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Spin Magnetic Effect on the Polarization of the Electron-Atom
Impact Radiation
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A new mechanism is proposed to explain the discrepancies between the measured and the expected
polarization of the electron-atom impact radiation at threshold energy. The idea is the following: At threshold
scattering, the spin of the scattered electron interacts magnetically with the orbital motion of the atomic
electrons. The component of this magnetic interaction along the quantization axis, which is perpendicular
to the incident electron direction, will split the magnetic sublevels of the atomic excited states. This splitting
will cause the coherent interference of the radiation, which originates from two degenerate upper levels
and ends on a single lower level, to become ineffective. The polarization of the radiation is thereby affected
and in fact decreases. The expected polarization P is modified by a depolarization factor f= (1+(ozz), r') ',
where co is the frequency splitting of the excited state, and v is the lifetime of the transition from the excited
upper state to a lower state. By using a simple product wave function for the state, the co and hence the I'
for various singlet-singlet transitions and triplet-triplet transitions have been calculated for the helium
atom. In general, when the principal quantum number n of the excited state, where the radiation originates,
increases, f also increases and approaches unity. Consequently, P increases and approaches the expected
value. For example, P for the 3 'P ~ 2 'S (5016 A) line turns out to be 1.2%, whereas for the 4 ID ~ 2 'P
(4922 A) line it turns out to be 50%. The expected values are 100% and 60%, respectively. In the case of
triplet-triplet transitions, the spin-spin interaction between the scattered electron and the atomic elec-
trons is also included.

1. INTRODUCTION

'HERE has been increasing interest in the study
of the polarization of light resulting from the

excitation of an atom by the electron impact at thresh-
old energy. This interest is specially centered on ex-
plaining the discrepancy between the theory" and the
experimental' ' results. When a helium atom in the
ground 1 'S state is excited to an e 'P state by electron
impact at threshold energy, the outgoing electron,
having no linear momentum and hence no angular mo-
mentum, can only be an S wave. Because of conserva-
tion of the total angular momentum along the incident
electron direction (s' axis), only the magnetic sublevel
srtt ——0 of the n II' state can be excited (see Fig. 1).Here
m~ is the component of the electronic angular momen-
tum l along the s' axis. The excited atom can then decay
to the ground state by emitting Ir radiation (Antt ——0
transition). The radiation is therefore 100% polarized
along the s' axis. If the atom is excited into e 'D state
and then decays into lower e' 'P state, the radiation

will be 60% polarized. When the atom has fine and
hyperfine structure, the polarization will be further
decreased.

Earlier experimental results ' indicated that the
threshold polarization was zero but rose to a maximum
within a fraction of a volt. Recent measurements' 5 on
helium with improved techniques showed that except for
X= 4922 A (4 'D —+ 2 'I') and X= 4388 A (5 'D ~ 2 '&)
lines, the observed polarization in the immediate vicinity
of threshold is still much too low to be comparable with
the theoretical value. The most recent results of McFar-
land' on A=4922 A line show that the dipping of the
polarization to a threshold minimum of approximately
30% (expected value is 60%) is a real effect. The
general indication from the experimental observations
is that when radiation originates from an upper state
of high e (principal quantum number), e.g., 5 'D, the
threshold polarization is comparable to the theoretical
value, whereas for a low n state, the polarization re-
mains very low.
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FIG. 1.The electron beam is incident along the s' axis. The polari-
zation of the radiation is observed along the x' direction.
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In the present work, a new theory is developed to
explain the discrepancies between the expected polariza-
tions, based on the simple conservation of angular mo-
mentum, and the experimental results. At threshold
scattering, the scattered electron, having no momentum,
remains very close to the excited atom, such that its
spin can interact magnetically with the orbital motion
of the atomic electrons. This interaction is rather similar
to the spin-other-orbit interaction in an atomic system.
The component of this magnetic interaction along the
quantization axis (which is perpendicular to the in-
corning electron beam direction) will remove the
degeneracy among the magnetic sublevels of the excited
state, and cause level splittings. The splittings will then
affect the interference part of the resonance radiation
and hence the polarization of the radiation. In fact, the
polarization P, for the case without fine and hyper6ne
structure, will be shown (in Sec. 2) to be equal to I p,

which is the polarization from conservation of angular
momentum multiplied by a depolarization factor
f= (1+(cps), r') '. The (cp'), here is the square of the
frequency separation between two interfering magnetic
sublevels v and v~ 2 averaged over the spin oriel tations
of the scattered electron, and v is the lifetime for the
excited state to decay to the lower state considered here.
For the high I state of the excited helium, (cu')„ is
approximately proportional to L2fs(2n —1)(2is —2)j ' as
will be shown in Sec. 4. Since all of the v's are roughly of
the same order of magnitude, the depolarization factor
f approaches 1 when fs becomes large, say, fs&5, and
consequently P approaches Po. For states of lower e,
e.g. , I=2 or 3, (&u'), is considerably larger than 1, so
that both f and I are very small. The above conclusion
seems to agree well with the general experimental
observations.

