
JAN M. MINKO WS KI

ment two spins Rip together LI 222)~I 311), and

I 333)+~I 422)$. In both cases all spins have a common
energy level. Grant's ensemble model does not dis-
tinguish between degenerate and nondegenerate cases
in which each spin Qips through a diferent transition.
The experiments presented here suggest a need for
reexamination of Grant's statistical model when ap-
plied to higher-order CR processes in diluted para-
magnetic salts.
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APPENDIX e MATRIX ELEMENTS OF 0&j& AND H'pj

Explicit expressions for the matrix elements necessary
to determine the lattice sums of the transition operator
0,;& of Eqs. (11), (20), and (21) are given below.

(22 I H;; I
22)= —2 Ree;,+2b,;,

(33
I
a,, I

33)=(O/4)a...
(24I ~;, I

24)=»md„,

(24
I
a,, I

42) =-;b,;,

(31 I a;, I
31)= —3 Imd;;,

(31 I H;, I 13)=-,'b;, .

(A3)

e= Processes

(331
I 0;;t, I

222) =L3i/(ee —es) g[(b;p+f;p+ —2id, t,)

X(b;,+id,;+bet, f t)—+(b t+fo+ ,'do-)

X (b,a+d, ,+b 7, f t,)—J (A1)

)=Processes

(224
I

O,sg I
333)=i(9/8) I es —e2J 'e,7,et„. (A2)

The coeKcients bst„ f;q, etc. , are those given in terms of
the dipolar interaction, Eq. (14) . The pertinent matrix
elements of the secular part of the dipolar interaction
which appear in the computation of the moments, Eq.
(26), are
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Numerical calculations for a soluble one-parameter dynamic Jahn-Teller effect in a system of octahedral
symmetry are presented (vibronic coupling of a r&, vibrational mode in a I'8 electronic state, linear ap-
proximation). A computer subprogram for computing eigenvectors and eigenvalues is described.

INTRODUCTION

"UMERICAI. solutions of the vibronic energy
eigenvalue problem were presented by Mo%tt

and Thorson' and by I.onguet-Higgins, Opik, Pryce,
and Sack' for the dynamic Jahn-Teller interaction of a

doubly degenerate vibration with a doubly degenerate
electronic state, as may, for example, occur in a system
with a single e-fold axis, e&3. The tractability of the
problem depended upon the fact that a "vibronic

*Deceased.
'%.MofBtt and%. Thorson, Colloq. Intern. Centre Natl. Rech.

Sci. {Paris) 82, 141 (1958).Also printed in book entit. ed Calcul des
Fonctions d'Onde 3foleculaire, edited by R. Daudel t,'Centre Na-
tional de la Recherche Scienti6que, Paris, 1958), Reprints of
French text are available from %.Thorson.

'H. C. Lonquet-Higgins, U. Opik, M. H. L, Pryce, and R. A.
Sack, Proc. Roy. Soc, (LotIdort) A2+k, 1 (1958),

angular momentum" emerged in that case as a constant
of the motion. The identical dynamical problem occurs
in doubly degenerate states of systems with higher
symmetry (Ot,). The analysis of vibronic coupling in
triply degenerate states (T&, T2) of such systems, how-
ever, proves to be essentially more complicated. ' Both
e, (doubly degenerate) and r&o (triply degenerate)
vibrational modes may interact with the triply degen-
erate states. The coupling of the e, modes alone is very
simple, leading only to a uniform shift of all levels. On
the other hand, coupling of a single r2, mode alone is
not characterized by a "vibronic angular momentum";
the potential-energy hypersurfaces for nuclear motion
have octahedral rather than spherical symmetry; only

' W, MoKtt and W, Thornton, Phys. Rey. 108, 125& (1957),



SOME CALCULATIONS ON JAHN- TELLER EFFECT 363

in second-order perturbation approximation an "acci-
dental" spherical symmetry occurs. Caner and Englman4
have computed solutions to this vibronic problem in a
lattice including cubic harmonics obtained from
spherical harmonics up to order 12.

