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contribution Ag, which is related to the g shift in
2g by2l,

Ar, =2' rrt Ising(r '), - (6)

where p and pz are the nuclear gyromagnetic ratio and
nuclear magneton, respectively, p& is the Bohr magne-

ton, Ag=g —2.0023, and (r ') is an average over the
3d wave function. Freeman and Katson22 have calcu-
lated (r s)=2.75 a.u. from the free-ion Hartree-Fock
wave functions. This value and the measured g shift

"A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
A205, 135 (1951).

'~ A. Freeman and R. E. Watson, in M'ageetism, edited by G.
Rado and H. Suhl (Academic Press Inc. , New York, 1965), Uol.
IIA.

with H along L111j used in Eq. (6) give a predicted
orbital contribution Al. ———17&10 4 cm ', which is to
be added to the core-polarization hyperfine interaction,
which is also negative. The total calculated hyperhne
constant thus obtained is 2=91&10 4 cm '. This is in
excellent agreement with the measured value of 90)(10 4

cm ', and implies that the calculated (r ') is accurate
to at least S%%u~ for this system.
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An experiment designed to study the three-spin cross relaxation (CR) rate without interference from
much faster two-spin CR processes is described. The study was performed on the electron spin system
Crs+ in KsCo(CN) s and the CR rate was determined for a range of concentrations 0.036-1.030% and an

energy imbalance range of &680 MHz from the harmonic point. Comparison with Bloembergen's "hybrid"
method (in the present application by an exact computation of the second moments of the shape functions)
shows good agreement for concentrations in the range 0.036-0.384%. For higher concentrations, this theory
does not explain the data. The experimental results are also in disagreement with a theory of Grant s, which

gave a good account of several previous two-spin CR experiments.

I. INTRODUCTION

TWO theories of cross relaxation (CR) in spin sys-

.tems have been advanced. In both theories the
dipolar and exchange interactions play dual roles;
their secular parts broaden the energy levels of the
system of uncoupled spins and the nonsecular parts
cause transitions ("flip-flops" ) of spins. In 1958,
Bloembergen et a/. ' introduced a theory of CR (the
so-called "hybrid method") which was an extension

of previous theories of paramagnetic line broaden-

ing. The CR rate in this theory is given as W(&o) =
(2sr/5) ) (i

~

Ha;oNs
) f) ('g(co), in which the nonsecular

part Ha;,"s is the interaction operator and g(co) is
the shape function, which Bloembergen et gl.' compute
(for a two-spin process) by the folding of two para-
magnetic line shapes involved in the CR process. In-
stead of a convolution, Kiel, ' Kopvillem, ' and Hirono'

*This research was supported by the Electromagnetic Warfare
Branch, Air Force Avionics Laboratory, Air Force System
Command, U.S. Air Force, under Contract No. AF33 (657) 11029.

'
¹ Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman,

Phys, Rev. 114, 445 (1958).' A. Kiel, Phys. Rev. 120, 137 (1960').
s U. K. Kopvillem, Fiz. Tverd. Tela 2, 1829 (1960) /English

transl. : Soviet Phys. —Solid State 2, 1653 (1960)g.' M. Hirono, J. Phys. Soc. Japan 16, 766 (1961).

have utilized the method of moments' ' of the theory of
paramagnetic line broadening. In diluted spin systems,
of concentration f, the moments of the shape function
are polynomials in f with leading terms which are
concentration-ind. ependent. 7 The shape of g(co) in
diluted systems has thus been assumed to be concentra-
tion-independent. The magnitude of the CR rate is
proportional to f" ', where st is the order of the inter-
action (i.e., the number of spins involved in a single
process); rt —1 is also known to be the order of perturba-
tion theory necessary to determine the matrix element
of the transition operator. The hybrid method does not
require exact conservation of Zeeman energy in a single
process. CR transitions can occur away from the har-
monic coincidence of the Zeeman transitions; the
balance of energy is achieved by a dynamic rearrange-
ment of the entire lattice. In practice, for systems in
which 8, is not a good quantum number, only the 6rst
and second moments of g(co) can be computed. The
ratio of the two is then used as the criterion of whether

' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
M. H. Pryce and K. W. Stevens, Proc. Phys. Soc. (London)

A63, 36 (1950).' A general application of the method of moments to the CR
problems can be found in J. M. Minkowski, dissertation, Physics
Dept. , The Johns Hopkins University, 1963 (unpublished).
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the shape is well approximated by a Gaussian. However,
the shape of g(te) has little to do with the shapes of
paramagnetic lines and the width of g(ce) may be an
order of magnitude greater than the width of the
paramagnetic lines. The hybrid method has been used
extensively to explain the experiments of Bloernbergen
et ut. ,

' Pershan, Feng and Bloembergen, ' Mims and
McGee,"and others.

More recently, Grant" has developed an alternative
theory. The main objection to the hybrid method raised
by Grant concerns the origin and meaning of the shape
function g(ce), which was introduced by analogy to the
case of paramagnetic line widths. " Grant proceeds
from the requirement that the differences in Zeeman
energies of the e spins of the CR transition have to be
equalized by shifts due to the dipolar and exchange
effect of all the spins of the system. Each pair of spins
(in the two-spin CR process) is subjected to the dipolar
field of one of the members of the ensemble of spin-
system configurations which arise from distributing
Ã spins into M paramagnetic sites. Some of these
configurations shift the levels of the pair in such a way
that the energy is conserved in the Qip. The interaction
operator which is the nonsecular part of the dipolar
interaction is the weight with which the configurations
responsible for equalization of Zeeman energies enter
the averaging over the ensemble of all configurations.
As a result, the CR rate becomes proportional to the
convolution of two functions, one related to the power
spectrum of the transition operator, x(te), and the
other, y(s&), to the dipolar broadening of paramagnetic
lines. y(t0) is in turn the convolution of the shapes of
the paramagnetic lines. The CR rate is concentration-
dependent through a statistical factor f" (one order
higher than in the hybrid method) and also through the
dependence on concentration of the paramagnetic
lines of the convolution y(ce) . No assumption about the
shape has to be made and Grant's method is able to
explain fine features of the concentration dependence
in the two-spin CR experiments of Mims and McGee."
Recently Weissfloch" has applied Grant's theory to
two-spin processes in cobaltihexacyanide doped with
Cr'+

Both CR theories have been extended to higher-order
processes in diluted paramagnets, but experimental
data is scarce. Feng and Bloembergen have investi-
gated five-spin and four-spin processes of Cr'+ in ruby
and used the hybrid method to explain general features
of the data. The reasons for the scarcity of data are
clear: (a) CR rates in general are dificult to extract

' P. S. Pershan, Phys. Rev. 117, 109 (1960).' S. Feng and N. Bloembergen, Phys. Rev. 130, 531 (1963)."W. B. Mims and J. D. McGee, Phys. Rev. 119, 1233 (1960).
"W. J. C. Grant, (a) Phys. Rev. 134, A1554 (1964); (b) 134,

A1564 (1964); (c) 134, A1574 (1964); (d) 135, A1265 (1964)."A thorough study of the relation of the moments of a function
to the function is to be found in Grant )see Ref. 11(d)j. This
paper also analyzes the method of moments in terms of Grant' s
own theory."C. F. Weissfioch, Can. J. Phys. 45, 93 (1967).

from time decays of saturated or inverted paramagnetic
lines since these decays depend also on spin-lattice
relaxations and in spin system with S&-', several of
these rates are involved. (b) Higher-order CR processes
are accompanied by lower-order CR processes which
are usually stronger by a factor of 10'/f per decreasing
order. When the concentration increases they mask the
higher-order processes even if their harmonic point is
separated by a large (several hundreds MHz) frequency
interval from the harmonic point of the higher-order
process under study. (c) A precise determination of the
concentrations is very important because of the f" '

(or f") dependence of the mth-order CR rates. In most
past experiments the concentration has been assumed
to be that of the nominal ratio of materials used in the
preparation of the crystals.

