a particular set of related lattice
points. Average ii is over all possible types of spin
neighborhoods. Average i can be replaced by a time
average according to the ergodic hypothesis, whereas
average ii is over a set of permanent con6gurations
established at the time when the crystal was grown
and annealed. Writing

values of a Gaussian random function is itself randomly
distributed with a Gaussian probability curve, and the
time mean from (Sc) is given by

exp(in;&&, (2r) )) exp{—0.5n, ((P, (2f) )') I.
&$;(2r)) is the mean and &($;(2r))') the variance
&L(2r) —&$;(2r) ))') of f, (2r). If we assume that
&ftj(0) )=0, then

2r

&4(2 ))= «(1) & (1)).
0

The phase reversal implicit in s(f ) will, furthermore,
ensure that Q;(2r) ) =0. From (S) we have therefore

E(2 ) =
& p{—0 5 Z &(4(2 ) ) )I) . *- ., (9)

2T

&(4( ))')= f «()( )

and

we have

];(t) = dt' s(t') (ft;(t') —ft (0) )

n;=7~(1—3 cos'8 )/r'

(Sa)

(Sb)

&& &ftf(t') P (t") )t ~ A (10)

To evaluate (10) we introduce the Marco%an assump-
tion

&ft (f') P, (1"))=
&ft (0) ft (t"—t') )

= &(f 3(0) )') exp{—R7 I

f"—t' lI (11)

E( r) «expt{ Q nj4 (2r) I )time 'Av)]sttiee Avv (SC)

the lattice average being understood in the sense of
average ii.

The first problem is that of finding the time average.
This may be done by making two further assumptions
which, following Anderson, ' we may describe as the
Gauss-Markoff model. Let ft, (t) be a Gaussian random
function. Then g;(t), being a linear combination of the

E.; may be identified with the reciprocal lattice time
1/Tt" of the B spins, and &(p, (0))')=-'g77'p' Thus

&f (1')1 (1"))=lg '0'exp{ —
I

1"—f'I /2' I.
Substituting (12) in (10) and performing the integra-
tiOn, We haVe &L(2r) ))=g77'p'B(r), Where

B(r) = (1/R ) {Rr (1 e+v) —0—.5—(1—s +') I (13)

In terms of B(r),

E(2r) = &eXP[ o5ga'O'B(r—) Q nvs]) tsttiee Avv

= &exp{ —0.5g77'P'yg'B(r) g (1—3 cos'0, ) '/r, '])~stt;«Av„v

The contribution to E(2r) arising from this configura-
tion is therefore given by

The average over all environments may be found ability of finding such a configuration is
by methods analogous to those used to derive the
line-shape function for broadening due to a static 8- II (dl'/I').
spin environment (Appendix A).t' Each sum g; con- j
tributing to the average corresponds to a particular
configuration of 8 spins about an 2 spin. Let us sup-
pose that this is arrived at by placing E 8 spins, one
in each of E specified volume elements d V~, d V2 ~ d V~.
If V is the volume of the sample, and if all points are II («;/I)
equally likely as sites for the jth J3 spin, the prob-

e P. W. Anderson, J. Phys. Soc. Ja an 9, 316 (1954). Exchange and motional narrowing problems are treated in this paper.' Ke use the rate R rather than 1 T& in these calculations in order to simplify the writing out of equations and in order to
facilitate comparison with other work (e.g. , Ref. 3).

"The separation of Z(2r) into a time average and a lattice average as performed here requires the absence of time correla-
tions between the motions of J3 spins.
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multiplied by the exponential inside the brackets in
Eq. (14), i.e., it is

I:II (dV~/V) 3

Xexpf 0 5gB P 'YA2B(r) P (1 3 cos20.)e/r. 6] (15)

The average over all possible placements of E 8 spins
in the neighborhood of an 3 spin is found by integrat-
ing over each of the volume elements dV;. As in the
case of the analogous problem in Appendix A this
average can be expressed as the product of X similar
definite integrals, giving

vol y
~(2r) = (V ')

E(2r) =exp{—(1.88hcu i R' 'r' ') }

At the other limit, when Rr»1, B(r) =r/R and"

g(2r) =exp {—(1.88grd, (,R-U2ru2) }

(23)

(24)

The two limiting results (23) and (24) can conven-
iently be expressed in terms of the phase memory in
the forms

where

E(2r) =exp{—(2r/T~) ~I'}, (25a)

and

7jr = 1.89LR(hen(2) '$—'I', Rr«1 (25b)

The result (21) assumes a comparatively simple form
in the two limits of Rw(&1 and Ev))1. For R~((I,
B(r) =Rr', and"

Xexp{ —0.5B(r)g sP'yg'(1 —3 cos'8)'/r'$ . (16)
where

By using arguments of the same type as those given in
Appendix A we can show that

E(2r) =exp{—(2r/Tjr) I }

T~——0.56R/(d o)p2) ', Rr&&1.

(26a)

(26b)

where

E(2r) = L1—V'/Vi~

=exp( —ns V'),

CO +i
V' =2' r'dr d (cosg)

0

X {1—expt' —0.5B(r) g~'P y~2'(1 —3 cos'0) '/r'j I. (17)

Equation (17) can be integrated to give

V'= (8V2vrI/9V3) g~Pyg/8(r) $'~'

where I stands for the definite integral

The two limiting conditions can also be reformulated
in terms of the static local field broadening 6~~~2. Pro-
vided that we are only concerned with the first e fall
of the echo envelope, the condition Ev.(&1 is equivalent
to R«ken~/2. At the other limit, if Er))1 holds for the
first e fall it will hold for the remainder of the decay,
and the condition is equivalent to R&)hco~~2. In the
intermediate range R A~q~~~1/r, and E(2r) cannot
be readily approximated by any simpler function. Some
calculated decay functions in this range are shown in
Fig. 1. The phase memory at the minimum can be
found by differentiating (24) with respect to the pa-
rameter R contained in B(7), giving the results

dx {1—exp( —1/x') }. or
T~(min) =1.8/A(ag(g

T~(min) =3.8/R.

(27a)

(27b)
Substituting the value I=1.78 and combining numeri-
cal factors we obtain

whence

V'=4.06y~gaPtts(r) 7&&', (19)

E(2r) =exp{—1.88h~~~g{ B(r))'"} (21)

and the required phase-memory function can be ob-
tained by substituting B(r) from Eq. (13). The phase-
memory time T~ (as de6ned in the Introduction) is
given by twice the root of the equation

3.55(kcoyi2) B(r) =1. (22)

E(2r) =exp{ 4.06Ny~g~P/B(r—) ]' '. (20)

Equation (20) can conveniently be reexpressed in
terms of the half-width Aor~/2 which would arise from
broadening by static B spins LEq. (A9)$. In these
terms

The derivation of the decay function E(2r) given
above depends in a fundamental way on the assump-
tion that p;(/) can be treated as a Gaussian variable.
This assumption represents an attempt to summarize
the interactions of the 8 spins and lattice phonons in

"In the treatment of analogous problems in NMR expressions
of the form exp( —c'878) and exp( —c"~/E) are derived for the
two limiting cases Rr«1 and Er))1 (Refs. 3 and 4). The square
rootsintheexponentsof Eqs. (23) and (24) arise asaconsequence
of the magnetically dilute conditions assumed here. One can under-
stand this difference qualitatively by considering the consequence
of random substitution of 8 spins in the lattice. Some A spins have
8 spins in their immediate neighborhood and repeatedly undergo
large shifts of Larmor frequency; other A spins 6nd themselves in
environments where the local fields are always relatively weak.
The result is thus approximately equivalent to a superposition of
results of the NMR type, but with a distribution of constants c.
Equations (23) and (24) are derived by assuming a random place-
ment of 8 spins and an r ' interaction law. Different interaction
laws, and situations which involve some degree of correlation in the
selection of 8-spin sites lead to different forms for the function
Zi2rl (see Appendix C).
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a simple and manageable fashion. It may be rational-
ized by supposing that each relaxing 8 spin is in close
contact with the lattice and is perturbed during one
relaxation period by many small Quctuations occurring
in the phonon spectrum. If these perturbations are all
of comparable magnitude, then, according to the cen-
tral limit theorem, one might expect their combined
effect to give a random variable with a Gaussian dis-
tribution of values. "This argument appears plausible
enough where, as in the Raman process, the interaction
involves a large number of lattice modes. However, it
is not clear that it is appropriate in a case such as that
of lattice relaxation by an Orbach process (which in-
volves phonons with energy ))kT) .'4 In order to bring
out the importance of the assumption regarding the
nature of the relaxation process we consider an alterna-
tive model for the time dependence of p,;(I) . Instead of
assuming that 1r;(I) changes in many small steps we
assume that it makes sudden jumps between the values

&togs. This manner of making the change represents
an opposite extreme from the Gaussian behavior as-
sumed earlier, and the predictions of this "sudden-
jump" Inodel can to some extent be looked upon as
constituting a second limiting case. The Markman
assumption, i.e., the assumption that the probability
of a change in 1r;(I) is dependent only on the immedi-
ately preceding state, is retained, and leads to a time
correlation for (p, (I') p;(I") ) as in Eq. (11)."