When the energy of the bombarding electron is
slightly above the threshold, ' i.e., a fraction of an elec-

' When the energy of the bombarding electron is slightly above
the threshold, the scattered electron may still stay for a 6nite
length of time in the vicinity of the excited atom. The depolariza-
tion of the collision light will depend on this 6nite collision time
in comparison with the lifetime (due to radiative transition) of the
state. The quantitative treatment of the case above threshold is
beyond the scope of the present work. In qualitative discussions,
there have been attempts to explain the low polarization by as-
suming that the atom goes into a quasibound (doubly excited)
negative-ion state, which is assumed to have a sufBciently long life.
However, in the case of helium, so far, all the observed and identi-
6ed negative-ion states are below the threshold of the excitation
of the excited states considered here. LSee C. E. Kuyatt, J. A.
Simpson, and S. R. Mielczarek, Phys. Rev. 13&, A385 (1965), and
U. Fano and J. W. Cooper, ibid , A400 (1965)g.. Nevertheless, this
idea of quasibound negative ions does not contradict the present
theory. The fact that the scattered electrons seem to stay long
enough (longer than the lifetime ~10 ' sec of the excited states)
to give rise to the magnetic effect to cause the observed low polari-
zation suggests that they might be quasibound. At or immediately
above the threshold of excitation, the scattered electron is or still
approximates an S wave (with zero or very small linear mo-
mentum), which remains close to the excited atom and can be
considered as a quasibound e's electron of the atom. Since the
excited helium atom has the configuration (1s)(ep) or (1s) (ed),
the whole system can then be looked upon as a doubly excited
negative ion of configuration (1s) (ap) (n's) or (1s) (ed) (~'s).

tron volt, the selection rule 4m~= 0 still holds to a good

approximation, and Po remains quite close to its
threshold value. However, the scattered electron may
have gained enough linear momentum to get away from
the atom, and hence to make the spin magnetic inter-
action and the frequency splitting co insignidcantly
small. This wouj d naturally cause a rise in P, which

will then decrease as Po decreases, when the bombarding

energy is increased further beyond its threshold value.
This rise in P would only occur for cases where P is

considerably smaller than Po at threshold energy.
The depolarization factor considered above is similar

to that derived by Breit'0 and later by Franken, " in

their treatment of the polarization of the resonance
fluorescence. There, the depolarization is due to a
transverse magnetic field, which is perpendicular to the
polarization vector of the incident light. This eGect was

erst observed" at the crossing point of two excited 6ne-
structure magnetic sublevels at a certain magnetic field.
This level-crossing technique has later been applied to
determine the zero-field level structure. "The depolar-
ization eGect at the zero-field crossing is also called
Han le eGect, ' which has been used to measure the
excited state lifetimes. "'5

The depolarization eGect of the electron impact radia-
tion at the threshold energy treated here is also mag-
netic in nature, and it can be looked upon as if due to an
effective transverse magnetic field coming from the spin
of the scattered electron. The general theory of this
treatment will be developed in Sec. 2. The case with the
fine and the hyperfine structure will be discussed in

Sec. 3. The numerical results on helium will be pre-
sented in Sec. 4. In the case of the helium atom in a
triplet state, the magnetic interaction between the spin
of the scattered electron and the spins of the atomic
electrons has also been considered.

2. GENERAL THEORY

First we consider the simple case where the atom has
no fine and hyperhne structure, both in the ground and
in the excited state. The atom is initially in the ground
state a, 1 'So, and is being excited to state 6, e 'L ~, by
electron impact along the s' axis (shown in Fig. 1).The
s' component of the total angular momentum of the
initial system is therefore zero, i.e., M, .=0.At threshold
collision, the outgoing electron, having lost its linear
momentum, has zero angular momentum and becomes
a spherical wave centered at the atomic nucleus (origin

G. Breit, Rev. Mod. Phys. 5, 11T (1933)."P. A. Franken, Phys. Rev. 121, 508 (1961).
~~ F. D. Colegrove, P. A. Franken, R. R. Lewis, and R. H.