The present experiment on the three-spin CR rate
has been designed to minimize these difficulties: (a) We
investigate the three-spin processes in a range of &680
MHz from their Zeeman energy balance. For all mag-
netic field values corresponding to this range two-spin
CR processes occur at the exact harmonic ratio of their
Zeeman energies. Thus we can eliminate two-spin
processes from consideration. (b) In order to decrease
the number of independent decay modes (of which
there are 3 in a 4-level spin system) we apply saturating
constraints to two of the Zeeman transitions. The decay
of the monitored transition proceeds with a single time
constant if the constraints are maintained during the
experiment. It is then much easier to extract CR rates
from these decay data and from the stationary-state
absorption data. (c) The determination of the concen-
tration was performed by spectral photometric method.
By increasing the number of tested samples of each
crystal we have reduced the probable error in concen-
tration to 1 part in 104. Seven crystals were investigated
with spin concentrations ranging from 0.036%—1.030%
(atomic replacement of cobalt by chromium) .

Ke hoped to be able to account for the present
experimental results by an extension of Grant's theory.
This was not the case, however. We, therefore, include
for comparison computations based on the hybrid
method.

The experimental setup and results are discussed in
Sec. II. The application of the "hybrid" method is
given in Sec. III, and an attempt to interpret the
present data in terms of Grant's theory is presented in
Sec. IV. Section V summarizes the work.

II. EXPERIMENTS WITH THREE-SPIN CR IN
DILUTED KsLCr, Co)(CN)s

In the experiments to be described below we have
concentrated our attention on the concentration de-
pendence of the CR shapes and on the strength of the
interaction, at high-dilution ratios of the paramagnetic
ions. The experiments were performed with the spin
system Cr'+:(S= s) in potassium chromihexacyanide,
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FgG. 1. The principle of the experiment and the two three-spin
CR processes.

KsCr(CN) s, diluted with potassium cobalti-hexa-
cyanide, KsCo(CN) s. The general scheme of the
experimental method is illustrated in Fig. 1. The four
levels of Cr'+ have separations such that several types
of three spin CR processes are possible. Application
of saturating signals at frequencies v~3, v24 eliminates all
but two types of three-spin processes from considera-
tion. The pumping signals provide two constraints
on the populations of the levels, reducing the number
of independent rate equations to one. A weak monitor-
ing signal is applied at a frequency v&4. The behavior
of the population difference n~ —e4 is then studied in
the stationary state (with pumping signals) and in the
recovery to the stationary state after pulse saturation
by a strong v&4 signal.

fraction and paramagnetic-resonance results" have
clari6ed the situation. The simple cell is monoclinic, as
shown in Fig. 2. Four polytypes, arising from different
ways in which simple cells are stacked upon one another
have been observed' "; they are denoted by 1M,
20r, 335, and '?3f. The most prevalent ones are 1'
with a simple monoclinic unit cell, and 20r with an
orthorhombic unit cell arising from a rotation around
the c axis and a stacking in the direction of the a axis
of one monoclinic cell on another. On the basis of the
discussion presented in Ref. 19, we have identified the
crystals used in our experiment as belonging to the
type 20r. Figure 2 shows a cross section of a 20r unit
cell, with the following lattice parameters (in A.):
a=13.31~0.04, b=10.37~0.02, c=8.37&0.01. There
are four cobalt ions'~" per unit cell with coordinates
(0, 0, 0), (-', , 0, -', ), (0, —',, —,'), (-,', —,', —,').

a

A. Unit Ce11 and Spin Hamiltonian of Ksl Cr, Coj(CO)s XN
3 ~6.5

An examination of older crystallographic litera-
ture' " reveals a controversy about the crystal struc-
ture of KsCo (CN) s. Recent neutron diffraction studies, '
x-ray diffraction work, " and correlation of x-ray-dif-

FIG. 3. Orientation of the axes of two nonequivalent magnetic
complexes of 20r-type K3Cr(CN) s with respect to the crystallo-
graphic axes.

COBALT SITES:

—C
I

4

c

a= l3.3I A

b=I0.37A
C= 8.35A

g= l074 l9'

MONOCLINIC CELL
a'=7.OOA

The positions of the principal axes of the two mag-
netic complexes in the 20r-type crystals are illustrated
in Fig. 3. There are two nonequivalent cobalt sites in
the unit cell and two nonequivalent magnetic com-
plexes of Crs+" "

The spin Hamiltonian has the form

H;=PH g S+D/S, P ', S(S+1)j+E(—S-' SP). —

Sa mb

(8+I/2) a mb

jI a (m+I/2)b

(/+I/2) a (m+I/2) b

nc

(n+I/O) c

(n+I/2) c

(n+3/O)c

FzG. 2. Orthorhombic K3Co(CN)6 (b axis perpendicular to the
figure plane).

'4 C. Gottfried and J. G. Nagelschmidt, Z. Krist. 73, 357 (1930).
"V.Barkhatov and H. Zhdanov, Acta Physicochim. USSR 16,

43 (1942).
"V. Barkhatov, Acta Physicochim. USSR 16, 123 (1942).
'~ N. A. Curry and W. A. Runciman, Acta Cryst. 12, 674 (1959).
",J.'A. 'Kohn and Q, D, Townes, Acta Cryst. 14, 617 (1961).

D =0.0831&0.0010 cm ',

8=0.0108+0.0010 cm ' (2)
' J. O. Artman, J. C. Murphy, J. A. Kohn, and W. D. Townes,

Phys. Rev. Letters 12, 607 (1960).
2' T. Ohtsuka, J. Phys. Soc. Japan 15, 939 (1960).
~1 K. D. Bowers and J.Owen, Rept. Progr. Phys. 18, 304 (1955).
22 J. M. Baker, Proc. Phys. Soc. (London) 869, 1205 (1956)."J.M. Baker, B.Bleaney, and K. D. Bowers, Proc. Phys. Soc.

(London) B69, 12 (1956).

We have adopted as the values of the parameters those
determined by Baker, Bleaney, and Bowers":
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and g, =1.993, gy
——1.9914, g, =1.991, with a probable

error of &0.001. The abundance of "Cr as compared to
"Cr is 9.5% and therefore the hyperGne-interaction
term in the spin Hamiltonian has been neglected.

All our work has been performed with the magnetic
Geld in the ac plane and we have adopted the value
g= 1.991.Corrections due to an angle of 6.5' formed by
the y's' and y"s" planes with the uc plane are below the
value of the probable experimental error of the present
experiment. With the external Geld in the uc plane the
spins of the two complexes have the same energies. The
eigenvalue equation is of the type

C4e'+ Cse'+ Cre+ Cp ——0,

where the C, are functions of the parameters D, E, g,
the magnetic Geld

i
H i, and its orientation. We describe

this orientation by polar angles 8, y of H with respect
to the crystallographic axes.