The distinction between Gaussian and sudden-jump
models is unimportant in the case where Rv&)1. Since
each p;(1) switches a number of times between its two
values, the integral $, (t) of Eq. (8a) consists of numer-
ous accumulations of phase, all of them of comparable
magnitude, and the central limit theorem can be used
to justify the treatment of $(I) as a Gaussian random
variable. If however Rr((1, P(I) will not approximate
to a Gaussian random variable unless the local field
variations are also Gaussian. This is clearly not the
case for the field components due to individual 8 spins.
Moreover, it is not even possible to argue that the
resultant local 6eld is a Gaussian variable. Since there
is a wide disparity between the magnitudes of the local
field components the central limit theorem is not ap-
plicable. Klauder and Anderson (Ref. 1) have adopted
a different approach to the problem and have calculated
the A-spin phase memory according to the sudden-

jump model in the limit R~&(1, by considering 8-spin

"It is the accumulated phase in the integral $ (t) rather than the
magnetic moment p;(t) which has to satisfy the conditions of the
central limit theorem. p; (t) is itself clearly not a Gaussian variable
for large t since its eventual distribution of values for large t is
limited by the values +-,'g~P.

'4 In the Orbach process t R. Orbach, Proc. Roy. Soc. (London)
264, 458 (1961)g relaxation is effected by making transitions to
excited states which may be located many times kT above the
ground state. The rate is then limited by the low density of ener-
getic phonons in the lattice and the actual transition time is short
compared with TI.

'SThe time correlation function for the sudden-jump case is
derived in C. P. Slichter, I'rznci p/es of Magnetic Resonance
(Harper and Row, New York, 1963), Appendix B.
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Fro. 1. Two-pulse echo decay functions E(2r) calculated
according to the Gauss —MarkoB model PEqs. (21) and (13)g.
The numbers above the curves denote the ratio ha»ls/R between
the local 6eld parameter and the 8-spin relaxation rate. The
curves are plotted in dimensionless form by taking Au&~2v as the
abscissa. Approximations which are valid in the limits Er«1 or
Rr))1 are given in Eqs. (25) and (26).

(2RAcoryLU) /s.+ ro —
too& ~$

(~ ~o) + (2RAcor~sdt) s (28)

In the next time interval ~t there are e~M, t additional
spin Qips at Narc/ated sites, and each frequency compo-
nent in (28) gives rise to a new Lorentzian distribution.
The change in local fields seen by the full ensemble of
A spins can thus be represented as a diffusion process
characterized by a Lorentz kernel and having a width

16 The factor 2 occurs here because each spin Aip corresponds to
the introduction of a new moment &g~P, whereas in Appendix A
the line broadening is calculated by assuming a random distribu-
tion of moments &-',ggP.

Qips to cause a "diffusion" of the local field values.
The argument is briefly as follows. Suppose that a
small number of randomly selected 8 spins reverse
their orientations in a time AI((1/R. This is equivalent
to the insertion of nrrRAt moments each with p,,=g~p
at random sites in the lattice. Using the statistical
argument of Appendix A it can be seen that this
causes a spin packet with initial frequency ~o to broaden
out into a distribution"
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which increases linearly with time. Klauder and. Ander-
son then show that the phase-memory function is pro-
portional to exp( —mr') or, in our not'ation, E(2r) =
exp f

—(2EAorrr2r') }.This can be written in the form

E(27) =exp f
—(2r/Trrr) '}, (29a)

T~=1.41(Adoring) '", Er&&1. (29b)

The diffusion kernel (28) can be modified so that for
long times it leads to a stationary distribution with
width Acr&~2 by writing

and pulse II to the echo) this is the most extreme
assumption we can make. The frequency deviation
or —ore of 2 spin in the Lorentzian distribution gl, (or) =
(d'or, r,/rr)/ f (or —ore)'+ (6»,)'}, which denotes the line
broadening by 8 spins is then switched to —(or —ore),
and the distribution of frequency changes A~ is given by

gr (~~) = (2~~i/2/rr) /f (~~) '+ (2~~i/2) '}
In the time v. following pulse II the precessing mag-
netization will decay according to the Fourier transform
of gr, (Aor) . Thus

E(2r) min =exp f (26orrgr) },
Aorrr2(1 —e 2"r)/7r

E{or ore, T) = . (3P)
(or —«) + f»ir~, (1—e ) } Tris (min) = 1/Dort)2. (31b)

It is doubtful, however, whether the resulting diGusion
kernel can be used in conjunction with the Klauder
and Anderson treatment. In making the repeated con-
volutions which are required in order to derive the
two-pulse decay function E(2r), it is implicitly as-

sumed that individual A spins which have made larger-
than-average frequency excursions in the past remain

typical of the A-spin ensemble and will not have any
specific tendency to make large excursions in the future.
This assumption can be justi6ed as long as Er(&1 since
there is then only a small probability that a particular
8-spin neighbor will make more than one Rip. If an
A spin sees an exceptionally large local Geld excursion
during time $«1/R, this may show that one or more
of the nearer 8 spins have reversed their polarity during
this time, but it does not indicate that the neighbor-
hood contains more than a statistical number of 8
spins. There is therefore no special likelihood that the
same A spin will undergo a large local field excursion
during the next time interval dt. The situation is quite
different when E~& 1. Spectral diffusion during v may
then involve multiple Qips of the same 8 spins. A
neighborhood which has shown large local Geld changes
in a time 1/E is likely to contain more than the
average number of 8-spin neighbors and. will therefore
be characterized by larger local 6eld changes through-
out its future. '~

Although neither the Gauss-MarkoG nor the diffu-
sion formulas for E(r) are applicable if the 8 spins
relax by sudden jumps and if Er~1, it is still possible
to set a lower limit on the phase-memory time for this
case. The limit will represent a shortest possible value
for the A-spin phase memory when it is controlled by
8-spin relaxation. Let us suppose that all the 8-spins
Bip simultaneously at the time 1=v when pulse II is
applied. Since the echo signal amplitude depends on
the difference between the A-spin phases accumulated
in the two halves of the echo cycle (pulse I to pulse II,

7 On the Gaussian model an A spin in a dense 8-spin neighbor-
hood identi6es itself much earlier. Many small steps @rill have been
taken by each of the rr,;($1 even when rl«Tr.

It may be noted that this is approximately half the
phase-memory time calculated on the Gauss-MarkoG
model f Eq. (27)).

The conclusions of this section may be summarized
as follows. In the limit of Rr»1 (or E»horrr2), E(2r)
is given by Eq. (24) and it does not matter which
model is adopted for the 8-spin relaxation process. If,
on the other hand Zr«1 (or R«horry), the time de-
pendence assumed for p(rI) enters into the result. As-
suming that p(t) describes a random walk of many
small steps we obtain. Eq. (23); assuming ra(/) executes
sudden jurnPs between +-,'grrP we obtain Eq. (29).
The range Rr 1 is more difFicult to treat than either
of the limits above, but it is important, because it is
here that the A-spin phase memory passes through its
minimum. A very crude model gives E(2r) as in (31a),
but the result is probably only useful as a bounding
value.

III. THREE-PULSE ECHOES —THEORY

In the three-pulse echo sequence v denotes the time
between pulses I and II, and T the time between pulses
II and III. %e are primarily concerned here with the
decay function Dr(r, T) (see Appendix 3), which
describes the echo signal attenuation factor associated
with the physical processes taking place during the
time T. As in Sec. II we can approach the problem of
describing the time variation of p,, the s-axis component
of each 8-spin moment, by adopting one of two models:
the Gauss-Markoff model in which Ir,;(t) is a Gaussian
variable, and the sudden-jumP model in which ra, (/)
switches at random times between the two values
&~gsP. In the limit Rr&&1, Dr(r, T) depends on "dif-
fusion" of the local 6elds, and is given by the Fourier
transform of the diffusion kernel (Appendix 8). To
find Dr(r, T) according to the Gauss-Markoff model we
have therefore to derive a diffusion kernel E(M —ore, T)
by 6nding the statistical average of the resultant local
fmlds when lj,;(t) is a Gaussian variable. The argument
is a simple extension of that used in Appendix A to
derive the linewidth due to static 8-spin broadening.
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Instead of Eq. (A3) we have be shown that Eq. (32) leads to a result

&(~-~o, T) =(2~) ' dp exp( i—p((o (—t)p) ] 1~((o—(oo, T) =(2~) ' e rtBv-)e ip(te -teo)d-tg (34a)

XP (V') fdV; do;
j 1

Xexpt ipse~(1 —3 cos28;)r, gtg;(T)]f(tg;, T; tg;o) . (32)

where

OO +1
V' =22r r'dr d (cosg)

0 -1

dIJ,
' 1—exp ipy~p,

' 1—3 cos'0 r' ' p', T .