For systems with strong spin-orbit coupling and an
odd number of electrons, electronic states must be
categorized according to the "double-group" representa-
tions of OI„MoKtt and Thorson' were able to show
that for this case the vibronic coupling with a 7.2, mode
takes on an especially symmetric form. The only states
which exhibit such a coupling are the fourfold degen-
erate ones I'8„and I"8, in the notation of Bethe'; the
doubly degenerate double group representations reQect
only the Kramers magnetic degeneracy, which cannot
be removed by the electrostatic Jahn-Teller effect. For
the coupling of a mode v~, with electronic states I'8 or
F8„ the vibronic Hamiltonian is found to commute
with a vibronic angular momentum, and hence eigen-
states may be classified by quantum numbers for this
momentum and its component on a preferred axis.
Child' has also discussed the algebraic formulation of
this problem and the solution for strong coupling. In a
thorough discussion of vibronic and its applications to
the vibrational spectra of higher transition-metal
hexaQuorides, Weinstock and Goodman~ have treated
the problem by perturbative methods for the weak-
coupling limit; they treated couplings with both e, and
v2, modes, a situation found experimentally in ReF6 and
isoelectronic molecules (see Discussion). In this work
we present the numerical solution of the one-parameter
eigenvalue problem for coupling of 7.2, with I'8, and
discuss the strong-coupling limit.

ANALYSIS

A brief repetition of the fundamental analysis of
Ref. 3 is our starting point. We neglect coupling with
e, vibrational modes. Working in the four-dimensional
electronic basis set provided by the I'8-type solutions to
the electronic problem at the fixed O~ configuration,
the nuclear-motion problem appears as a matrix
equation for the nuclear motion in the three-dimen-
sional Q space of the rs, vibration:

f f—(5'/2p, ) Vs+pk, R')1

+ (2h/A') ys)Qisi+Qsss+Qsss) If =a, (1)

where R'=Q&'+Qs'+Qss, and V' is the LaPlacian in

Q space; 1 is the unit (4X4) matrix, and 9s, Si, Ss, Ss
are 4&(4 matrices de6ned by Dirac, ' and having the

' M. Caner and R. Eng1man, J. Chem. Phys. 44, 4054 (1966).
H. A. Bethe, Ann. Physik 3, 133 (1929).

6M. S, Child, Phil. Trans. Roy. Soc. (London) A255, 31
(1962).' B.Weinstock and G. L. Goodman, Advan. Chem. Phys. 9, 169
(1965).

P. A. M. Dirac, Quantlm Mechanics (Oxford University Press,
New York, 194'1}.

forms:

1 0 0 0

0 i 0 0

0 0 —1 0

0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 I 0

0 —i 0 0

i 0 0 0

0 0 0 —i

0 0 i 0

; Ss ——-,'A'

0 0 0

0 —1 0 0

0 0 1 0

0 0 0

H =a.1+t2(i,/a) )»[S R). (4)

Hs is the Hamiltonian in Q space for the unperturbed
three-dimensional harmonic oscillator with frequency
~„previously written out in detail. The associated
energy eigenvalues are (rs,+-,') 5&v„ I, integral, or zero,
and there is as well a vibrational angular momentum M
and its component 3IIs, with eigenvalues M(M+1)P
for M' and F35 for 3f3, by which the zero-order states
must be categorized. M is positive or zero, has the
parity of n, and is less than or equal to it; 3f3 takes the
usual 231+1possible values. It is not hard to show that
the definition of the vibronic angular momentum J,

J=M+ S,

leads to new operators which commute with B, namely
J' and Js. J satisfies the angular momentum commuta-
tion rules,

JXJ=iSJ.
It may be seen that the vibronic coupling does not mix
eigenfunctions with different eigenvalues of y~, and that
in fact for every solution to the vibronic problem with
+ 1 for the ps eigenvalue, there is also one with —1 for
that eigenvalue but identical values for all other
eigenvalues. We shall therefore work in the reduced
two-dimensional basis with +1 for the ps eigenvalue,
&-,'5 for the 53 eigenvalue.

Zero-order states for the vibronic problem consist,

(2)

Now, the operator 8 acts like an "electronic angular
momentum"; the electronic basis functions are eigen-
functions of Ss and of gs, as well as of S' (the eigen-
values for the last are 4A', for Ss, &s5, and for ys, +1).
S has the proper commutation rules in Q space,

sxs='ss,
and in every respect is analogous to a "spin" in that
space. The Hamiltonian may be written in this notation:
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then, of eigenfunctions of Ho, M', 3f~, S', and S3,
constituted by multiplying together appropriate vibra-
tional and electronic components. Such a basis may be
called the (n,MSMsSs) representation. The constants
of the motion J' and Js are diagonalized by the usual

vector-coupling transformation to the (e,MSJJ2)
representation. J takes the possible values M+-,',
excePt J=s when M=O; Js ——Ms+Ss. The resulting
secular equation does not depend on J3, M, or S, but
only on J, and has the form