For our purposes, we choose the orientation at which
Eq. (3) is quadratic in e, that is, Cr(8, y) =0. This
condition results in a cone of directions for which
e4= —er, ps= —es for all values of

I
H i. LHere e; label

the four possible solutions of Eq. (3).j Since we also
require q =res (H in the ac plane), the condition
Cr(8, y) =0 leads to

cos'8= ', $D+3Ej//(D —cos'8+2(1+sins8) j.
With the adopted values of D and 8 and with 8=
&6.5', we have

(p =s~).
The plot of eigenvalues for this orientation versus

I
H

I

is shown in Fig. 4. The value of the Geld of particular
interest in the present investigation is indicated by the
vertical line at

i
H I=0.735 koe. At this point the

energy differences are related by

v,4. (vrs ——vs4): (vrs ——v„):(vss) =5:3:2:1, (4)

where we have introduced the notation hvg, =
I e,—es i.

B. CR Pxocesses at &g=-', pp, II=49'50',
i
H i=735 Oe

Equation (4) allows a very large number of kinds of
CR processes to take place. In particular, we will
investigate the possible two-spin and three-spin proc-
esses. Higher-order processes are of no importance
since we are interested in diluted salts and in the range
of concentrations studied four-spin processes result in
relaxation times slower by at least three orders of
magnitude than the three-spin processes. Even higher-
order processes have a correspondingly smaller e6ect.

The possible two-spin processes are characterized in
our case by er+e4=ps+ps. It should be noted that this
relation is independent of the particular Geld

i
H

I

=
735 Oe, and it is valid for all Gelds at the orientation
considered. The two-spin processes are always operating
at their exact harmonic relation.

There are 10 types of three-spin CR processes which
conserve energy at the operation point

i
H

i
=735 Oe.

Of these, four are "cyclic" and do not change the
population numbers; four are eliminated by application
of the saturating signals at transition frequencies
vrs, vs4 (which are equal). The remaining three-spin
processes are of the two types shown in Fig. 1. For
the n processes, the condition for energy conservation is
3es ——2es+sr, and for the P processes it is 3es ——2es+e4. In
terms of the paramagnetic transition frequencies, these
become ZP23=P2i and 2P23=P34, respectively. In order to
investigate the shape of the CR lines, we perform the
experiment not only at exact coincidence of the energies,
but also in the vicinity of the Geld point

i
H

~

=735 Oe.
We deGne the deviation from the harmonic ratio as

AP =Py2
—2P23 =P34—ZP23.

Av is plotted versus
I
H

i
in Fig. 5. (For future use we

have also plotted the frequencies vr4, and vrs
——vs4. )

C. Rate Equations

Saturating signals applied to the transitions
i 1)&~

I 3) and
I

2)~~i 4) provide two constraints on the
populations, ei=m3 and m~=e4. Together with the
condition

0
O. I

I

l

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I I I I I I I
I I I I I I I I

(k0e)

I.O I. I

I I
I I

l.2 l,3
I I

I I

(X is the total number of spins), these constraints
reduce the number of independent rate equations to 1.
The monitoring signal is applied at a frequency P&4.

The rate equation for the difference A=xi —e4 then
becomes'4

d+d, (2') +3(burrs —N4') (1/1P) Wca slV U ) (5)——

where we have introduced the following abbreviations

FIG. 4. Energy levels of Cr'+ in KsCo(CN) s versus
I
H ). H in

ac plane at 8=49'50', y= ~71..
24 Compare, e.g. , %.J. C. Grant, J. Phys. Chem. Solids 25, 751

(1964).
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0.8

0.6

0,4

0.2

N

0

of the
~

1)~~t 4) transition does not perturb the sta-
tionary state appreciably since this transition is already
nearly saturated. Therefore much more weight has been
assigned to the data obtained by the method of com-
paring the paramagnetic absorption in the stationary
state, Eq. (8), with absorption at thermal equilibrium,
that is, with constraints e~=m3, m2=e4 removed. If we
denote the imaginary part of susceptibility as a function
of power-saturating transitions

)
1)~4—

~
3) and

( 2)~~ 4)
by F14"(E»,34), then the ratio of the susceptibility at
complete saturation, E»,24+~, to the susceptibility
at P» &4

——0 (Boltzmann equilibrium) is

-0.4

-0.6

n =X14"(~)/X14"(o)
= (s1—s4) g/(st —s4) 11 =68/Dn. (9)

-0.8

650 675 700 725 750 775 800 825
H (GERSTEOS)

Fro. 5. Deviation gatv from the harmonic point versus
~
H ~, at

g =49'50' and q =-2x. (Monitor frequency v14 and pump frequency
~&~=a&4 are shown above and below, respectively. )

for the functions of the spin-lattice relaxation rates

rip ——ill'U /45'. (10)

We discuss methods of determining this quantity in
the next section. From Eq. (10) and Eqs. (7)—(9) we
can obtain relations between the measured quantities
X, g, gp, and the spin-lattice relaxation and CR rates:

6, is given in Eq. (8) and the subscript 8 denotes
Boltzmann equilibrium. We call p the relative index of
absorption.

In the absence of CR the relative index of absorption
1S

2 U+ (I»+N21) + (4441+N14) + (4443+4434) + (N32+N33) I

(N21 N12) + (N41 4414) + (4443 N34) (4432 4423)

2 U~ =X4t/rip,

lf'ca = (16/9) (2U+) (np n) ln. — (12)

8 && is the CR transition probability rate per single-
Aipping spin.

We linearize Eq. (5) by assuming that

The fourth measured quantity of interest is the con-
centration of the chromium ions. This is discussed in
detail in the next section.

and obtain
(s13 s4') (s1—s4) TS7rN3—

D. Experimental Results

&+~[2U++AWcaj =4XU-

The decay constant of this equation is

&=2U++A~ca (&)

and the stationary solution is

6,=4EU /$2U++I'pWcR j. (8)

One might expect that a determination of X alone by
the pulse-saturation method at various concentrations

f, and then an extrapolation to f=0 (no CR) would
lead to a determination of 2V+ and hence to the deter-
mination of S"~R. Such a procedure assumes the inde-
pendence of U+ on concentration. In addition, the
pulse-saturation experiment with the system recovering
to the stationary state after the pulse at v&4 becomes
dificult at both extremes of the investigated concentra-
tion range. The pulse-saturation apparatus is not
sensitive enough to provide good data at higher dilu-
tions. On the other hand, at chromium concentrations
larger than 0.8% the saturating pulse at the frequency

Crystals of K3LCr, Co)(CN)p were grown by sus-

pending a small seed in the saturated water solution
of the material. They were kept at a well-controlled
temperature of 13.5'C for periods of several weeks.
Large, well-formed crystals were obtained with easily
identifiable directions of the crystallographic axes. The
size of each crystal was sufhcient to cut out the experi-
mental sample and 2 to 4 additional samples for chemi-
cal analyses. These chemical analyses were performed
by reducing the chromium with sodium peroxide and
measuring the color concentration on a Fisher Electro-
photometer with a No. 425 filter. A careful calibration
of the photometer on 70 powder samples of known
Cr'. Co concentrations reduced the probable error to an
estimated 1:104. The results of analysis of the seven
crystals used in the experiment are given in Table I.