The variable p belongs to the integral form of 8 func-
tion which is used here to apply the constraint

gy~(1 —3 cos28;)r;—otg;(T) =(o—(op, and thus to ex-

tract from the sum the probability of finding a fre-

quency shift go —(op. The function f(tg;, T; tg, o) defines

the distribution at time T of moments tg; which at
T=0 had the values p,;0. It is shown elsewhere" that

(34b)

Integrating first with respect to r, 0, and then with
respect to p,

' we find that

V) = (Q/9) (22ro/3) ) )2&&(r'(1—e—2RT) 1(2 (3$)

At this point it is convenient to set o =—', (2r/2)'togRp
so that (34a) and (35) give the results (A6) and (A7)
when T—+~, i.e., so that each spin packet eventually
diGuses to give the linewidth function derived in Ap-
pendix A. Then 22RV'=

~ p ~
A(pit2(1 —e 2RT)'(' and

(33)

1
f(Ws Tt t d'p) =

p (1 2R T)]))2.
(~, ~ e RtT)2. -

)(exp 2o'(1—e—~iT) 11(t)lt2(1 e 2RT) 1/ / 22r-
E(pp —(op, T)=, , (36)

(& ~ )2+it~ 2(1 e 2RT) '
where E.; is a rate constant with the same meaning as
in Eq. (11), and o'= ((tg;(0) )') =digR282. For our pur-

pose we can drop the suKx on R and also use a some-

what simplified distribution,

where A(oit2 is the half-width given in Eq. (A9). The
decay factor is given by the I"ourier transform

DT(r, T) =expL —A(pictor(1 —e 'RT) "'] (37)
I I Pi

) =o Dv(i e mr)]os "P —
go (1 e mr) ) snd—, in the limit )tr« t (given the previous condition

Rr«1) we have

(34)

obtained by deleting the td;p term in (33). tg in (34)
stands for the change in p; from its initial value at
T=0.This simplification is valid if, as we have assumed
elsewhere, the shifts of the A-spin frequencies due to
8-spin local fields are small compared with the static
broadening (e.g., strain broadening) of the A-spin reso-
nance line. At any point in the line where observations
are made, the number of A spins with a 8-spin neighbor
whose moment p; is changing in one direction is then
balanced by an equal number of A spins having a
similar 8-spin neighbor whose moment changing in the
opposite direction. p, is thus equally likely to have
either sign and we can dispense with the asymmetric
diffusion term tg;pe RT. )When f(tg;, T; tg, p) is replaced

by the effective distribution f'(tg, T) the asymptotic
width cr must also be modi6ed to o' but, since this
parameter will be adjusted later to give agreement with
the linewidth formula derived in Appendix A, the rela-
tion between o and o' need not be considered here. )
By following the same steps as in Appendix A it can

"See Ref. 3, p. 152 for references and discussion.

D2 (r, T) = expL —(2R) ')26(oitorTU'] (38.)

The diffusion function E((d o)p T) in, Eq.—(36)
Lorentzian and has the property of retaining its form
under repeated convolution, but it does not belong to
the "homogeneous Marks. an" class of functions dis-
cussed by Klauder and Anderson (Ref. 1). The func-
tion f(tg;, T; tg;p) does belong to this class, but the
property disappears when an average is taken over
the different 8-spin environments. The physical rea-
sons why a homogeneous Markofhan function is not
appropriate here are similar to those suggested in Sec.
II after Eq. (30) and in Footnote 17. If tg;(t) describes
a random walk of many small steps as in the Gauss-
Markoff model then, even in the earliest stages of
spectral diffusion, there will have been some separation
of the 3 spins according to their 8-spin environments.
A spins whose frequency has shifted over a relatively
large interval in a time ~t will generally be those with
more 8 spins in the immediate vicinity, and they will
therefore have a tendency to undergo larger frequency
shifts in subsequent time intervals.

Considerations of this kind lead one to question the
validity of the initial assumption that the over-all
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three-pulse decay function can be written in the form
of a product D,(r) Dr (r, T), and that the two factors
can be calculated separately by considering the whole
A-spin ensemble in each case. Although this factoring
can be justified for the sudden-jump model in the
limit of Rr«1 and RT&(1, it is not strictly applicable
for any range of Rv or RT in the Gauss-Markoff case,
since the decay D, (r) which occurs in the interval
between pulses I and II will amount to the preferential
elimination of those A spins which have most nearby
8-spin neighbors. The magnetization pattern 3f,~
cosorqr at the beginning of the time interval T will
therefore characterize A spins which have less than
the statistical number of 8-spin neighbors, and it is
for this group of A spins rather than for the complete
ensemble that the factor Dr(r, T) should be calcu-
lated. We shall not attempt to do this here, but merely
note that three-pulse echo experiments may be less
reliable than two-pulse experiments as a means of meas-
uring local 6eld changes. The e8ect of such a separa-
tion of A.-spin environments would presumably be to
reduce the decay rate during the time T, and to modify
the Lorentzian kernel (36) in such a way as to cause
it to resemble the more familiar Gaussian diGusion
kernel. "

The diffusion kernel deduced from the sudden-jump
model for the relaxation of 8 spins has been derived

by Klauder and Anderson and is given in Sec. II, Eqs.
(28) and (30). From the latter we derive the decay
factor

Dr(r) T) =exp) —Ate&~sr(1 —e s~r) j,
which in the limit of RT«1 becomes

Dr(r, T) =expL —2RA(etprT). (40)

The reasoning used in the derivation of the diffusion
kernel (30) (and hence of the results above) again
requires that the experimental linewidth should be sev-
eral times larger than the linewidth 2hco~~2 due to local
fields. This must be so in order to ensure that each
spin packet in the resonance line consists of A spins
with a typical distribution of-8-spin configurations in
their neighborhood. The same condition is required for
the derivation of the diffusion kernel according to the
Gauss-Marko6 model.

In the opposite limit of-'R~))1 no spectral diffusion
can be brought about by changes in the local fields
due to the 8 spins since the full range of values of
these fields has already been seen by the A spins before
pulse II. Dr(r, T) will therefore be independent of T
except insofar as other processes, such as lattice relaxa-
tion of the A spins themselves, play a signi6cant role.
Under these circumstances it is not appropriate to

» With the elimination of A spins having nearby 8 spins the
local fields tend to be dominated by the relatively large number of
8 spins at intermediate distances which give local field interac-
tions of comparable size. Changes in the local Geld may then be
expected to approximate more closely to the pattern of a Gaussian
random walk.

picture the A-spin resonance line as consisting of a
number of slowly diffusing spin packets. It is more
realistic to regard it as an assembly of nondiffusing
spin packets, each homogeneously broadened and each
having the line shape which is approximately given by
the Fourier transform of E(/), "where E(1) is obtained
by setting 2r =3 in Eq. (26) . A numerical computation
of the cosine transform

expL
~

(1/Tsr)'~'
(
ge'"'dt

is shown in Fig. 2. The width parameter co~= 1/Tsr
1.8hor~/2'R '. As Rr becomes smaller the spin packets
will widen until at Rv.~1 they have a homogeneous
width ~dcoy~2.

IV. EXPERIMENTAL

The data was obtained with an electron-spin-echo
spectrometer operating at 9.4 Gc/sec. Details of the
apparatus have been reported elsewhere. " Measure-
ments were made in the temperature range from 1.6
to 20'K, the portion of the range above 4.2'K being
reached by transferring cold helium gas." Tempera-
tures above 4.2'K were measured with a calibrated
resistance thermometer. Two samples were studied in
detail. Both were CaWO4 crystals, one doped with Ce
and Er, the other doped with Mn and Er. The con-
centrations were LCej=2X10" spins/cc, t Erg=2.5X
10" spins/cc in one sample, and t Mn)~3. OX 10"
spins/cc, Er=1.1X10" spins/cc in the other. " The

0'7
I

0.6

0.5

3
0.4

0
0.3N

Z
D~ 0.2

0.'l

0 I

-2.0 -1.5 -1.0 -0.5 0 0.5 l.p 1.5 2.0

FIG. 2. Fourier transform of the two-pulse echo decay function
E(2r) calculated for the limiting case of Rv»1 t Kq. (26) g. The
normalizing width is cusj ——1//I'~, where Tjr=0.562/(accus)'.
R is the 8-spin relaxation rate and QuI/2 the local Geld parameter.
If 2t/n~ua&&1 the "narrowing" conditions hold, Eq. (26) is a good
approximation for E(2v), and the above curve gives the spectrum
of a spin packet in the resonance line.

"W. B. Mims, Rev. Sci. Instr. 36, 1472 (1965)."The apparatus used for this is described by A. Kiel and W. B.
Mims, Phys. Rev. 161, 386 (1967)."In pure CaWO4 there are 1.26&&102 Ca'+ ions//cc. The Mn
concentration in the (Ca, Mn, Er)WO4 sample was found by
comparing signal strengths of Mn2+ and Er'+. Er concentrations
were obtained by optical-emission spectroscopic analysis. The Ce
concentration in (Ca, Ce, Er)WO4 was deduced by K. Nassau
from a consideration of the crystal-growing conditions.
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FIG. 3. Lattice relaxation times T1 for Kr + with Ho along the
c axis. For lattice temperature Tz, &4.2'K measurements were
made by a pulse recovery method. In the upper part of the temper-
ature range the times were inferred from the broadening of the
resonance line (see text) . The results can be fitted by two Orbach
processes with characteristic temperatures 8=30 and 70'K.

paramagnetic ions Ce'+, Er'+, and Mn'+ substitute at
the Ca'+ site where the point synnnetry in the host
material is S4. All of the more intense lines belonged to
axial sites. Nonaxial spectra (due to charge compensa-
tion of the trivalent ions at nearby lattice sites) were
relatively weak. . These doubly doped samples were
chosen so that an A-spin group consisting of Ce'+
or Mn'+ ions could be studied while the Er'+ ions,
constituting the 8-spin environment, relaxed to the
lattice. In addition to this, however, some measure-
ments were made under experimental conditions such
that Ce, Mn, or Er each played A- and 8-spin roles
simultaneously.