(2D(J+1)j'" 0

L2D(J+1) ]'/2 J+2—X (2D) t/2

0= Det (2D) //2 JyS ~ L2D(J+2)~t/2 0 0 (7)

2D(J+2) ]'/2 J+4—li (4D) '/' 0 0

~ ~ ~ etc

where D = (J,2/2A'p, cu,s) is a dimensionless coupling
parameter, and X= (E/f/o/, ). (The secular equation for
ps

———1 is obtained by replacing QD with —QD. )
This secular equation is identical to that obtained

for the two-dimensional Jahn —Teller coupling problem, '
except that J is a half-integer instead of the integer m
which appears there. The contents of two registers in
the computer program for that calculation were appro-
priately altered and the new calculations were per-
formed. Energy eigenvalues X are given as a function of
D in Table I.

For experimental applications it may be useful to
have the eigenvectors, as well as eigenvalues. Let
N(N, MSJJsps) be the basis functions in the (n,MSJJs)
representation. Note that, for given (22, J), M is
specified, because e, Axes the parity of 3f and 5=—,'.
Let the eigenvectors of the secular equation be denoted
f(r/JJsps) . They can 'be written

p(r/JJsps) = Q A (vJps, 22,—J+-', ) N(22,MSJJsps) .
n~ J-1/t2

On written request, we will provide a listing of a
voRTRAN Iv subprogram which does the following:
(a) Given an approximate eigenvalue (error less than
20% of adjacent eigenvalue spacing for same J), it
computes exact eigenvalue by rapidly convergent
method (Ref. 9). (b) It computes the normalized
coeKcients A (ttJps, k) .

Just as in the case of the two-dimensional Jahn-
Teller coupling, convenient solutions may be obtained

for the limiting case that D becomes very large. In
such a case, the potential-energy matrix is diagonalized,
and the off-diagonal terms arising from the kinetic
energy are neglected. An eigenvector with given J, J3
has components which come from Q-space vibrational
functions with M =J—

2 and those with M =J+22. For
simplicity we shall consider the case J3=J to calculate
the strong-coupling energy levels. We may thus write
the most general expression for the eigenvector
4(»J J):
P(» J, J) =f(J,J ,'; R) v(J——-'„—JJ)

+f(J J+2; R)~(J+2, JJ) (9)
where

(J——',, JJ) =Y(J——',, J——,'; 8, &) C (+-'2),

(J'+-,', J'J) =—(2J+2) '"F(J+-' J—-' 0 $)C(+-')
yL(2Jy1)/(2Jy2) j'2I'(J+-' J+-'e y)C( —-').

(1o)
here C (&-',) designates the electronic state component,
and I"(lrN) is the spherical harmonic in the Q-space
angles 0, qh. It is easy to show that a similarity trans-
formation matrix A,

—sin-', 0 exp(i4/2) cos-,'0 exp( —g/2)
A=

cos2r8 exp(iP/2) sin2r8 exp( —&/2)

yields the matrix for the potential energy in diagonal
form. The result of the full transformation on the
Hamiltonian is a set of coupled di6'erential equations
for the component radial eigenfunctions f(J, J+2, R):

(
f22 d /' /f (J+-,')%2, , (J+-', ) his—

i
R' — + +sk,R2—l,R F(J;R)+ G(J;R) =EF(J;R),2'' dR & dR 2p,R' ' 2''

{
—

~

R2 —~+
' +sr',R2+J,R-G(J; R)+ ' P(J; R) =EG(J; R),2'' dR & dRj 2'' ' 2'' (12)

' J. A. Stratton, P. M. Morse, L. J. Cbu, J. D. C. Little, and F. T. Corbato, Spherosdo/ Wgse PNartsoas (MIT Press, Cambridge,
jVlass. , 1956). Especially see pages 53-63.
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TABLE L Octahedral Jahn-Teller effect (rmg with Fs) . Eigenvalues in units of h&o, .