The relative index of absorption is obtained from the
ratio of the measured y14"(eo) (under steady-state
saturating powers at the frequency v»= v34) to X14"(0)
(measured under Boltzmann equilibrium conditions).
The apparatus consists in essence of two conventional
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TAnLs I. Concentrations oi chromium in K&Co (CN) p host crystals.

Crystal No. Cr.'Co

(0.036&0-01.0) X10 '
0.105 X10 '
0.153 X10-2
0.253 X10 2

0.384 X10 2

0.586 X10 2

1.030 XIO 2

paramagnetic-resonance spectrometers; a system for
the weak monitoring power at the frequency of the

l
1)~+—

l 4) transition (X band) and a system which
provides the saturating power to the

~
1)~~~ 3) and

l 2)+~~ 4) lines (C band). Both systems are provided
with power monitoring arrangements. The control of
power is of importance. The incident X-band power
levels are kept low, of the order of 1 p%, while the
C-band power levels are adjusted at each experimental
point to provide sufficient saturation, without causing
excessive heating, evaporation, and bubbling of the
liquid helium. The saturating power depends not only
on temperature, but also on the static 6eld. Accordingly,
we have to vary the saturating power in the range
5-15 m%.

The requirements on the microwave cavity are
rather severe. This cavity has to be resonant at two
bands (Xband. and C band) and tunable in both bands
independently, in ranges of the anticipated width of
the CR lines. All three quantities, v~4, v»=v24, and Av,

are, of course, functions of the magnetic field (Fig. 5).
We were able to cover a 1000-MHz range, from 9000
to 10000 MHz, corresponding to hv=+680 MHz
(650(

l
H

~
(820 Oe) . The requisite range of the

frequency v»=v24 of the saturated lines is 450 MHz
and was much easier to span. As the data to be discussed
show, the range which we investigated was su%.cient
to display the main features of the CR processes under
study. The loaded quality factors of the cavity were
3600 for C band and 2000 for X band.

Experiments were performed at 4.2 and at 1.6'K.
The procedure used is as the following: The X-band
frequency was changed by small (25-50 MHz) inter-
vals. At each point the magnetic field was adjusted to
resonance and the C-band power tuned to the frequency
indicated in Fig. 5. The

~
1)~) 3) and

l
2)~~~ 4) transi-

tions were then observed and small adjustments of
frequencies were made to line up all three transitions
at the same field value. The C-band power was then
increased (to saturate the C-band transitions), the
6eld-sweep amplitude and X-band power were reduced,
the dc field shifted below the resonance value, and the
ri4 line (with C-band power on) was recorded The.
C-band power was then removed and the line was
recorded twice without it. The fourth recording was
made with C-band power on. This allowed us to observe

Cr~" Co~

x (0.036 & O.OIO) X IO
0 Q.IQ55

0,153
0.2 53
0.384

X

08 ~x x~

~ 0.586
V I.030

O

8
~ 0.6

CI

II

O

0.4

II

T=4.2'K

X
—x

x M~p 8 2

0.2

I i I i I i I i I & I

-500 0 500
&&= &I2-2&23= &34-2 &23, (MHz)

Fro. 6. Relative index of absorption versus Av, T=4.2'K.

rip=0. 820&0.010 (4.2 K),

rip=0. 863&0.010 (1.6'K) .
25R. D. Mattuck and M. W. P. Strandberg, Phys. Rev. 119,

1204 (1960).

any systematic drift of the system between the first
and fourth recording. All the results of the steady-state
measurements are shown in Figs. 6 and 7, for T=4.2
and 1.6'K, respectively. The curves are the result of
theoretical computations of the CR rates to be described
in Sec. III.

To determine rip, we return to Eq. (12) and re-
arrange it to read re=rip —F(f)ri. For crystals of low
concentration (samples 1—5 of Table I), F(f)~f', so
that

ri =rip
—const. ref'.

For fixed values of du plots of rl versus (ref') are straight
lines and we have determined pp by a least-squares
method. The results are shown in Table II.

We have also attempted to determine pp theoretically
by estimating the spin-lattice relaxation rates by a
method discussed by Mattuck and Strandberg. "The
resulting values are gp=0.823 at 4.2'K and qp=0. 859
at 1.6'K. The approximations necessarily made were
rather drastic and therefore we have adopted the
average experimental values from Table II:
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Cr":Co"
1.0—

x (0.036%0,010) x IO

o O.I055
6 O. I53

0 0.253
~ 0384
~ 0,586
V I.030

T = 1.6'K

Cr. Co
X

(sec ')

TABx.E III. Decay constants and spin-lattice relaxation rate at
4.2'K.

Op8 0.035X10-2 622—15
54
62

O

CI

—' 06
0

II

O

Op4
8

ll

0.2

0

v
~g

QV =
VI2 2V~~ = V~4-21'~, ( MHZ)

FIG. 7. Relative index of absorption versus hv, T=1.6'K.

Determination of the time constant was performed
by the pulse-saturation method, erst introduced~~by
Davis, Strandberg, and Kyhl2' and subsequently used
in many experiments. The apparatus used has been
described in detail by Bray, Brown, and Kiel." The
new feature introduced in the application of the pulse-
saturation method has already been indicated; whereas
in previous experiments the spin system recovers to
thermal equilibrium, in the present experiment it
recovers to a stationary state. Transitions

~
1)+~~ 3)

0.15X10 2

0.38X10 2

1.03X10 2

682
137—462

682
157—468

682—5—468

51
76
49

74
155

75

185
736
202

53
53
46

49
46
48

TABLE IV. Decay constants and spin-lattice relaxation rate at
1.6'K.

and
~ 2)~~ 4) are held at saturation during the recovery

of a pulsed-saturated transition
~

1)~~~ 4). The system
recovers with a single time constant provided no com-
plications arise from spin diGusion'~ within inhomo-
geneously broadened lines.

The experimental procedure was similar to that
followed during the steady-state experiments, but
instead of recording the v~4 line, the 6eld-sweep and
synchronous-phase detection were replaced by the
superheterodyne detection system to increase the
sensitivity. The fast recovery of the IF amplifier per-
mitted the monitoring signal to be displayed as early as
2 @sec after the pulse.

Mims and Mcoee" and Bray et al.'~ have observed
spin diffusion within inhomogeneously broadened lines.
At a concentration of 0.1% of the paramagnetic ion
Bray et at. observed spin-diffusion times of the order
of 0.75 msec. This value agrees well with theoretical
estimates of Kiel.28 At higher concentrations spin-

TABLE II. Experimental relative index of absorption gp
(in the absence of CR). Cr. Co

Av
(MHz) (sec ')

pip(4. 2'K) yp(1.6'K) 0.15X10-~ 682
60—463

22
45
24

19
19
20—475—300

0
+275
+550

0.816
0.821
0.821
0.827
0.824

0.855
0.859
0.865
0.860
0.867

0.38X10 2

1.03X10 2

682
127—468

682—15—468

39
117
42

128
826
171

21
19
18

18
21
18

'6 C. I".H. Davis, M. W. P. Strandberg, and R. I.. Kyhl, Phys.
Rev. 111, 1268 (1958)."T.M. Bray, G. C. Brown, and A. Kiel, Phys. Rev. 127', 730
(1962). "A. Kiel, Phys. Rev. 125, 1451 (1962).
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2U+=49&5 sec '

2U+ ——j.9&2 sec '
(4.2'K),

(1.6'K) .
These values, the values of go, and, the data of Figs. 6
and 7 provide all the information needed to determine,
from Eq. (12), the CR rate at various concentrations
for a range of Av.

diffusion times are shorter. In order to avoid the com-
plications connected with spin diffusion, the saturating
pulses used in our experiment were 1 msec long. The
measured values of the decay constant X and the result-
ing

I Eq. (11)J spin-lattice relaxation. (2U+) rate for
four crystals at various intervals from the center of the
CR line are given in Table III for 4.2'K. The data
obtained at 1.6'K are shown in Table IV.