The ground states of Er'+ in CaWO4 is a Kramers
doublet with g~ ~

——1.2 and g~ =8.3. The relaxation times
for Er as a function of lattice temperature Ti, are shown
in Fig. 3. At the upper end of the temperature range
they were deduced from lifetime broadening of the
resonance line, at the lower end they were measured
by pulse recovery methods. (Ca, Er) WO4 is, unfortu-
nately, a difficult system to study by any of the methods
usually employed to measure lattice relaxation. It was
chosen here only because of its very rapid variation of
relaxation rate in the low-temperature range, which
makes it a useful 8-spin system for investigating the

two conditions Tr«1 and Er»1 discussed earlier. At
the lower end of the range, serious cross-relaxation
effects were encountered, the times in Fig. 3 represent-
ing the longest observed decay components. 23 Some
degree of uncertainty also prevails in the upper part
of the range. In the straightforward case of lifetime
broadening due to direct process relaxation between
two levels we should expect to find Tr=1/2W, where
W is the transition probability (in the limit of Ao&((kT)
and 2W is the full width at half-height (in rad/sec)
corresponding to the lifetime broadening. It seems
likely, however, that Er'+ relaxation occurs by way of
the Orbach process. "Transitions from the ground dou-
blet to the upper states followed by a return. to the
sabre level of the gmued doublet will then contribute to
t/t/ but not to T~. In order to derive T& from the line-
width we should need to know the branching ratio for
the transitions involving the two doublets. In default
of this information we have arbitrarily assumed that
the transition matrix elements are equal and taken T~
to be twice the reciprocal of the full width at half-
height. The results in Fig;. 3 do not therefore constitute
a highly accurate measurement of the relaxation times
of Er'+, are probably good to within a factor of two
and will serve for our present purpose. The curve in
Fig. 3 has been drawn on the assumption that the
relaxation rate is controlled by two Orbach processes
with characteristic temperatures 8i 30'K and O~s

'IO'K. It was not possible to fit the results with a Rarnan
process T" curve, and the Orbach process appears to
be the most likely relaxation mechanism in this case.'4
However, in view of the limited number of data ob-
tained, the line in Fig. 3 should be regarded here rather
as a means of interpolating between the high-tempera-
ture and low-temperature measurements than as a the-
oretical fit explaining the results.

The ground state of Ce'+ is a Kramers doublet with
g~~

——2.92 and g&=1.43. Measurements of the relaxation
rate are reported in Ref. 21. In the lower part of the
temperature range, Ce relaxation is slow compared with
Er relaxation and has no effect on Ce or Er phase
memories in the mixed sample. The upper part of the
temperature range, in which the Ce spins act as the
controlling 8-spin environment (or undergo lattice re-
laxation before being able to contribute to the echo),
is the only range of interest here. Relaxation is by way
of a Raman process and gives times 40ysec at 9'K.

& Cross-relaxation difBculties remained even when the field-
sweep method described in Ref. 21 was used, probably because the
available Geld sweep (~50 G) was not adequate to cover the whole
of the Er line (70 G full width at half-height). Cross relaxation
from hyperfine lines in the Er spectrum was also observed. The
reasons for this large degree of cross relaxation are not known. It
is difficult to see how the energy transfers could span such large
intervals in times~1 msec and at concentrations 0.01% if only
the dipolar fields of Er spins ((1 G) were involved in the cross-
relaxation mechanism.

24Some spectroscopic results obtained by D. L. Wood (un-
published} indicate that there may be levels corresponding to
e=35'K and e =90'K in (Ca, Er) WO4.
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FxG. 4. Lattice relaxation times Tj observed for one of the
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' transitions of Mn'+ in CaW04 with Ho along the
c axis. In the range shown T1 ~ TL,~, where TL, is the lattice
temperature and ~4.8.

The paramagnetic resonance of Mn'+ in CaW04 is
described by Hempstead and Bowers."There are thirty
allowed ESR transitions, and a formulation in terms
of more than one relaxation time wouM be needed to
describe the relaxation process fully. This would, of
course, complicate the problem of calculating phase
memories. We have not, however, attempted to investi-
gate this situation in detail here, and the lattice relaxa-
tion measurements on Mn have been made merely in
order to have an approximate check on the phase-
memory observations for (Ca, Mn, Er)WO4 in the
upper part of the temperature range. The recovery
times from spin inversion for one of the M, =-,'—+—-,'
transitions have been measured and are shown in Fig.
4."Over this temperature range, the results could be
approximated by a T' law.

Figure 5 shows the phase-memory time for Ce in the
(Ca, Ce, Er) WO4 sample as a function of temperature.
The ~. position was chosen since in the gE E

position and
at our experimental frequency, the "nuclear modula-
tion eGect"" makes it dificult to determine the Ce
phase memory. Figure 5 can be used to illustrate the
various processes which predominate in the diferent
temperature ranges. Somewhere below point P the spin-

"C. F. Hempstead and K. D. Bowers, Phys. Rev. 118, 131
(&960}.

'

"There were no problems due to spectral diffusion within the
measured line. It was possible to invert the line under approximate
180 pulse conditions, and without a field sweep.

& L. G. Rowan, E. L. Hahn, and W. B. Mims, Phys. Rev. 137,
A61 (1965).

spin Rip rate of Ce spins with resonant Ce spins and
Er spins with resonant Kr spins accounts for a major
portion of the local field fluctuations and limits phase
memory. " This could be called the "T2-limited" re-
gion." From P to Q, Ti(Er) controls Tsr(Ce). Since
Re&1 here, the phase memory becomes shorter as the
Er relaxation rate increases. At Q, Tt~r 1~6oii~s.
From Q to R, Ti(Er) still controls Tsr (Ce), but Er) 1,
and Tia (Ce) lengthens as Ti(Er) shortens. From R to
S, Ti(Ce) is the limiting factor. At the beginrung of
the range RS, Ti(Ce) acts mainly via the local 6elds,
i.e., some Ce spins act as 8 spins in relation to others.
At the end, Tsr(Ce) is limited by the lattice relaxation
of those cerium spins which would otherwise contrib-
ute to the echo. Since the Ce relaxation takes place
between the two levels of the ground doublet and does
not involve real transitions to other levels we should
expect that Ti(Ce)~Ter(Ce) in this limit, Tsr being
a true transverse relaxation time T2 in the sense of the
Bloch equations. The phase memory of the Kr compo-
nent in the sample follows a similar curve as far as S
but does not, of course, lengthen again after this point
is reached. Beyond S, Tsr(Kr) Ti(Er). (If a third
paramagnetic species with longer relaxation times and
less strongly temperature-dependent relaxation behav-
ior were doped into the sample we might expect to
find two minima in its phase-memory curve at points
where Er and Ce fulfilled the condition Ti I/Aori~s. )

Experimental values for Tsr(Ce) at temperatures in
the middle of the regions PQ, QR, RS, and at the
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2 The phase memory was still lengthening slightly between 1.8
and 1.6'K and it is not certain that the T2-limited region was
reached at point P. Some temperature dependence may of course
be found even in the Tg-limited region if h~ kT.

~9 In this context T~ would mean the time for a spin Rip to occur
and not the phase-memory time. TM would be limited by local
field noise and would not be a measure of the rate of Qip-Qop
processes.

FIG. 5. Phase-memory time TM as a function of temperature
for Ce in a double-doped (Ca, Ce, Er) WO4 sample with Ho in the
ab plane, TM is defined as the time between pulse I and the echo
required to produce an e ' reduction in the echo amplitude. The
letters PQRS indicate temperatures at which changes occur in the
manner in which TM is controlled.
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TAnLE I. Comparisons between experimental and calculated phase-memory times Tzz for the Ce spin system in the (Ca, Ce, Er) WO4
sample with IIO in the ab plane. T~ is controlled by local Geld Quctuations in the sample. For the Grst four results the principal source
of these fluctuations is lattice relaxation of the Er spin system. At 10'K local Geld averaging has reduced the effects of Er relaxation,
and the dominant Quctuations are due to relaxation of the Ce spin system. Aeo»2 is a measure of the local Gelds involved. Calculations
are made according to two models as described in the text. The calculations depend on the order of magnitude of Rr where R is the
relevant lattice relaxation rate and 2r is the duration of the spin-echo cycle of events. R values for Er are taken from Fig. 3. The R
value for Ce is extrapolated from a curve given in Ref. 21. A curve showing T~ as a function of the lattice temperature is given in Fig.
5. Decay curves for two- and three-pulse echoes at the 2.2'K point are shown in Figs. 6 and 7.