0.1
Coupling const. D

0.2 0.3 0.4 0.5

1/2
3/2
5/2
7/2
9/2

ii/2
13/2

1/2
3/2
5/2
7/2
9/2

11/2

1/2
3/2
5/2
7/2
9/2

1/2
3/2
5/2
7/2

1/2
3/2
3/2

1/2
3/2

1/2

1.24199337
2. 11369023
3.00273355
3.90352264
4.81295071
5.72908059
6.65060743

2.51517151
3.58077637
4.60488220
5.59542039
6.56339949
7.51858522

3.30679977
4.25412589
5.23883392
6.25477085
7.29175045

4.46608173
5.49410221
6.49372647
7.47333968

5.35122877
6.33412781
7.34203984

6.43101680
7.43531734

7.38196276

1.03226391
1.83033900
2.66097500
3.51207551
4.37759250
5.25398209
6.13895431

2.40982380
3.39533875
4.32407797
5.23223048
6.13464842
7.03694455

3.24679484
4.28705004
5.37120258
6.46661085
7.55641322

4.30407202
5.25359028
6.18145618
7.10416477

5.32627931
6.38752164
7.45615524

6.25716390
7.19784888

7.35207441

0.84792711
1.59151611
2.37894656
3.19316285
4.02596631
4.87265609
5.73023694

2.25263638
3.15927048
4.02891494
4.89263745
5.75893254
6.63007902

3.22984228
4.34255127
5.44741654
6.48994443
7.45379649

4.13199301
5.03761346
5.96256967
6.94809155

5.28162334
6.34626141
7.36271749

6.12430285
7.07967564

7.25663794

0.67981338
1.37913241
2.13114884
2.91495820
3.72068757
4.54272892
5.37752976

2.08209708
2.92940799
3.75774136
4.58915031
5.42802252
6.27480415

3.20262991
4.31560953
5.32718363
6.24927116
7.13581341

3.98948531
4.91828963
5.94791348
7.05926701

5.18119854
6.18520066
7. 12555320

6.05169841
7.07958832

7.10928105

0.52313780
1.18471217
1.90621990
2.66368929
3.44588604
4.24645406
5.06137674

1.91174787
2.71251987
3.50807087
4.31297059
5.12883476
5.95488969

3.14074355
4.18628618
5.10413216
5.97040709
6.82346385

3.88986466
4.90376346
6.03199840
7.19236407

5.04081558
5.98155159
6.87584701

6.01112435
7.09802328

6.95396342

J
1/2
3/2
5/2
'?/2
9/2

ii/2
13/2

0.6
0.37502665
1.00347078
1.69791725
2.43190352
3.19305702
3.97438548
4.77147321

0.23359356
0.83239277
1.50237385
2.21502798
2.95701340
3.72078585
4.50157928

0.09752131
0.66943250
1.31699774
2.01001766
2.73431538
3.48186119
4.24757716

Coupling const. D
0.7 0.8 0.9

—0.03415257
0.51312687
1.13995141
1.81472419
2.52254337
3 ' 25494827
4.00658055

1.0
—0.16215634

0.36238674
0.96987627
1.62756500
2.31991903
3.03809269
3.77647378

1/2
3/2
5/2
7/2

ii/2

1/2
3/2
3/2
7/2
9/2

1/2
3/2
5/2
7/2

1/2
3/2
5/2

1/2
3/2

1/2

1.74563697
2.50788196
3.27563084
4.05754415
4.85319433
5.66089696

3.04073657
4.00644986
4.86767826
5.70109080
6.53063099

3.82951347
4.93250970
6.10293832
7.21855281

4.88563219
5.78169584
6.66312232

5.96673952
7.06080748

6.81956095

1.58473001
2.31380017
3.05705780
3.81841119
4.59582651
5.38689035

2.91328716
3.81335422
4.63664787
5.44539868
6.25553582

3.79180357
4.95179920
6.08303976
7.04793661

4.73273536
5.61100994
6, 54893627

5.89533500
6.94397516

6.71974104

1.42898699
2.12869406
2.84985413
3.59245203
4.35313294
5.12887313

2.77091886
3.61997628
4.41424545
5.20237834
5.99546712

3.75784165
4.92309901
5.94013391
6.81452969

4.59304054
5.49633817
6.55962282

5.79121407
6.77701880

6.65264000

1.27804959
1.95125331
2.65214819
3.37740259
4. 12253971
4.88400877

2.62198654
3.43035041
4.20050605
4.97047557
5.74810835

3.71236804
4.82671014
5.74488080
6.57662813

4.47459355
5.45164929
6.61877232

5.66228222
6.59284712

6.60361046

1.13148108
1.78041671
2.46250791
3.17156459
3.90213409
4.65020038

2.47105229
3.24562941
3.99475222
4.74824860
5.51160801

3.64540685
4.68187922
5.53871034
6.34390844

4.38226403
5.45290'?51
6.67285037

5.52010713
6.40928416

6.55438158
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TABLE I. (Continued) .