The measurements were dificult to perform at the
lowest concentrations because of sensitivity limitations
of the apparatus. They were also dificult at the center
of the CR line for crystals of the highest concentration
since for these conditions the index of absorption is
only 0.04 at 4.2'K and 0.02 at 1.6'K (Figs. 6 and 7) .
The saturation transferred from the C-band lines by
CR to the monitored s&4 line is nearly complete, even
without the saturating pulse.

Tables III and IV show that 2U+ is independent of
the magnetic Geld within the investigated interval of
150 Oe. In terms of Mattuck and Strandberg" analysis
applied to the present case, this is consistent with the
assumption that the quadrupole term in the matrix
elements of direct spin-phonon processes dominates the
dipole term. 2' In the following we have adopted the
average values of the spin-lattice rates from Tables
III and IV.

I
1)=lv2(1+2)+i I

—2)),
12&=lv2(i I+2 &+I —2)),

I4)=l+-:&

(13)

The operators S„, S+,, S; are transformed into this
representation by the unitary transformation U =
(r I

8„&. We call 2'1; US„U+, T——2;=US+,U+, T3;=
US;U . It is expedient to split the pair interaction
into six terms H,&.=A;&+8;,+C,,+Bi&+E,;+/i& and
express it in terms of the operators T and in Cartesian
coordinates:

III. DETERMINATION OF CR RATES BY THE
METHOD OF MOMENTS

A. CR Contribution to the Rate Equation

In this section we compute the CR term appearing
in the rate equation, Eq. (5), by the hybrid method of
Bloembergen et al.'~ We consider a spin system of
Ã Cr'+ spins distributed at random into M lattice
sites. The spin Hamiltonian, Eq. (1), contains crystal-
line terms and it is therefore convenient to work. in the
representation in which H; is diagonal. We mark the
states satisfying H;

I
r)=5„

I r) by an index r running
through integers 1, 2, ~ ~, 28+1 in order of increasing
energy, e&(e2« ~ ~ ~ &28+&. In the following we denote
the crystalline axes (b, c, a) by x, y, s. The eigenstates
of H; at the orientation of the magnetic Geld 8=49'50'
and ij&=—21&r were determined for IH I=600, 700, 735,
800, 900 oe (Fig. 4) . Their composition in terms of the
eigenstates of S„varies very little in this range and we
have adopted the following approximate wave functions:

Bij f&ij(23i72j+22i23j) &

Cij cij(2 li22j+22i21j) &

D'& =&'&(2'1'2'»+2'3'2'1 j)

Eg =e@Tp;Tg,,

Fii fij2 3i2 3j&

a. , g2P2 (y2 322/y5)

~
——1

bg = —4ag,

c,,= ', g'P2(sjj isg/—r')-;;—

cij=4g p L(y x ) 32$y//y $z&&

=e;;.

(14)

In these expressions we have written the indices of the
pair i, j outside the bracket. The use of Cartesian co-
ordinates, rather than the more conventional spherical
coordinates, was prompted by the facility of program-
ming the computation of the lattice sums (to be dis-
cussed shortly) on the IBM-7094 computer for the
orthorhombic cell of K3Co(CN) 5. In Eq. (14) we have
neglected exchange interactions because of a lack. of
any direct evidence of its effects in K3Cr(CN) 3.

In the following, the product states
I r, ) I s;) I tg, &,

in which r, s, t mark the eigenstates of the single spin

Hamiltonian andi, j, k mark the spins, will be abbrevi-
ated as

I rst), the alphabetic order of spin indices being
understood. Similarly a bra (r; I (s; I (t5 I

will be written
as (rst I.

According to the hybrid method the transition prob-
ability rate, m;;&, for a single three-spin CR process is
given by

23„=(1/f32) I (yst
I o', I

y's't') I2g(») (15)

Here O,j5 and g(j&13) are the transition operator and the
shape function, respectively.

I
rst) is the initial state of
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the three spins and
l
r's't') is the final. It is understood

that r&r', s&s', tAt' and that e„+e,+e, =e„+e, +ei
The matrix element of the transition operator is to be
computed at the exact coincidence of the Zeeman (and
crystalline) energies. The decrease of the interaction
strength at the magnetic field values' for which the
energy condition is not exactly satisfied is absorbed
into g(»). In Eq. (15), »= (e,—e, )+(e,—e, )+

&c' ~

If at a given time there are e„, m„e& spins in states

l r), l s), l t), respectively, the total number of spin
processes l rst)~l r's't') is

This expression implies that we know exactly which
sites are occupied by the spins and that we know the
spin state at the occupied site. It is necessary to intro-
duce the probability for the ith site to be occupied
by a spin in the

l
r)th state. This probability is

(n„/1V) (1V/M) =(n„/N)f. When proper care is taken
of the multiplicities of initial and final states, the total
number of processes

l rst)~l r's't') becomes

(1/ft') n„n,n (f'/N') (Q E;,~) g(») . (16)
i,kQ

The summation over ith sites has been performed and

j,k& meansj Nkand, of course, jNi, kAi. In Eq. (16),

E;;g——
l a(r's't')/nt„!n4!m)! j l

(rst l 0;;g l

r's't') l'. (17)

0 (r's't') is the summation over distinguishable permuta-
tions of the final states

l
r'),

l
s'),

l
t') and nt. !n4 nti. is

the number of indistinguishable permutations of the
states

l r), l s), l t) In the tw. o (Fig. 1) processes,

l 331)~l 22» and 1224)~l 333), we have r'=s'=t'
and m„!m,!m&!=2. Therefore for both processes

The change of the population number of a Zeeman
level, e.g., e„, is given by the number of processes per
unit time multiplied by the number of spins in states

l r) participating in a single CR process. Denoting this
last quantity by n(r), the rate of change of n, due to the
processes

l
rst)~~l r's't') becomes

(Bn /Bt) ca=n(r) (n, n, ni —n„n,n, ) (1/1V2) Wca, (19)

with

Wca(f ») =(f'/&') l:2 &""g-(»)
i,kg

+Z &'p~'gp(») l (2o)
i,kg

B. Transition Operator

The dipolar interaction does not cause three-spin
Gipping in first-order perturbation theory because
terms like (rst l H;; l

r's't') vanish when rAr', sos',
t/t'. The terms resulting from second-order theory are
of the type

(rstu
l H,; l

r"s"t"u")(r"s''t"u"
l Hii, l

r's't'u)

E(r's't'u) —E(r"s"t' u")

It can be shown' ' that all intermediate states
l

r"s' t"u" )
occur in pairs whose contributions cancel out. One of
the spin indices of H~k must be the same as in H;;
occurring in the first factor. It follows also that four-
spin processes cannot be described by second-order
perturbation theory, but require third-order theory. In
general, rn-spin processes require the (rn —1)st order of
perturbation theory.