B-spj.n
system

Lattice
Temp
('K)

1/R
(psec)

AG)1/2

(mrad/sec)
Tsr (expt. ) Tzr (calc)

(psec) (zzsec)
Method of
calculation Equation

Er

Er

Er

Er

Ce

2.2

2.4

4.2

6.0
10.0

8X10'

2.5X10'

6.1

6.1

6.1

0.84

13.0

10.4

0.86

4.0
6.7

11.4
51.0

7.7
28.5

0.3
68.0

0.0084

5.8
6.0

Gauss-Marko6'

sudden jump

Gauss-MarkoB
sudden jump

1 .8/Dcali/o

3.8/R

Gauss-Markoff

Gauss-Marko8
sudden jump

»1

(25b)
(29b)

(25b)
(29b)

(27a)
(27b)

(26b)

(25b)
(29b)

minimum Q are given in Table I. Values calculated on
the Gauss-Marko6 and sudden-jump models are shown
for comparison, the relevant formulas being indicated
in the last column. The orientation is with Ho J the
c axis. A value Tz(Ce) =15 @sec at 10'K, required in
order to calculate Tsz(Ce) at the point chosen in the
RS range, was obtained by extrapolating from the
curve in Ref. 21, Fig. 6. Values of Tz(Er) for Hs in
the ab plane have been taken from Fig. 3, where the
values for Hs

~~
to the c axis are given. One cannot be
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entirely certain that parallel and perpendicular relaxa-
tion times are the same, although one would expect
the relaxation rate to be very nearly isotropic if gov-
erned by the Orbach process. The assumption does
not, in any case, appear to lead to large errors at the
lower temperatures (although here anisotropy of Tz
would be more likely to occur because of a possible
admixture of direct process relaxation). At 6'K, on
the other hand, the result strongly suggests that a
smaller value of T& should be used. It may also be
noted that the expression 1.8/Azores leads to the correct
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Fzo. 6. Two-pulse decay envelope Z(2r) for Ce in the (Ca, Ce,
Er) WQ4 sample with Ho in the ub plane. The lattice temperature is
2.2'K. The experimental decay curve can be approximately
represented by the function R(2r) = exp( —(2r/Tzz)*}, where
x=1.9 and T~=13 psec.
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FIG. 7. Experimental plots of the three-pulse decay function
Dr(r, T) for Ce in the (Ca, Ce, Er) WO4 sample, with IIO in the
ub plane. The lattice temperature is 2.2'K. The experimental
curves can be approximately represented by a decay function
D~(r, T) = exp( —cv"T"), where I=0.87, v =0.91, and c=0.029,
v and T both being expressed in @sec,
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TAsr, E II. Comparisons between experimental and calculated phase-memory times T~ for the Mn spin system in the
(Ca, Mn, Er) WO4 sample with E?4

~ ~

to the c axis. The situation is analogous to that summarized in Table I and the variation of T44
with temperature similar to that shown in Fig. 5. The R values for Er are taken from Fig. 3, and the R value for Mn from Fig. 4.
The two-pulse echo decay curve at the 7.65'K point is shown in Fig. 8. At 4.2'K the echo could not be detected. (It is dificult to see
echo signals due to weak resonance lines with the apparatus used here when T~&1 @sec.)

8-spin
system

Er

Er

Lattice
temp
('K)

2.08

2.5

6.6
7.65

17.25

1/R(B)
{p,sec)

15X10'

1.7X103

0.9
0.2

ACd1/2

(mrad/sec)

0.55

0.55

0.55

0.55

0.55

0.025

T44 (expt)
(@sec)

23

9.5

T~ (calc)
(psec)

70
234

34
79

3.3
2. 1

9

154
168

Method of
calculation

Gauss-Markoft
sudden jump

Gauss-Marko6
sudden jump

1.g/41~„,

Gauss-MarkoG

Gauss-Markoff

Gauss-Markof'f

sudden jump

«1

«1

Equation

(25b)
(29b)

(25b)
(29b)

(27a)

(26b)

(26b)

(25b)
(29b)

order of magnitude for T~ at the minimum at 4.2'K,
but that 3.8/Z gives a value which differs from the
experimental value here by a factor of 80. If we tenta-
tively assume the validity of Eq. (27b) at 4.2'K and
of Eq. (26b) at 6'K, and then use the experimental
values of Tsi to deduce Ti(Er), we obtain Ti(Er) =-0.23
@sec at 4.2'K and Ti(Er) =0.0038 psec at 6'K." The
form of the two- and three-pulse decay functions was
investigated at 2.2 K (i.e., in the PQ region where

R7«1, and where calculations of T~ give the right
order of magnitude). The two-pulse decay envelope
at 2.2'K is shown in Fig. 6. It can be fitted by the
function E(2r) =expt —(2r/Tsr)*I, where x=1.9 and

T~——13 psec." The three-pulse decay measurements
are shown as a function of T for several values of 7 in
Fig. 7. They can be roughly fitted by Dr(r, T) =
exp( —cr"T"), where 1=0.87, tt=0.91, and c=0.029
(if r, T are in @sec). The form of the decay functions
is in somewhat better agreement with the sudden jump
model than with the Gauss-Markoff model as can be
seen by comparing E(2r) with Eqs. (25a) and (26a),
and Dr(r, T) with Eqs. (38) and (40). The actual
magnitudes of T~ lie closer to the predictions of the
Gauss-Markoff model however (see Table I). The cal-
culated value of the constant c in Dr(r, T) is 0.097
according to the Gauss-Markoff model and 0.0015 ac-
cording to the sudden-jump model (r, T being in 44sec

in both cases. )
"Measurements of T&(Er) in the g4 position at somewhat

lower temperatures make it seem unlikely that Tj (Er) could be as
short as 0.23 @sec at 4.2'K. The relaxation measurements, made at
X-band, may not, however, be relevant in the present circum-
stances. When the Ce line is adjusted to give resonance at
9.4 Gc/sec in the gi position, the Er resonance interval is
54.5 Gc/sec.

3'Earlier experiments performed with a (Ca, Ce, Er)W04
sample gave a decay curve Z(2v) of approximately the same form
/Ref 2, Figs. 5(a) . and 6(a)g. Ce and Er concentrations in the
earlier sample were each approximately 2.5 times less than in the
present sample. Temperature and the resonance frequency were
also somewhat different.

The phase memory for Mn'+ in the (Ca, Mn, Er) WO4
sample showed a sequence of changes similar to that
observed for (Ca, Ce, Er) WO4. Measurements were
made on one of the M, = —',::+—', lines with Hs

~~
to

the c axis. The phase-memory times are shown in
Table II and compared with calculated values as in
the case of the (Ca, Ce, Er) WO4 sample. Allowing for
the uncertainty in the concentration and in the rneas-
urement of Ti(Er), the results at 2.08 and 2.5'K ap-
pear to be reasonably close to the values predicted
according to the Gauss-Markoff model. Agreement is
less good at 4.2'K. The disappearance of the Mn echo
signal shows that T~&1 @sec at the minimum. Accord-
ing to Eq. (31b), TM cannot be less than 1/Ao&i~s, and
hence we deduce that A~~~~&10', or at least twice the
value given in Table II. This is probably larger than
the error to be expected from the analysis. If, how-
ever, we assume her~/2

——10', then according to the
Gauss-Markoff model we obtain the estimates T~=44
p,sec at 2.08'K and T~ ——21 @sec at 2.5'K, which are
in better agreement with the experimental results than
the estimates given in Table I. The discrepancies at
6.6 and 7.65'K are already large in Table II and
would be increased still further by setting Ace&/2=10'.
If 6~&/2=10 an eighteen-fold increase in R is required
to bring the experimental results into agreement with
the calculated phase memories. Although Ti(Er) was
only derived by interpolation in this temperature range,
it is difficult to see how such very large values of R
could be consistent with the values measured at higher
and at lower temperatures. A possible anisotropy or
field dependence of Ti(Er) cannot be invoked here as
it was in the discussion of the cerium results, given
Ti(Er) and Tsr(Mn) were both measured in the g~~

position and at fields differing by a factor of only
1.5:1.The last result in Table II, showing the limita-
tion of T41(Mn) by Mn lattice relaxation, is within
a factor 3 of the estimate. This error could arise
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FIG. 8. Two-pulse decay envelope Z(2~) for one of the M, =
+-',~+——', lines of Mn'+ in the {Ca,Mn, Kr) WO4 sample, with FXp

along the c axis. The lattice temperature was 7.65'K. The phase
memory of Mn is controlled by lattice relaxation rate R of the
Er'+ spine. Rr»1. Points can be fitted by E(2r) = exp(—
(2r/Tir)*}, where x=0.7 and Tsr ——42 psec.

"Signal-to-noise for the Mn lines in the sample was poor and
boxcar techniques were used to integrate the amplitudes of several
hundred echo pulses.

from the approximate nature of the Ti(Mn) measure-
ments, or from errors in estimating the concentration
of Mn. It may be noted that the concentration of Mn
depends on that of Er since it was determined by
comparing the two spectra in the sample. If the Er
centration is revised upwards by a factor of two in
order to bring her~~~ for the Mn-Er broadening up to
10' and to give agreement in the earlier part of the
Table, then hco~~2 will become 0.05X 10' for the Mn —Mn
broadening leading to the calculated values TM ——97
@sec ( Gauss-Markoff) and Tsr 119p——sec (sudden jump)
at 17.25'K.