Coupling const. D
1.2 1.3

1/2
3/2
5/2
//2
9/2

11/2
13/2

1/2
3/2
5/2
//2
9/2

11/2

1/2
3/2
5/2
7/2
9/2

1/2
3/2
5/2
//2

3/2
5/2

1/2
3/2

—0.28705632
0.21637567
0.80573445
1.44733453
2. 12509010
2.82981014
3.55565138

0.98885136
1.61532395
2.27981362
2.97362796
3.69045027
4.42584702

2.32045009
3 ' 06597620
3.79619189
4.53447594
5.28449263

3.55407806
4.51563858
5.33301775
6.11809088

4.31503764
5.46642396
6.67800997

5.37404204
6.23774119

6.49009921

—0.40930290
0.07443489
0.64671198
1.27308949
1.93700000
2.62894195
3.34286104

0.84976560
1.45527159
2.10317246
2.78255816
3.48633631
4.20969407

2. 17134220
2.89119961
3.60407903
4.32814271
5.06557803

3.44214580
4.34219324
5.13100201
5.89920252

4.26556953
5.46632657
6.58818676

5.23080855
6.09121414

6.40302728

—0.52926075—0.06396518
0.49215666
1.10407542
1.75480464
2.43456320
3.13710361

0.71387108
1.29967816
1.93185994
2.59752185
3.28886777
4.00073690

2.02428402
2.72098871
3.41775215
4. 12840574
4.85390004

3.31606985
4. 16749520
4.93355342
5.68683750

4.22351883
5.42888933
6.42895746

5.09572022
5.98727309

6.29366022

—0.64722972—0.19925773
0.34153644
0.93967779
1.57781711
2.24592168
2.93756689

0.58085612
1.14805776
1.76527908
2.41783636
3.09728961
3.79815639

1.87951252
2.55500485
3.23663617
3.93456005
4.64866320

3.18154741
3.99403219
4.74080133
5.48049289

4. 17875949
5.34065985
6.24593941

4.97358733
5.93572689

6.16779365

—0.76345950—0.33180226
0.19441064
0.77938820
1.40546959
2.06239590
2.74358009

0.45044606
1.0000000(I)
1.60293139
2.24293431
2.91097580
3.60127438

1.73709536
2.39291823
3.06023382
3.74601128
4.44920315

3.04250938
3.82286160
4.55260089
5.27967179

4. 12284761
5.21218095
6.05704417

4.86863764
5.92280537

6.03222914

1.6
Coupling const. D

1.7 1.8 1.9 2.0

1/2
3/2
5/2
7/2
9/2

11/2
13/2

1/2
3/2
5/2
7/2
9/2

ll/2

1/2
3/2
5/2
7/2
9/2

1/2
3/2
5/2
7/2

1/2
3/2
7/2

1/2
3/2

1/2

—0.87816030—0.46190089
0.05040950
0.62278048
1.23728634
1.88346543
2.55458164

0.32229865
0.85515501
1.44439570
2.07233814
2.72940052
3.40952192

1.59700943
2.23442194
2.88811437
3.56225390
4.25495878

2.90141310
3.65441282
4.36870959
5.08391535

4.05022008
5.06230151
5.86803601

4.78319489
5.92541061

5.89259703

—0.99151076—0.58981024—0.09078077
0.46949324
1.07286417
1.70868927
2.37009584

0.19649972
0.71322154
1.28931239
1.90564148
2.55211705
3.22241618

1.45918367
2.07923597
2.71991350
3.38285429
4.06545134

2.75974352
3.48882232
4. 18885764
4.89281029

3.95940421
4.90306477
5.68095814

4.71600059
5.92447973

5.75318512

—1.10366386—0.71575047—0.22942911
0.31921685
0.91185784
1.53768998
2. 18971559

0.07255916
0.57393856
1.13737161
1.74249516
2.37874218
3.03954331

1.32352281
1.92710721
2.55527424
3.20743755
3.88026868

2.61838985
3.32608456
4.01277714
4.70598793

3.85270455
4.74034081
5.49657750

4.66209497
5.90253663

5.61746467

—1.21475152—0.83991179—0.36576800
0.17168383
0.75396905
1 ' 37014149
2.01308928

—0.04959237
0.43707779
0.98830416
1.58259656
2.20894418
2.86054535

1.18992076
1.77780764
2.39393955
3.03567713
3.69905307

2.47788192
3.16612433
3.84021419
4.52312019

3.73418742
4.57691080
5.31515889

4.61450913
5.84357041

5.48862752

—1.32488823—0.96246000—0.50000000
0.02666113
0.59893805
1.20575989
1.83991081

—0.17010641
0 ' 30243845
0.84187438
1.42568138
2.04243366
2.68511033

1.05826817
1.63113195
2.23564602
2.86728664
3.52149166

2.33853130
3.00883335
3.67093311
4.34391486

3.60777806
4.41413575
5.13674927

4.56602254
5.74406805

5.36988792
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Txnz. E I. (Cozztzzzzzed).