The interaction operator can be written as

0;;,=g

(H;;+H;e+H;i, ) l uvw)(utm
l
(H;;+H, i,+H;i, )

E(r's't') —E(uuui)

(21)

The summation is over the intermediate states
l u),

l e), l
ui) of the i, j, k spins.

The matrix elements of the transition operator for
the n and P processes were determined by making use
of the representation of the dipolar energy given by
Eq. (14) . Their explicit form in terms of the geometric
coefficients of the lattice are given in the Appendix.
With these results the lattice sums of Eq. (20) have
been programmed for the 7094 computer. The indices
(t, m, n) of Fig. 2 were allowed to run through (&2,
&2, +2). The resulting values are

Q E'ggi &=1.523X10'MHz'
7 /k' (22)

Q E;tz&@=2.501X10' MHz'.
i kA

with
Wca=(f'/&') (Z &v~) g(») C. Shape Functions

The summations in the last expression are over the
lattice sites. We have treated n and P processes as in-
dependent. With this assumption the contribution of
CR to the rate equation, Eq. (5), is

(86/Bt) ca =3(ni' n4') (Wca/N') =—T'e Weak,

For undiluted spin systems Bloembergen et al.' and
Pershans compute the shape functions of the t"R
processes by evaluating the convolution of the shapes
of paramagnetic lines participating in the CR process.
For diluted salts the shape functions are determined by
the method of moments by an extension of the method
introduced by Van Vleck~ and Pryce and Stevens
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in the study of paramagnetic line shapes. The main
result of the method. of moments is the conclusion that
the shape functions of the CR in diluted spin systems
is concentration-independent. We summarize the rea-
soning below.

The Hamiltonian of the entire spin system is given by

N

H=Hp+Hg;v Q——H~++ Hg. (23)
a)i

When the populations (ni, ms, ', nss+i ) =IN } of
single-spin Zeeman energies have been prescribed, the
manifold F of eigenstates of Ho with the energy Er=
P N,re, is degenerate (X!/g„e„!-fold). The dipolar
energy plays a dual role: It removes the degeneracy
of the manifolds of the eigenstates of Ho and it causes
CR transitions. These two parts can be separated by
introducing

H =Q PrHg~vPr
r

(24)

r~a ~1 te

0 y 'g „is an operator of the type introduced for m =3
in Eq. (21).

Computation of the moments proceeds from a
theorem of Van Vleck, ' modified for CR shape functions

by Bloembergen et al, ' and summarized elegantly by
G-rant&&& '

with

Is'"(Av'") = ( —1)"Tr Us„Us„+/TrOO+, (26)

Us =(H, Us Up ——O.

It can be shown~ that the trace of the numerator is a
sum of traces evaluated in configuration spaces of m,
m+1, , m+n spins. For the m-spin processes, the
numerator of the 2eth moment can be expressed as a
sum of the type

kM ij.

The denominator of the moment formula is of the form
When we convert spin sums to

O=Q PrHp v&~(=Ha v" )
rga

Pr and I'~ are projectors on the manifolds of degenerate
states of Ho. The manifolds are defined by prescribing
the population distributions Ier} and Ins}. If Ier}N
Ies} but the energies Er and E~ are equal, the spins
can Rip, conserving energy. The CR processes can also
occur in the vicinity of the coincidence of energies. The
excess, h=Er —E&, is then absorbed in the energy
rearrangement of the entire spin system.

Equations (23) and (24) are appropriate for first-
order perturbation theory, which can only account for
two-spin processes. More generally, for m-spin processes
we should use

lattice sums (P~—+f P~), each summing index
introduces one concentration factor f. The leading term
of Eq. (27) (&=0) has the same number of summation
indices as the denominator. The leading term of all
moments is concentration-independent. Therefore, ac-
cording to the method of moments the shape functions
are concentration-independent in diluted spin systems.
We postpone further discussion of this result until
Sec. U.

We have computed the concentration-independent
terms of the second moments of the three-spin n and P
processes of Fig. 1. They are of the form

jkg j ~ (28)

The sums in the denominator are those of Eq. (22).
Details of the computation of the lattice sums appear-
ing in the numerator of Eq. (28) can be found in Ref. 7.
The pertinent matrix elements of the secular part of
the dipolar interaction are given in the Appendix. The
numerical values of the numerator of Eq. (28) are

Q G,p, '"'=2 012X10' (MHz)'
j,k+

g G...&» =8.451X10' (MHz) '.
j,kg

We assume the shape functions to be Gaussian and
obtain for the CR rate

1/Tis ——AWca =f'L1.046X 10'

XexpI —-', (Av/1 161X10')'}

+0.347X10 exp I
—-,'(Av/5. 847X10s) s}j (30)

D. Comparison w'ith the Experiment

The CR time T» of Eq. (30) has been used to plot
the theoretical relative index of absorption q(hv, f),
which is shown in comparison with experimental results
for g in Figs. 6 and 7. The inverse of the CR time
(normalized by the square of concentration) is shown
in Fig. 8 versus the experimental results for five crystals
of lower concentrations. The estimated probable error
in the experimental points varies linearly from —&15%
at the harmonic point to +50% at

~

hv
~
=680 MHz.

The agreement with the computed shape is generally
good and the main predictions of the hybrid method
appear to be confirmed: The shape is concentration-
independent and the intensity of the interaction is
proportional to f' The data a.re for experiments per-
formed at 4.2'K. We have dispensed with the corre-
sponding presentation of the data collected at 1.6'K;
the comparison also shows good agreement of the shape
with Eq. (30), but the theoretical intensity of the
interaction is uniformly too high by about 10%. We
believe it to be the result of a systematic error in the
determination of 2U+. At both temperatures the results
obtained for more concentrated crystals (1'=0.586X
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rate determined by the hybrid method
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1()—2 and 1.030)( 10 ') disagree with the computed
CR rate. This is shown in Fig. 9. %e might expect such
changes of shape and intensity to occur when in the
computation of the moments the terms linear in con-
centration cannot be neglected. For the assumed
Gaussian shapes of Woaf ' an approximate computa-
tion which includes terms linear in f in the G@q sums
shows the eGect of these terms to be negligible. The
hybrid method is thus unable to account for the sudden
change of shape and intensity of the CR rate between
the group of crystals with lower concentration of
chromium (Fig. g) and the two crystals of Fig. 9. While
the probable errors can account for the discrepancy in
the wings of the CR rate, it cannot do so for the central
peak.