The high Mn dilution and the consequent weakness
of Mn —Mn local fields (in contrast with the Ce—Ce
local fields in the previous sample) made it possible
to undertake a more careful study of the form of E(2r)
in the range of very rapid Kr relaxation. The two-pulse
envelope for Mn'+ at 7.65'K is shown in Fig. 8." It
can be fitted by expI —(2r/Tsr) f, where x=0.7 and
TM ——42 psec. A similar result was obtained at 6.6'K.
At 11.85'K, TM ——80 psec and the decay curve was
approximately exponential. The change of shape here
is probably due to the onset of Mn —Mn local-field
effects since above this temperature TM begins to
shorten. At 17.25'K the decay curve also appeared
to give an almost exponential fit (over the first decade
of measurements) but a careful study of the form of
E(2r) could not be made on account of poor signal-
to-noise. A set of three-pulse decay measurements were
made at 8.2 and 6.8'K. The signal-to-noise ratio was
not good enough to yield the form of Dr(r, T) as a

TAnLE III. Three-pulse echo decay for the (Ca, Mn, Er) WO,
sample in the range where Rr»1 JR=1/Tr(Er) j. T, is the time
T for which Dz(~, T) =e '. The times show only a slight dep-
dence on 7 indicating that spectral diffusion has little if any e8ect
on Dz(r, t) when Rv))1.

Lattice
temp.
('K) (44sec)

~e
(msec)

8.2
8.2
8.2

5

j.o

5

10

20

2.8
2.5

2.6
2.2

function of T but the times T, giving an e reduction
in Dz(r, T) and the corresponding values of r are
given in Table III. It can be seen that T, is only
weakly dependent on v. Presumably the Er—Mn local
field fluctuations have become too rapid to play any
significant part in determining Dr(r, T) as suggested
at the end of Sec. III. The observed dependence on r
and T may be due to Mn —Mn interactions or to small
residual changes in the mean local fields created by
the Er spins.

No special effort was made to analyze the form of
E(2r) and Dr(r, T) in the range Er«1 for the Mn
line in the (Ca, Mn, Er)WO4 sample, since a more
satisfactory investigation of the behavior of the decay
functions in this range could be made for the Er line
(i.e., a line belonging to one of the more strongly
doped species). The Er line in the (Ca, Ce, Er) WO4
sample in the g~~ orientation formed a particularly
convenient subject for this study. Signals were initially
30 to 40 dB above noise, the phase memories were
relatively long, and the "nuclear modulation" effects
negligible. Er spins acted as both A and 8 spins. The
experimental conditions were such that the microwave
pulses excited a spectrum of spin packets ~1.5 G wide,
constituting 2'Po of the total width of the line. 98%
of the Er spins were thus foreign to the small group
of A spins being observed, and stood in much the
same relation to them as to the Ce or Mn spins in the
previous experiments. " The Ce relaxation rate in the
sample was approximately two orders of magnitude
less than the relaxation rate of Er and had therefore
no effect on the result. Spin-spin Qips in the Ce system
or in the Er system could also be ignored at the tem-
perature where the studies were made, since TM con-
tinued to lengthen as the temperature was reduced,
indicating control of the phase memory by Ti(Er).
The two-pulse decay function Z(2r) at 2.48'K is shown
in Fig. 9. It can be fitted to expI —(2r/Tsr)*I where
x=1.31 and TM=11.9 @sec. A similar curve was ob-
tained at 2.85'K with @=1.4 and KM=8.4 psec. The

"This condition is not strictly necessary, since the same group
of spins could play the roles of A and 8 spins.
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Fio. 9. Two-pulse decay envelope E(2r) for Er'+ in the (Ca, Ce,
Er) WO4 sample with Po along the c axis. The lattice temperature
is 2.48'K. Points can be fitted by Z(2r) = exp( —(2r/TM)*},
where @=1.3, and T~=11.9 @sec.

V. DISCUSSION

The general behavior of T~ as a function of tempera-
ture seems to be fairly easy to explain. Although only
two instances of the spin-packet narrowing phenome-
non, which causes T~ to lengthen as the temperature
is raised, have been reported here, similar behavior
has been observed in several diGerent samples. Narrow-
ing of this kind may be of some practical importance
when either zNDOR, or measurements in which spin-
echo techniques are applied, have to be performed
with impure materials. The initial shortening of phase
memory with rising temperature, as a resonant species
begins to relax and to provide a Quctuating 8-spin
environment, is quite general and is the usual reason
why electron-spin-echo experiments have to be per-
formed at low temperatures. (Tsr is often too short
for echo experiments even when Tj is still several psec
long. )

The actual decay times and the functional form of
the echo envelope are harder to account for. By and
large the Gauss-Marko8 model for the time depend-
ence of lattice relaxation appears to give better agree-
ment than the sudden-jump model, but there are a
number of major discrepancies between the experimen-
tal and calculated values of TI/I which make it impos-
sible to decide conclusively in favor of either model
on the basis of the experimental evidence. The worst
discrepancies seem to be associated with the values
adopted for Ti(Er) in the range 4.2—12.5'K, suggesting
that the interpolated values in Fig. 3 are at fault. Al-

though it is hard to see how errors large enough to

calculated value of Aor~~2 for Er—Er local fields in the
sample in the g~~ position is 7.4X10' rad/sec. The cor-

responding calculated values for Tir are 28.2 and 17.7
psec according to the Gauss-Markoff model, and 69.3
and 34.5 p,sec according to the sudden-jump model.
The experimental results are thus smaller than those
estimated according to either of the two models. This
could possibly arise from an underestimate of the Er
concentration, but there is little to suggest such a
conclusion in the rest of the data obtained with this
sample. LThe experimental value of Tsr(Ce) at the
minimum (see Table I) is longer than the calculated
value 1.8/Broils indicating that, if anything, the concen-
tration may be lower than the estimated amount. g Ex-
perimental curves for Dr(r, T) as a function of T at
2.48'K are shown in Fig. 10. Dz (r, T) can be fitted

by exp( —cr"T"), where 1=0.6, v=0.8, and t,"=0.039
(if r, T are expressed in @sec). The form of the decay
functions E(2r) and. Dr(r, T) does not approximate
very closely to the prediction of either model, but the
actual numerical magnitudes again give better agree-
ment with the Gauss-Markoff model. The constant c
in Dr(r, T) is calculated to be 0.025 according to the
Gauss-Markoff model and 0.00082 according to the
sudden-jump model (r, T being in lisec in both cases) .
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FIG. 10. Experimental plots of the three-pulse decay function
D~(r, T) for Er in the (Ca, Ce, Er)%04 sample, with Bo along
the c axis. The lattice temperature is 2.48'K. The experimental
curves can be approximately represented by a decay function
Dp(r, T) = exp( —cr"T") where 1=0.6, v=0.8, and c=0.039, v

and T both being expressed in @sec. (Experimental points have
been omitted in order to avoid clutter. Points fell on or close to
the lines drawn, the accuracy being somewhat better than in the
case of Fig. "/.)
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account for the discrepancies could have arisen in either
the measurements of Tj, or in the interpolation, this
at least provides a ready explanation for the T~ results.
It should be pointed out, however, that this explanation
is not the only possible one, and that the discrepancies
may have a more interesting physical origin The
phase memory is regulated by the total rate at which
transitions are occurring between the two levels of the
Er ground doublet, whereas T~ gives the net excess
of transitions in one direction. The absolute transition
rate and the net rate are normally related to one
another in a simple manner, but this relation will
break down if there is an energy-conserving transfer
of excitation through the spin system. Such a transfer
might for example occur if there were a "phonon bottle-
neck" in the relaxation process, many individual spins
changing their orientation for each quantum of spin
energy finally dissipated. In the present instance, a
phonon bottleneck involving the Er ground doublet
does not appear likely, but an alternative process in-
volving the first excited state could lead to an equiva-
lent result. Let us consider, for example, the following
hypothetical sequence of events involving an energetic
phonon and two nearby erbium ions Er(1) and Er(2) .
Ke denote the states belonging to the ground doublet
as

~
a(r) ), ~

b(r)) and one of the excited states as

~
c(r)). Let us begin with Er(1), Er(2) in states

~
a(1) ), ~

b(2) ). The energetic phonon first raises Er(1)
to the state

~
c(1)), a fhp-flop with Er(2) changes the

states to
~
b(1) ), ~

c(2) ), and emission of a phonon by
Er(2) leaves the system in states I b(1) ), I a(2) ). One
phonon has caused two spins to change their states in
the ground doublet. By generalizing from this sequence
of events one can envisage a means by which a single
energetic phonon might cause several Er ions to change
their state in the ground doublet, the actual number
depending on the probability for the

~
a) to

~ c), ~
c)

to
) a) (or

~
b) to

~
c), ) c) to

~
b)) Rip-flop process as

compared with the probability for emission and breakup
of the phonon. '4 (This mechanism would be distinct
from the usual Qip-Qop between spins of a ground
doublet in that it would be strongly temperature-
dependent, and would probably involve interactions
other than the magnetic-dipole interaction such as, for
example, the electrostatic quadrupole-quadrupole inter-
action. ")

The results also show a somewhat unsatisfactory
agreement with the predicted form of the decay func-
tions, and indicate that there may be errors in the
estimate of the local Geld parameters 6~~~2. An error
in Ace&~2 could easily originate from an error in the

34 We have no direct evidence for the existence of this process in
(Ca, Er) WO4, although it might, if present, help to account for the
surprisingly high cross-relaxation rate mentioned in footnote 23.
It would also contribute to the lifetime broadening of the micro-
wave resonance line at higher temperatures, and might invalidate
some of the deductions which were made in order to plot the
T1(Kr) curve in I'ig. 3.