2. 1
Coupling const. D

2.2 2.3 2.4 2.5

1/2
3/2
5/2
7/2
9/2

11/2
13/2

1/2
3/2
5/2
7/2
9/2

11/2

1/2
3/2
5/2
7/2
9/2

1/2
3/2
5/2
7/2

1/2
3/2
3/2

1/2
3/2

1/2

—1.43417383—1.0835403/—0.63230278—0.11605565
0.44563700
1.04429622
1.66991177

—0.28911898
0.16984283
0.69787467
1.27151723
1.87895644
2.51296412

0.92845670
1.48689504
2.08016886
2.70201341
3.34730909

2.20051510
2.85408933
3.50471763
4. 16811122

3.47648069
4.25270088
4.96129585

4.51016858
5.61571408

5.26434069

—1.54269579—1.20328105—0.76283317—0.25664699
0.29656479
0.88553068
1.50285520

—0.40675271
0.03913270
0.55612098
1.11989840
1.71828777
2.34386475

0.80038140
1.34492970
1.92730762
2.53963311
3.17626150

2.06392625
2. 70176618
3.34137001
3.99547577

3.24326908
4.09295083
4. /8869986

4.44205318
5.47171514

5.17417735

—1 ~ 65053105—1.32179560—0.89173138—0.39527308
0.14884281
0.72926817
1.33853079

—0.52311850—0.08983344
0.41644924
0.97064189
1.56022779
2. 17759703

0.67394190
1.20508453
1.77688277
2.37994567
3.00813157

1.92880443
2.55173946
3.18070982
3.82579881

3.20681652
3.93504968
4.61884262

4.35928057
5.32023269

5.09951029

—1.75774754—1.43918515—1.01911858—0.53207696
0.00321169
0.57533449
1.17675077

—0.63831696—0.21718281
0.27871247
0.82358397
1.40459789
2.01396878

0.54904300
1.06722197
1.62873277
2. 22277166
2.84272501

1.79515528
2.40388922
3.02257246
3.65889127

3.0/072127
3.77906162
4.45159881

4.26228232
5.16547568

5.03776255

—1.86440539—1.55554014—1.14510904—0.66718681—0.14047152
0.42357344
1.01734674

—0.75243963—0.34303026
0.14277843
0.67857747
1.25123763
1.85280745

0.42559477
0.93121678
1.48271171
2.06794951
2.67986695

1.66296266
2.25810141
2.86680756
3.49458215

2.93467063
3.62499407
4.28684329

4.15347455
5.00961226

4.98427061

where
F(J; R) = f(J, J+-', ) +f(J,J—-';),

G(J R) =f(J J—-') —f(J J+-')
(13)

If now we imagine l, to be large, and neglect the
coupling term in G, the equation for Ii becomes that
for motion on a potential surface whose minimum is
displaced from E=O; its minimum energy is lowered
by the amount DAN, . F represents motion on the lower
potential sheet, 6 that on an excited sheet. The approxi-
mate equation for Ii is very similar to that of the
vibrating rotor, analyzed by Dunham. " The limiting
energy levels may be expressed in terms of the vibra-
tional quantum number e, and J are

E(s, J, Js)

=~ I —D+(~+5)+(J+2)'L(1/4D)+(13/32D') j
+(3/gD') (s+k) (J+s)'+(13/32D') (s+k)'(J+k)'

—L(1/16D') + (163/512D') j(J+-,') 'j. (14)

A curious phenomenon occurs in the behavior of
eigenvalues emanating from a given zero-order level of
the unperturbed system. For the level with zero-order
energy (e,+$)Sez, allowed values of J are

"J.L. Dunhazn, Phys. Rev. 41, 721 (1932).

I- 7.8
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I I I

( j = l3/2 NOT SHOWN)

0.2 0.4 0.6
COUPLING PARAMETER, D ~ 0.8

FIG. 1. Nodal degeneracy phenomenon. Oscillation of the eigen-
values for the zero-order level with e,=6.