IV. ANALYSIS OF THE CR RATE BY THE
THEORY OF GRANT

For single spin CR processes, Grant" shows that
the CR rate TVga is proportional to the convolution
of two functions: x(~), which is the power spectrum
of the dipolar transition operator and p(~), the shape
function of the paramagnetic line. For two-spin proc-

esses, it is still possible to evaluate x(~) and p(m)
separately, by including their correlation in the p(~)
function, and computing )((co) as the power spectrum
of the transition operator. For three-spin (and higher)
processes the determination of S"~R becomes more
complicated, because the three-spin»(co) is not a
convolution of two two-spin»(&a) functions. The two
»(co) 's are correlated by the modulation of "the squig-
gles" of i and j spins from "the squiggles" of the 0
spin /Grant, Ref. 11(b)j. The CR rate (per spin)
then becomes

2~f' 1
l(rca"'(~) =——

5 p' (2S+1)' »(~—~') ~3(~') d ',

(31)

where f is the concentration, v is the lattice volume per
paramagnetic site, and (2S+1) is the number of energy
levels. We have used for ya(co) the convolution of the
three line shapes of the paramagnetic transitions at the
frequencies v», v», v34. These shapes are nearly Lorent-
zian with half-power half-widths Av23, Av~~, and. Av~4,

dependent on concentration as given in Table V.
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The convolution of Lorentzians is a Lorentzian with
width equal to the sum of the widths of the convolution
factors. We have used a Lorentzian qz(v) with half-
width 3g=2hvzz+-,'(hviz+hvz4). The determination of
x&(a&) can be performed in two ways. If near neighbors
dominate the interaction, a "discrete" method of sum-
mation over the erst few neighbor shells is directly
possible from the definition of xa(~) LGrant, Ref.
11(c), Eq. (9)j. This method includes the "squiggle"
correlations explicitly and is useful when the near
shells contain small number of atoms, and differ ap-
preciably in radii. This is the way in which Grant treated
three-spin CR processes of nuclear spins' of LiF. The

domination of the interaction by near neighbors is
due to the absence of exchange and the relatively
small radii of the near shells. There are six I' atoms and
12 Li atoms in the first shell, and eight F atoms and
six Li atoms in the second shell. The number of terms
for the determination of xz(&e) is then 72 and 2S2 for
6rst shell and erst-and-second shell approximation. In
orthorhombic KzCo(CN) z the shells contain the num-
bers of paramagnetic sites shown in Table VI. The
nearest-neighbor distance is large and the 6rst few
shells do not diGer signiicantly in radii. Because all
spins belong to the same species, the number of terms
in the summation over first and second shells is SI,

TA&LE V. Linewidths of the paramagnetic transitions and the width (3a) of the Lorentzian convolution versus concentration.

Crystal No. Cr. Co
AV23

(MHz)
AVIg

(MHz) (MHz)
38

(MHz)

0.036X10-2
0.105X10 '
0.153X10 2

0.253X10 '
0.384X10 '
0.586X10-2
1.030X10 '

25~3
27
27
27
27
24
36

24~3
24
24
24
24
30
32

20&3
22
22
22
22
28
30

72~5
77
77
77
77
97

103
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TABLE VI. Number of neighbors and their distance from the
reference site in the 20r type of KsCo (CN) g.

The function ys(~) is then determined from

Shell No. of atoms Distance (L)
1

x( ) =(' ( )')'
28 z-t

ln[ x'
[ ln[ x—x'

I
dx',

6.68
7.02
8.35
8.70

10.45
13.38
13.58
16.20

while for first, second, and third shells it is 1.0l. The
discrete distribution of ys(~) becomes very dense,
suggesting the use of Grant's "continuous" method of
the determination of x(~). The "continuous" method
has been applied by Grant"' and WeissQoch. "to two-
spin CR processes of Cr'+ in ruby and KsCo(CN)s,
respectively. It is useful whenever exchange coupling
eliminates near neighbors from contributing to CR. The
strong coupling creates pairs whose paramagnetic
spectrum is not, in general, harmonically related to
the spectrum of a single atom. Only atoms outside of
the exchange radius participate in the CR process.
Grant determined the exchange radius in ruby to be
6.15 A., in good agreement with the independent work
of Statz et cl." WeissQoch determined the exchange
radius of Cr'+ atoms (in nonequivalent sites) in
KsCo(CN)s as 10.1 A.. This is unusually large. In
experiments with KsCo(CN)s crystals of large Cr'+
concentrations (2—3%) we have not observed any pair
spectra. In view of the lack of direct evidence of ex-
change coupling in KsCo(CN)s and because of the
large distance of the nearest neighbors, we have used
Grant's "continuous" approximation to the xs(&v)

function, neglecting exchange. Xs(&o) was determined by
folding Grant's approximate two-spin function xs(&o)
with itself. In Grant's notation LGrant, Refs. 11(a)
and 11(b)j
xs(co) =sass((m')/2l. ) ln(I e/I co I),

xs(~) =0,

0&
I

a&
I
&I.e

(32)

In this expression (m') is the square of the matrix
element of the two-spin transition operator averaged
over a sphere of unit radius, L the change in dipole
energy between the Ripping spins, maximized with
respect to the angular position of the two atoms for
unit radius, and e=1/rs', with rs either the distance of
the nearest neighbors or the exchange radius. VVith the
dipolar interaction of Eq. (14) and the wave functions
of Eq. (13) we obtain

(m') =1.07g4P4,

I.=2.17g'P' (33)
"H. Statz, L. Rimai, M. J. Weber, G. A. DeMars, and G. F.

Koster, J. Appl. Phys. 32, 2185 (1961).

(34)

with x=~/I. e and d, Ess= 1'svss. The convolution appear-
ing in Eq. (34) extends from x = —2 to x=2, its shape
is nearly triangular, and its value at x=0 is 4. The
smoothing of the sharp peak of ln

I
x

I
at x=0 is charac-

teristic of the convolution operation. The convolution
does not take into account the correlations of xs(eo)
functions. However, according to Grant, an approxima-
tion to ys(&u) which includes the correlation can be
obtained from ys(M) of Eq. (34) by increasing its
width by a factor of 1.5, while preserving its shape.

For the three-spin CR rate we have, according to
Eq. (32),

Wca&'& (c0) = (2z/Is) [f'/(2S+1) '$(4z (m')/3s) '

X I
2z.e/(EEss) 'I.j+(or/I e, 3a/I e), (35)

where

3a't , 3a~
x, —= x3 x' L3 x—x', —dx'.' I.e/

'
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FIG. 10. Relative intensity of the three-spin CR rate. The
curves a, b, c are determined by the theory of Grant. Experimental
points are for the crystal with Cr '. Co =0.153)&10 '.

1Voatsi depends on concentration through the factor
f' and through the half-width 3a given in Table V.
Because of the inhornogeneous broadening of the para-
magnetic lines this latter dependence is weak. The
experimental data presented in Sec. II obey reasonably
well the f' dependence. Table VII shows a comparison
of the experimental values of Wont'& (0) with the values
computed from Eq. (35). Columns 3 and 4 were com-
puted with rs ——6.68 L (nearest-neighbor distance) and
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TABLE VII. CR rates at harmonic point. Third and fourth columns determined from theory of Grant with ro =6.68 A. (nearest-neighbor
distance) and exchange radius ro ——10.50 A, respectively.

Concentration
(Cr'. Co)

KGective
Lorentzian
width I'3u)

(MHz)

WQR(0) {theory) Won(0) (theory)
r0=6.68 A. rp=10.50 A.

(sec ~) (sec ')

WcR(0)
experiments

(sec ')

0.036X10 '
0.105X10-2
0.153X10 ~

0.256X10 2

0.384X10-~
0.586X10 2

1.030X10-~

72
77
77
77
77
97

103

6.62X10 3

1.68X10 '
5.23X10 '
2.44
8.21
2.68X10
1.40X102

1.01X10 3

2 ' 56X10 '
7.95X10 2

3.69X10 '
1.27
3.78
1.91X10

2.52
2.54X10
5.85X10
1.65X102
3.83X10~
4.07X10'
1.09X10'

re=10.50 L (exchange radius), respectively. The dis-
agreement by several orders of magnitude is apparent.