~ References are given in a paper by J.M. Baker and A. E.Mau,
Can. J. Phys. 45, 403 i1966).

measurement of the 8-spin concentration. This would,
however, simply change the scale of the decay func-
tions without altering their form. The form itself is
sensitive to several other physical properties. One of
them —the time evolution of the spin component p,, (/)
during lattice relaxation —has already been discussed
in some detail. Two others must also be considered.
There may be some degree of spin clustering in the
sample, resulting from the thermodynamic conditions
which obtained during the growth and annealing of the
crystal, "and there may be a contribution to the spin-
spin interaction (i.e., to the local field) arising from
nonmagnetic-dipolar forces obeying a different radial
law. These two causes would be hard to distinguish
experimentally. Both would enter the statistical calcu-
lation in a similar way, so that a particular set of
results might be interpreted either in terms of a modi-
fied law of interaction or in terms of a clustering
density function f(r) (see the end of Appendix A).
The case of quadrupole-quadrupole interaction, which
involves an r-' interaction law, is outlined in Appendix
C. The equivalent clustering function is f(r) ~ r 'Is. For
an r ' law, the Gauss-Marko6 model gives the results
E(2r) =exp{—(2r/Tsr)'i"I when Rr«1, and E(2r) =
exp (

—(2r/Tsr) sf'
I when Rr)&1. The corresponding

three-pulse result is Dr(r, T) =exp( —c"r"P'"I.These
calculations serve to illustrate the sensitivity of decay
functions to any deviation from ideal randomness in
the substitution of ions or from the classical r ' dipolar
interaction law. Experiments on the Er line gave decay
functions whose form agrees somewhat better with the
predictions of the 7-' law than with the predictions of
the r ' law, suggesting that there is some slight ad-
mixture of nondipolar forces here (or alternatively,
some tendency towards aggregation of the ions. ) How-
ever, in view of the semiqualitative nature of the agree-
ment obtained elsewhere in the experiments, it would
be unwise to draw too definite a conclusion from this.

One may ask whether, eventually, the interpretation
of phase-memory functions could not be made into
a dependable method for extracting information re-
garding the properties of solids. Linewidth studies in
NMR have proved to be useful in this way, and the
echo technique, by eliminating the problems caused
by the inhomogeneous broadening of ESR lines, should
provide a method of at least as much versatility and
power. Clearly, one requirement for an advance in this
direction would be an improvement in the reliability
of subsidiary measurements, as, for example, in the
determination of concentrations and in the measure-
ment of lattice relaxation times in the dificult range

~6The samples were carefully annealed at temperatures just
below the melting point, and there seems to be no good reason why
the divalent Mn ions should not be substituted quite randomly
in the lattice. One might, on the other hand, suspect clustering for
Ce'+ or Er'+. Trivalent, ions in CaWO4 are normally compensated
by a monovalent ion or by a Ca~ vacancy. Some degree of associa-
tion between the trivalent ions and the compensating centers is
liable to result in an association between the trivalent ions them-
selves.
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from 10 ' to 10 ' sec.'~ A more fundamental need,
however, is for a rigorous treatment of the dynamics
of a spin-phonon system. This, by either establishing
the limits of validity for a Gauss-Marko6 model or by
suggesting a better alternative, could provide a reliable
foundation for the statistical calculations which are in-
volved in any analysis of the lattice relaxation eGects.

Zeeman held Ho and the line joining the two spins.
7~ is the gyromagnetic ratio gzp/))i for the A spins,
and )(cn, is the matrix element of gi)PS, '. The sum in
(A1) can be interpreted as the local field at an A spin
due to a particular 8-spin environment, and the prob-
ability of finding this configuration (with the geornet-
rical variables r, , 8, in the ranges dr;, d8;) is given by
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APPENDIX A. DIPOLAR BROADENING DUE TO
RANDOMLY DISTRIBUTED PARAMAGNETIC

CENTERS

At high magnetic dilutions one can ignore the crystal
lattice and regard the paramagnetic ions as being ran-

domly distributed throughout a volume V. Dipolar
broadening can then be treated according to the sta-
tistical theory, developed by Margenau" and others
for the purpose of explaining the broadening of spectral
lines in gases. The argument reproduced below is essen-

tially the same as that given by Anderson. " It is
included here for convenience of reference, and in order
to make it possible to abbreviate the derivations given
elsewhere in the paper.

Let us suppose that, the lattice contains unlike spin
groups A and 8, and that we have to find the broaden-

ing of the A resonance line due to the presence of the
8 spins. The only significant terms in the dipolar
Hamiltonian are then the S„(A)S„.(B) terms and we

can describe the interaction for a particular A spin in
terms of the shift Ace in its Larmor frequency where

6(o=v~ g p,n;(1—3 cos28, )/r, ', (A1)

r; is the distance between the A spin and the jth 8
spin, and 0, is the angle between the direction of the

"No mention is made here of measurements involving electron-
nuclear interactions or fEp-Qop interactions between the electrons.
The 6rst can be largely avoided by choosing suitable host materials,
and the second by working at fairly high dilutions. Satisfactory
theories for these effects of these interactions on the phase memory
are not available.

'8 H. Margenau, Phys. Rev. 82, 156 (1951).
'~ P. W. Anderson, Phys. Rev. 82, 342 (1951). The detailed

analysis is available only in the form of notes but an equivalent
treatment can be found in A. Abragam, Primciples of Nrcclear
Magnetism (Oxford University Press, New York, 1961), p. 126.
The values for the linewidth given in both these references are 1-,'
times as large as the value derived in (A9). This arises from the
inclusion of a contribution from S+S dipolar terms. We have
omitted these terms since we are dealing with unlike spins through-
out.

II (dU;/v),

where dV, =2mrPdr, d(cos8;). The problem is to obtain
the distribution I(i)(o) of the frequency shifts A(o for
all the 3 spins in the sample. This is done by integrat-
ing over each dV;, in order to sum over all possible
placements of the E 8 spins, while limiting the summa-
tion to those configurations which give frequency shifts
in the range Ao) to h(o+d(Ao)). The constraint is ap-
plied by multiplying

II (dV/V)

by

d( o)) L&(o—yg Q pi), (1—3 cos'8, )/rre$,

the 6 function being written in the integral form

(~/2 ) f
Xexpf ipID(o yg —g pi), (—1—3 cos'8, )/rreI j.

We thus have

I(6(o)d(h(o)

Xexpt —ip f6(o —yg g pi);(1—3 cos'8)/r'} j. (A2)

In the high-temperature limit pz, is equally likely to
have either of the values +—',gi)P. This additional ran-
dom element can conveniently be incorporated into the
calculation by allowing r; to vary from —eo to +co
and by writing 2V in place of V in order to restore
the normalization. We then find that (A2) contains
the product of E similar definite integrals. Expanding
d V, , dropping subscripts j and rearranging we have

J(a~) =(2 )-'f dp

+co +1
Xe 'r™(2V)-'2a. r'dr d(cos8)

Xexp I i (py~gnP/2) (1—3 cos'8) /r' I . (A3)
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X t 1—exp f i(py~g))P/2) (1—3 cos'0) /r'I ]. (AS)

In the limit X—+~, V—&~ we then have

2(A )=(2 ) sf dpexp( —spd ) exp( —e V'),

(A6)

where nI3=$/V is the number of 8 spins per cc. Inte-
grating (AS) we have

Therefore,

V'=
i p i (42r'/9v3)yggnp.

A(s)2)S/2I

(4(e)) + (6(s)res)

(A7)

(AS)

where the half-width

Dod) )s
—(42rs/9&3) gag Jdplg—

2.53yggr)Pe~.

The local Geld broadening of a resonance line by spins
of the same species can be obtained by changing the
subscript 8 to A. This result is ~~ of the result normally
quoted (see footnote 39), and is applicable when flip-
Qop processes among the spins are suppressed by static
inhomogeneous broadening of the resonance line (i.e.,
when the experimental linewidth ))Ao)r~s).

Similar calculations can be made for diGerent laws
of interaction. It is shown in Ref. 38 that the most
significant feature of the interaction is its radial de-
pendence and that this determines the shape of the
broadening function. The angular dependence is rela-
tively unimportant and, in most cases, merely intro-
duces a numerical factor into the expression for the
linewidth. A departure from randomness in the distri-
bution of B spins about the A spins could, in principle,
be taken into account by replacing d V; by f(r;, 0,) d V;,
where f(r;, ft, ) d V; denotes the modified statistical weight
for finding a J3 spin at the coordinates (r, 9) . Assuming
separability of the variables in the weighting function
we should then have f(r, 8) =f'(r)f" (8), giving in place
of (AS) the expression

V'=x ' r r'dr " 8 d cos0

XL1—exp {i(py~gddP/2) (1—3 cos'0)/Ts Ij. (A10)

The divergence as r~~, S—+~, can be avoided by
rewriting (A3) in the form

2(A ) =(2 ) ' J dpe "s [1—V'/V]x (AA)

where

+ac +&
V'=2r r'dr d(cosg)

By comparing (AS) and (A10) it can be seen that the
introduction of j(r, f)) is equivalent to a change in the
law of interaction. It may be verified, for example, by
writing f'(r) =r s)' in (A10) and substituting r'= (r')',
that the r ' interaction law in conjunction with an
r 'l" clustering function gives the same result as an r '
law with no clustering.