~ ~ ~ (n,+s~). As implied by Eq. (14) the eigenvalue
spectrum for large D is that of a vibrating rotor, but
before this limiting behavior is obtained the eigenvalues
perform a sequence of curious oscillations about the
"baseline" value L(zz,+ss)5nz, —D5ez,]. Figure 1 illus-

trates the behavior in question for the zero-order level
with zs, =6. The "adjusted" eigenvalues E(J)+Dhzd,
are plotted versus D. As is shown in Fig. 1, the eigen-
values for J=—,', ~ ~ ~ '~ fan out from the baseline value
of 7.55~„ the level '& drops monotonically towards its
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First
node

Dc

Second
node

Dc

Third
node
D,

Fourth
node

Dc

Fifth
node

Dc

2 1/2
3/2

0.265025
0.270196

3 1/2 0.205246 0.712189
3/2 0.207607 0.714163
5/2 0.211816 ~ ~

4 1/2 0.167566 0.574538 1.259788
3/2 0.168840 0.575335 1.256415
5/2 0.171059 0.576149
7/2 0.174389 ~ ~ ~ ~ ~ ~

5 1/2
3/2
5/2
7/2
9/2

0.141612 0.482345 1.043725 1.872713
0.14237/ 0.482741 1.041389 1.863562
0.143693 0.483183 1.036336 ~ ~ ~

0.145626 0.483252 ~ ~ ~ ~ ~

0.148286 ~ ~ ~ ~ ~ ~ e ~ ~

6 1/2
3/2
5/2
7/2
9/2

11/2

0.122635
0.123131
0.1239/6
0.125202
0.126858
0.129020

0.416015
0.416241
0.416511
0.416636
0.416280

0.893288 1.581563
0.891684 1.575564
0.888493 1.563914
0.882858 ~ ~ ~

2.532009
2.517175

~ ~ ~

TABLE II. Discrepancies in the nodal degeneracy phenomenon
Dor each node, m„and j value, the value of D, such that E;+
D.hco = (a,+-,') bc',g.

have gone over the computation exhaustively, with this
in mind. However, we are now convinced that the
computation is accurate to at least one part in 10',
for a number of reasons:

(1) At least one eigenvalue and its eigenvector have
been calculated to mime decirma/ p/ace agreemtemt, using

(a) a desk calculator, (b) the computer program listed
here, and (c) UNIVAC I at Harvard, using a somewhat
diGerent computational procedure. Also, complete
nine-figure agreement between results of (b) and (c)
was observed in every case tested.

(2) The results are independent of the point of
truncation, agreeing to 1)&10 ", whether one uses 200
or 400 terms in the recursion process.

(3) The precision of computed eigenvalues is of this
order, too; there is no ambiguity or "wandering" of
Ez(D) as function of D; the plots are cleanly defined
and unambiguously "miss" the nodal degeneracy by
the amounts given in Table II.

(4) All computation is done in double precision
(IBM 360); we found the perturbations due to delib-
erate underspecification of parameter precision, to
single precision, to be in the sixth decimal place.

(5) The eigenvector expansion converges unambig-
uously and in every case we evaluated the coeScients
out to magnitudes 1X10 ".

limiting place as a rotational component for v=0 in
Eq. (14), but the remaining (m, —1) eigenvalues again
converge towards each other and the baseline and at a
certain critical D value appear to be simultaneously
degenerate with the baseline value E(J)+DAid, =
7.50 Sco,. For increasing D they again diverge, the level
J='~' drops monotonically towards its place in the
rotational structure for s= 1, and the remaining (m, —2)
levels again converge on an apparent nodal degeneracy
at the baseline at a second critical D value. For in-
creasing D this pattern is repeated, with the level of
highest remaining J value "peeling oG" each time, until
only the level J=-,' remains to cross the baseline and
join the rotational structure for v=e, . This behavior is
quite systematic; it occurs (m, —1) times for the zero-
order level (m, +ss)ho~, . Surmising that such "acci-
dental" degeneracy could not truly be accidental, we
performed extensive exploration of the regions of nodal
degeneracy. The result of this exploration is stranger
still: The degeneracy is sot quite exact. Table II lists the
values of D, for each nodal region and each J value, for
which E~+DAoi, =(m,+-,')5or, . It will be seen that
although these D values are clustered closely, there is a
finite spread in each case, ranging from 1)&10 4 to
2&(10 '; nor is it true that a nodal degeneracy occurs at
any point og the baseline value.