The description of the shape by Eq. (35) is not good
either. Figure 10 shows the data for the crystal with
Cr .'Co =0.153)&10 ' compared to the shapes of%'(a&/Le,

3a/Le) for rs ——6.68 and 10.50 X. Experimental values
have been normalized to agree with the two computed
shapes at &v =0. Computations of the shapes for other
values of e and a/L» have also been performed and have
not improved the situation. The function xs(co) falls
off too rapidly in the wings and lacks the sharp center
peak.

V. DISCUSSION

The "hybrid" method utilizing an exact computation
of the transition operators and of the second moments
of the three-spin processes gives reasonable account
of the concentration dependence of the magnitude and
shape of the interaction at Iow-spin concentrations
(f(0.5%%up). In accordance with the hybrid method
the magnitude is proportional to f' and the shape is
concentration-independent. The theory does not explain
the change of shape and magnitude for concentrations
larger than 0.5%. The splitting of the two three-spin
interactions into independent processes (cr and P) and
the resulting addition of the two Gaussian shapes is
rather arbitrary. The resulting shape and magnitude
depend critically on the exact values of the second
moments and, considering the approximate character
of the wave functions used, the good quantitative
agreement (for f(0.5%) of the experimental and
computed shapes has to be considered fortuitous.

Grant's theory provides for the concentration de-
pendence in a dual way. For three-spin processes the
magnitude is proportional to f', but the power of this
dependence can be lowered by the dependence of the
paramagnetic linewidths on concentration. This latter
dependence can also modify the shape. It was therefore
expected that this theory could account for the experi-
mental results at all the concentrations studied. Instead,
we have to conclude that it cannot explain the present
experiment. The f' dependence of the theory could be
lowered to f' if the linewidths depended linearly on

concentration. Because of the inhomogeneous broaden-
ing they are very weakly concentration-dependent.
Therefore the theory predicts essentially an f' relation,
which is not confirmed. The theoretical shapes cannot
be fitted even approximately, whether one uses the
three-spin xs(~) folded with either a Lorentzian or
Gaussian y(~), or the two-spin xs(&o) of Eq. (32). An
approximate evaluation of xs(a&) by the "discrete"
method did not improve the agreement. The experi-
mental shape is characterized by the central ("reso-
nant") peak and large wings and is not reproduced by
the theory. The variation of the effective-interaction
radius from the distance of the nearest neighbors
rs ——6.68 A (no exchange) to rs ——10.50 A (an exchange
radius which excludes 20 near neighbors from contribut-
ing to CR) does not improve the agreement.

The sharpness of the central peak has been demon-
strated previously by Feng and Bloembergen' for a
five-spin process in ruby. For such higher-order proc-
esses, Grant's theory, because of the use of multiple
convolutions of two-spin y(s&) functions and the asso-
ciated y(s&) functions, results in smoothed-out shapes
for Woa(&o). The magnitude of the interaction at the
harmonic point of the Feng and Bloembergen experi-
ment varied as f"instead of f' At f=0 04%. , Woa(0.)
was determined to be approximately 50 sec '. The ratio
of the CR rates for the two subsequent-order CR
processes is approximately "

K=Won&"+'& (0) /Woa&"& (0) =f (g'P'e/Av),

where hv is a measure of the average Zeeman energy.
For the case of ruby with f=0.04% and e = 1/(235 X'),
as determined by Grant, Z~l.5&(10 '. If one uses
Grant's value for the Mims experiment, Wca&" (0) =
2.59&10' sec ', then Feng and Bloembergen rate should
have been Woal&(0)~10 " sec ' and would have
hardly been observable.

In higher-order CR processes, described here and by
Feng and Bloembergen, groups of spins undergo the
same transitions. In the latter, three spins Rip up and
two Hip down [~33333)~~ 11144)j while in our experi-

"In this respect, the hybrid method Qq|;s not djGer fro~ Qrg, nt, "s,
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ment two spins Rip together LI 222)~I 311), and

I 333)+~I 422)$. In both cases all spins have a common
energy level. Grant's ensemble model does not dis-
tinguish between degenerate and nondegenerate cases
in which each spin Qips through a diferent transition.
The experiments presented here suggest a need for
reexamination of Grant's statistical model when ap-
plied to higher-order CR processes in diluted para-
magnetic salts.
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APPENDIX e MATRIX ELEMENTS OF 0&j& AND H'pj

Explicit expressions for the matrix elements necessary
to determine the lattice sums of the transition operator
0,;& of Eqs. (11), (20), and (21) are given below.

(22 I H;; I
22)= —2 Ree;,+2b,;,

(33
I
a,, I

33)=(O/4)a...
(24I ~;, I

24)=»md„,

(24
I
a,, I

42) =-;b,;,

(31 I a;, I
31)= —3 Imd;;,

(31 I H;, I 13)=-,'b;, .

(A3)

e= Processes

(331
I 0;;t, I

222) =L3i/(ee —es) g[(b;p+f;p+ —2id, t,)

X(b;,+id,;+bet, f t)—+(b t+fo+ ,'do-)

X (b,a+d, ,+b 7, f t,)—J (A1)

)=Processes

(224
I

O,sg I
333)=i(9/8) I es —e2J 'e,7,et„. (A2)

The coeKcients bst„ f;q, etc. , are those given in terms of
the dipolar interaction, Eq. (14) . The pertinent matrix
elements of the secular part of the dipolar interaction
which appear in the computation of the moments, Eq.
(26), are
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Numerical calculations for a soluble one-parameter dynamic Jahn-Teller effect in a system of octahedral
symmetry are presented (vibronic coupling of a r&, vibrational mode in a I'8 electronic state, linear ap-
proximation). A computer subprogram for computing eigenvectors and eigenvalues is described.

INTRODUCTION

"UMERICAI. solutions of the vibronic energy
eigenvalue problem were presented by Mo%tt

and Thorson' and by I.onguet-Higgins, Opik, Pryce,
and Sack' for the dynamic Jahn-Teller interaction of a

doubly degenerate vibration with a doubly degenerate
electronic state, as may, for example, occur in a system
with a single e-fold axis, e&3. The tractability of the
problem depended upon the fact that a "vibronic

*Deceased.
'%.MofBtt and%. Thorson, Colloq. Intern. Centre Natl. Rech.

Sci. {Paris) 82, 141 (1958).Also printed in book entit. ed Calcul des
Fonctions d'Onde 3foleculaire, edited by R. Daudel t,'Centre Na-
tional de la Recherche Scienti6que, Paris, 1958), Reprints of
French text are available from %.Thorson.

'H. C. Lonquet-Higgins, U. Opik, M. H. L, Pryce, and R. A.
Sack, Proc. Roy. Soc, (LotIdort) A2+k, 1 (1958),

angular momentum" emerged in that case as a constant
of the motion. The identical dynamical problem occurs
in doubly degenerate states of systems with higher
symmetry (Ot,). The analysis of vibronic coupling in
triply degenerate states (T&, T2) of such systems, how-
ever, proves to be essentially more complicated. ' Both
e, (doubly degenerate) and r&o (triply degenerate)
vibrational modes may interact with the triply degen-
erate states. The coupling of the e, modes alone is very
simple, leading only to a uniform shift of all levels. On
the other hand, coupling of a single r2, mode alone is
not characterized by a "vibronic angular momentum";
the potential-energy hypersurfaces for nuclear motion
have octahedral rather than spherical symmetry; only

' W, MoKtt and W, Thornton, Phys. Rey. 108, 125& (1957),