APPENDIX B. THREE-PULSE ECHOES AND THE
DIFFUSION KERNEL

In a three-pulse echo sequence let 7. denote the time
between pulses I and II, and T' the time between
pulses II and III. The echo, usually termed a stimu-
lated echo, appears at a time T after pulse III. (Two-
pulse echoes generated by the pairs of pulses I-II,
I-III, and II-III may also be observed. )"The over-all
amplitude decay factor D(r, T) for the stimulated echo
can be tentatively written as a product D, (T) Dr(T, T) .
During the two periods 7, information is stored in the
precessing magnetization components M„3f„,and the
factor D,(r) is determined by phase-memory considera-
tions similar to those discussed in the previous section.
During the period T the information is stored as a
sinusoidal pattern M, (o)q) ~ cos(o)~+e) in the M, mag-
netization spectrum, 4' where co~ is the difference be-
tween the microwave frequency and the Larmor fre-
quency of a given spin packet. The factor Dr(T, T)
will depend therefore on the rate at which the informa-
tion contained in the M, (o)d) pattern is erased, either
by lattice relaxation of the 2 spins or as a result of
spectral diffusion.

Let us suppose that the broadening of the A-spin
line due to the 8-spin local Geld is a small fraction
of the total inhomogeneous linewidth. Then the spin
packets in the line will each correspond to A spins
which have the normal statistical distribution of 8-
spin environments, and each will show the same diGu-
sion behavior. The diffusion kernel E(o)r o);, T) is-
deGned as the distribution at time T in the cvq values
for those spins which belonged to a spin packet having
o)q

——o); at time zero. Since the initial pattern M, (o);) ~
cos(o);r+e), the f)nal distribution M, (o)r) will be pro-
portional to

COS((s)er+e) E((s)p' (e)ep 2 ) d(e)e' ~

Substituting co'=~f—~;, we have

Ad, (;) ces( s + ) f ces( ' )Z(se', T)d '. (81)

"If pFI2&) the width of the line-shape function g (ddl then for
suitable pulsing conditions (e.g., yHIt„=90', j.80', and 90' for the
three pulses) some of these echoes will be suppressed. If 7IIj & the
width of g(co), all echoes will usually be visible.' The pattern in M, (~) is not exactly sinusoidal if yII~& the
width of g {co). Numerically computed patterns for particular cases
are given by Mims, Nassau, and McGee (Ref. 2, Fig. 2).
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XI:1—expL —28(r) ko'{N(l) }'r "j]. (C2)

Integrating with respect to r, we obtain

The decay factor Dr(r, T) is thus the Fourier cosine Eq. (17),
transform of the diffusion kernel E(cu', T). LIt is as-
sumed above that I(', r) is aneven function oi p 2 „,d„f~(()

The generalization to odd or to mixed functions
X(~', T) is trivial and merely involves possible changes
in the constant e and hence in the phase of the stimu-
lated echo signai. $

APPENDIX C. FORM OF THE DECAY FUNCTIONS
FOR AN r ' INTERACTION LAW

Let us suppose that the energy of interaction be-
tween two unlike4' iona is 5&v where

a) =kN(~)/r', (C1)

r is the distance separating the ions, N(t ) is a function
of the angles defining their orientation relative to one
another and to the Zeeman field, and k measures the
instantaneous value of the interaction parameter. k
could, for example, be the product of two quadrupole
moments, of certain additional numerical factors (see
Ref. 35), and of a suitable random function denoting
the time variation of the interaction. Since the numeri-
cal factors for the quadrupole-quadrupole interaction
are not easy to calculate or to determine experimentally,
we shall absorb them into other numerical constants
where possible, and focus attention on the forms of the
echo decay functions E(2r) and Dr(r, T) which result
from the t-' interaction law. %e follow Ref. 38 in re-
placing N(f) by a function

N(f) =—1

=+1

f'&0

f&0 —1&f'&1.

Carrying through the analysis we derive in place of

4' The two ions are unlike in the sense that their resonant inter-
vals are separated by an amount which is at least greater than
their interaction energy. As in the earlier treatment of the r 3

interaction lair this could mean that the ions were of the same
species, but subject to different strains or other static pertur-
bation s.

The exact form of N(f) is unimportant provided that
the mean Q)=0. The adoption of alternative forms
for N(f) merely changes a numerical constant in the
result, but does not alter the form of the decay func-
tions.

The two-pulse echo envelope can be drived accord-
ing to the Gauss-Markoff model by an argument which
follows the same lines as that given in Sec. II. In Eq. (7)
k;(~')N(f;)r, -' is substituted for y~(I";(t') —p;(0))X
(1—3 cos'8;) r; '. We assume that k;(~) is a Gaussian
random variable, and that

(k, (~)k, (~"))=((k;(0) )') «p{-Z;
I

i"—i'
I }

=ko'exp{ E~ t" t'~ }. ——

V'=-', (8())""bs"'f deD —exp( —~"")j
0

&& f In(() I'"'C

If the definite integrals are absorbed into k0 this gives
V'=ko'{B(r) }'I"in place of (19). The echo envelope
E(2r) is then expL —n~k''{B(r) }""],and in the two
limits it reduces to

E(2r) =expL —N~ko'R"ro'j, Rr«1 (C3a)

W(bn) =(2s) 'f exp& —nabs" (p(sage"sdp (C4)

(ko" again absorbs the numerical factors arising from
the delnite integrals with respect to t and r). For our
purpose it is not necessary to evaluate W(ha&)."From
(C4), we have the diKusion kernel

+OO

E(coy erg, t) =(2n) —~ e'&("'~)'
Xe~L sa(1—e ~)kp' IpIIlsjdp. (Cg)

In the limit of ET&1, (CS) assumes the same form
as the general class of functions

(2e)-' J em(e(a —os) —tib)Ed'

discussed by Klauder and Anderson I-Ref. 1, Eq.
(1.11)), for which they show that

r
Z(2t) =exp( —2 f(S')dt'I.

0

In our particular case f(y) =2n&Eko"y'6, and thus,

4' The line-shape function 5'(Dcu) has been computed numeri-
cally and is shown in Fig. 1, Ref. 38.

E(2r) =expI- —eako'R~'r"j, 2b»1. (C3b)

In order to calculate E(2r) according to the sudden-

jump model we need the appropriate diffusion kernel.
As in Sec. II this is derived by setting ez~ez(1 —e ''r),
and co—+cof—co; in the line-shape function. In Ref. 38
it is shown that the line-shape function for a 1jr' law
of interaction is given by the Fourier transform
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f'(k', T) being the symmetric diffusion function (34).
The integration over r, f is the same as that which
occurs in the line-shape calculation (Ref. 38), and
gives

according to the sudden-jump model,

E(2r) =expL —2.5ko "e/)Rr' '). (C6)

It is shown in Appendix 8 that the three-pulse decay
factor D&(~, T) is given by the Fourier transform of
the diffusion kernel E(0)', T) .The result for the sudden-

jump model can be written down from (C5) as

V'=.p3/5 (C9)

where c contains the values of de6nite integrals and
Dr(r T) =expL ko +&(1 ~ ' ) &"') (C7a) other numerical constants. Substituting f'(k', T) and

integrating we have
or

E((u —{dp, T) =(2m) '

Vi=c p{)/5 (1 s 2/T)8/)0 (C10)
Dr(r T) =expL —2ka"n/)RT7'") if RT«1. (C7b)

Combining (Cgb) and (C10) we derive the diffusion
The Gauss-Markoff diffusion kernel can be calculated kernel as a Fourier integral
as in Sec. III. In place of Kq. (32) we have

exp @pc p
3/5 f g 2BT 3/10 g i~(~P)dp

N +Co

Xexp/ ip(—co cop)—)g V ' dV~ dkg

X exp[ipg(f';)r; k;(T)—)f(kg, T; k,o), (C8a)

where f(k;, T; k,o) is the Gaussian diffusion function
(33) which denotes here the distribution of values of
k; at time T, As before we assume that the asymmetric
diffusion will average out to zero, provided that the
static nonhomogeneous broadening is large enough. In
place of (34a) and (34b) we obtain

E{~ Mq, T) ={2m) 'f —exp[ eaF]a '" "d-p, '

(Cgb)
where

X (1—expLipg(t )r 'k') If'(k', T), (C8c)

(C11)

R(~—~0, T) can be made to coincide with the line-
shape function (C4) in the limit RT~~ by equating
g' and ko". There is no need to evaluate (C11) since
the three-pulse decay factor D&(r, T) is the Fourier
transform of the diffusion kernel (Appendix 8). Thus

Dr(r, T) =expL —gako'~ '(1—e '"r)'') (C12a)

or

Dr(7, T) =expt —"2" k"oR""r'" "T") if RT((1.

(C12b)

It was pointed out at the end of Appendix A that
clustering of the ions will produce effects on E(2r)
and Dr(r, T) which are equivalent to the effects pro-
duced by a change in the law of interaction. In the
above case the results are equivalent to those which
would be obtained by retaining the r-' interaction law
while introducing a weighting function f(r) =r 6/ to
denote the enhanced probability of finding a 8 spin
at the distance r from an A spin.