Obviously, results like this could be attributed to
systematic errors in the computer program, and we

It is our view that exact degeneracy does not, in fact,
occur, though we have no explanation either for the
"near-miss" situation observed, nor for the existence of
even opprorirmo/e degeneracies.

(Pragmatically, we may note that in the presence of
even a very weak additional perturbation rot diagonal
in J, the eigenvalues near a nodal degeneracy mill

exhibit erst-order shifts; this renders the issue a purely
formal, academic one. )

[For anyone interested in pursuing the formal
problem, we may write the Hamiltonian most com-
pactly as

H=hoi, l f-', (nt n+n nt) —i(QD) d. (nt —n) I,

where

et = (2rm5~ ) ™PP+i~,Rj e= (nt)*, (16)

and d is the (vector) Pauli spin matrices. The orbital
angular momentum RXP is given by M =—i/i) et X n$,
and the operator I=M+ (-,'fi) d commutes with H. The
point to be proved (if possible) is that there exist
critical D values and m, values such that (H+D/i&o, l)
has a multiply degenerate eigenvalue t (m, +-,s) A'oi.).]

DISCUSSION

The eigenvalue computations presented were origi-
nally performed on the UNIVAC I Computer at the
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Harvard University Computation Laboratory. The
details of computation are analogous to those described
in Ref. 1. While the dynamic Jahn-Teller effect is
nearly as elusive as ever, there has been an increasing
amount of work concerned with it, particularly in solid
state physics.

Some molecules and certain complex ions in solids
are known to have Fs ground states. A I'8 state can
arise either from an orbital doublet (E state) with
spin —,', or from the manifold of states produced from an
orbital triplet (T state) with half-integral spin and
strong spin-orbit coupling.

In solids, the first case is the one encountered in every
known example to date, and it is also found that ia
these systems which appear to exhibit dynamic Jahn-
Teller coupling it is always the doubly-degenerate mode
e, which is strongly coupled, that to the 72, mode being
apparently negligible. For the second case to occur,
strong spin-orbit coupling would be essential to split
the Fs component from other multiplets of the same
term by separations large compared to the vibronic
perturbations; this situation could be found in the
heavier elements, as it is for molecules. "

In molecules, the case of a I'8 ground state arising
from an orbital triplet is known experimentally. Wein-
stock and Goodman~ analyzed the vibrational spectra of
ReF6 and TcF6 by treating the coupling of both e, and
v2, modes with the I'8 electronic state, using perturbation
methods. In both cases, though the e2, splitting is
larger than that due to r2„ the dimensionless parameter
D is larger for the latter mode than for the former
because of the much lower frequency of the trigonal
bending mode relative to the tetragonal (stretching)
mode. However, both are important, and vibronic inter-
actions quadratic in the vibration coordinates (not
considered in our calculations) seem to play a significant
part. "

The case we have treated here, which assumes
coupling only to the z2, mode and restricts that to

"We are indebted to Dr. F. S. Ham (private communication)
for comments on the experimental situation vrith respect to r,
states in solids.

'e Dr. G. L. Goodman (private communication) has drawn this
point to our attention.

linear terms, remains without direct applications. It
may be instructive, however, as an exact solution
against which approximate methods can be checked.
With this in mind, we have written a x'oRTRAN rv com-
puter subprogram to compute normalized eigenvectors
of this problem; this makes the computation of reduc-
tion factors and other experimentally useful quantities
quite simple. The program simultaneously re6nes the
accuracy of approximately known eigenvalues, enabling
rapid interpolation from Table I to any desired coupling
parameter. Also, merely by changing the angular
momentum quantum number from an odd half-integer
to an integer, the program computes solutions for the
much more common case discussed in Refs. 1 and 2.

It should be pointed out that by far the greater
amount of literature on the Jahn-Teller effect and its
applications has appeared since 1959. The articles by
Liehr" '4 and by Weinstock and Goodman, ' and the
volume by Herzberg, " provide a good picture of the
work done relevant to molecules. An extensive dis-
cussion dealing particularly with the effects of Jahn-
Teller coupling on optical and paramagnetic resonance
spectra has been given by Ham. "Ham's paper is also
very useful for its literature citations on solids. More
recently, an excellent review article on the dynamic
Jahn-Teller eRect in solids has been written by Sturge, »

with a comprehensive bibliography.
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