Sands, Phys. Rev. Letters 3, 420 (1959).
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"W. Hanle, Z. Physik SO, 93 (1924).

5 A. Landman and R. Novick, Phys. Rev. 134, A56 (1964)."A. Lurio, R. L. deZafra, an d R. J. Goshen, Phys. Rev. 134,
A1 198 (1964).

D. K. Anderson, Phys. Rev. 137, A2 1 (1965).
&s H, Henry Stoke, Phys. Today 19, No. 10, 55 (1966).
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for the electric-dipole transition matrix, (2.3) now reads

R(q, t) =A P P P F~„(-',~,0)

X Fg-*(—m 0)q„„qv„*e~~„r—~~.&' (2 5)
where

a)„„-=(E„E„-)//h—and I'iv I'——„i+I'„~ .
I

So v=Q

of the system). Because of the conservation of M, , the
atom can be excited to the magnetic sublevel @i,p(r')
only. The subscript 0 means mal= 0 and mi is the s' com-
ponent of the atomic angular momentum 1. Now we
transform the coordinate system (r') into the system
(r) by rotating (clockwise) —',~ around the y' axis (see
Fig. 2). The wave function P&,p(r') is then transformed
linearly into a set of wave functions g&„(r) as follows:

FIG. 2. The electron beam is incident along the x axis. The
polarization of the radiation is observed along the z axis. When
co =0, r and o+ interfere coherently to give polarized I radiation.
When co increases, the above coherent interference between o.+
and o becomes ineffective.

R(q, t)dt

where
XFi.-*(p~ 0)&~V-v*(1—«"--) (2 6)

The indices e, l, v, v refer to the upper state b, and m', l',
p refer to the lower state c. Since the decay constant
I'ii usually is large enough (10~ 10'P sec '), an atom
is excited to state b and then decays to lower state c by
emitting a photon all in a time short compared with
the time for this atom to be reexcited. We can then
integrate Eq. (2.5) over time to obtain the rate R(q):

4, ( ')=Z D., o'(o, -' 0)4.() r = 1/I'ii (2.7)

is the lifetime of transition from state b to state c. Each

/(2t+1))y/p p F s(x 0)y (r) (2 I) 'term on the right-hand side of (2.6) will be nonvanishing
only when

v= vp v&2 (2 8)
In this rotated (r) system, the electron is incident along
the x axis. The subscript v here is the projection of I
along the new s axis, and the magnetic sublevels @i.(r)
with v/0 as well as with v=0 can be populated.
Including a time-dependent factor into (2.1), the time-
dependent wave function of the excited state b is as
follows:

(4s-/2l+1)'" P Fip*(-,'~,0)yi„(r)

Xexp( —iE„/5——',I'„i)t, (2.2)

where E, is the energy of the sublevel v. The quantity
F„&is the decay constant of state b, and is the reciprocal
of the lifetime r i, i.e., I'„i=1/r ~ The state b. then
decays via electric-dipole transition into a lower state
c(e' 'Lv'), which has a decay constant I'„v and a set of
magnetic sublevels p. The instantaneous rate at which
the radiation of polarization q is emitted during the
transition process is

R(q t) =g p I (p F + p7r 0)yg (r)e (i@vl&+rnll&) &

X lq rl4~'(r)e "'"'"+'""""&I' (23)

where the proportionality constant 2 absorbs all the
factors which are independent of the summation indices.
Using the expression

(2.4)

Since
xv pxvIJt = /vs, /fit, when (2.9a)

and
x»x„„~=—y»y„-„* when v = v+ 2, (2.9b)

we can express R(x) and R(y) as follows:

R(x)=Rp+Rg,

R(y) =Rp—Rg,

(2.1Oa)

(2.10b)

(2.11)

and

Rg ——2Am Q Q Fi„(-',+,0)
v+0

X Fv*(-',~,0)*„„*p„*(1+r'co„pP)—'. (2.12a)

The Zeeman level splitting Ace„„-=E„—E„~is independ-
ent of the subscripts v and v; co„„- can therefore be re-
placed by co, and (2.12a) becomes
Rl 2A r (1+rP~P) —1

XP P F~„(—, ,0)Fqv*(-,0)x„„x„-„*. (2.12b)
v+P

The polarization, P, of the emitted radiation (observed
along z axis) is as follows:

E.j
P=R(x) R(y)/R(x)+R(y—)= =Ppf, (2.13)—

Rp
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where

P,= 2 P P I,„(-', ,0)1,„-*(-;,0)x„„x„-„*/
v)P

is the expected polarization by considering the con-
servation of angular momentum only, and

f=(1+r co2) ' (2.15)

is the depolarization factor. When the state 5 is de-
generate, i.e., co=Q, P is equal to its maximum value
Po. It decreases because of the factor f when the
Zeeman splitting (with respect to the new s axis), to,

becomes nonzero. If 7'co'&)1, then P —+0, and the
emitted radiation is unpolarized. The above electric-
dipole matrix element x„„need not be evaluated. Since"

r+= T (1/g2) (x+iy) or x= —(1/g2) (r+—r 1),
(2.16)

we have"

x„„=—(1/+2) L (l'11; tt1u)
—(i'Ii t —1 u)](illrlli') (2 17)

The reduced matrix element (lllrllP) will be cancelled
in (2.14), and only Clebsch-Gordan coefficients
(/'1t; tt, &1, u) will remain in the expression for Ps
and P.

E1 as shown in (2.12), arising from the decay of two
upper Zeeman levels v and P into a single lower level p,
represents the interference part of the radiation, and
which appears to be most effective when v and f are
degenerate (interfering coherently). But in the case of
degeneracy, this interference cannot be regarded as the
true interference. The magnetic sublevels pt, „(r) in this
case can always be combined linearly and transformed
back into a single level pt, o(r') )for this was the only
populated level in the original (r') system] by rotating
the coordinate system (r) back to (r'). Naturally, no
interference can arise when only a single upper level
is populated.

Let us concentrate our attention again on this rotated
(r) system, which is assumed free from the external
transverse magnetic field (which is parallel to the
2 axis and perpendicular to the incident electron beam),
that causes Zeeman splitting. A 6eld which is parallel
to the electron beam direction (x axis) will obviously
have no effect on the polarization P, because it does not
remove the degeneracy among the magnetic sublevels
u (which are quantized with respect to the 2 axis). The
energy separation AE„„-=A+„;, here is considered to raise
out of the magnetic interaction between the spin of the
scattered electron and the orbital motion of the atomic

»r+&, r &, and ro are the components of an unitary spherical
vector r.

22 M. E. Rose, Etemer1tary Theory of ANgular Momentum (John
Wiley R Sons, Inc., New York, 1961).

electron. (The spin-spin interaction will be considered
in Sec.4.) At threshold scattering, the outgoing electron,
having lost its momentum, becomes a stationary
spherical wave about the origin which is also the center
of the atom. The excited atom consists of a shielded
nuclear core and an outer electron in the atomic shell
(Nl). The scattered electron is electron 1 with coordinate
r1 and spin s1. The excited atomic electron is electron 2
with coordinate r2, and its linear and angular momenta
are ps and 12(=1), respectively. The vector potential A
at electron 2 due to the spin magnetic moment, p„
of the electron 1 is

A= (1t Xrls)/&12 (2.1S)

where e and m are the electron charge and the electron
mass respectively, and c is the velocity of light. Since

Pe= geP081= 2PPS1) (2.20)

where tto=dt/2 mc is the Bohr magneton, we express
(2.19) in atomic units as follows:

+=t2 (s1'r12Xps)/&12 ~ (2.21)

The fine-structure constant n= e'/Itc is a dimensionless
quantity. Equation (2.21) resembles the spin-other-
orbit interaction between two electrons. The difference
is that the interaction between s~ and p1 is not present
here. Now we take the expectation value of K over the
product wave function of electron 1 and electron 2
where s1, and l2, are quantized with eigenvalues 0 and
s, respectively.

(I'-) =t22a(st(r1)4(rs)
I (r12Xps),/r122IN(r1)y(r2)). (2.22)

N(r1) and $(r2) are the electronic wave functions of
electrons 1 and 2. N(r1) is a radial wave function only,
because the scattered electron is an 5wave (at threshold
scattering).

Using the relation y= —iV, we express the operator
in (2.22) as follows:

,( Xft).=(-' )'"
r12'

+1,—l(r12)
q, (1)

r12
where

+1,1(r12)
q (—1)

2

r12
(2.23)

1 /a a)
V2'+" = T

I
+i

I
and V2&'& = 8/ctzs (2.24)

&2Eaxs aysi

are the spherical components of a gradient operator,
and F1,+1(r12)/r122 is the irregular solid spherical har-
monics of the first order and it ca,n be expanded as

where r12=r1—r2. The interaction Hamiltonian of p2
with potential A is,

P= (e/mc)A p2= (e/rmc) (p, r12Xp2)/rls (2.19)
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follows" ":
For r2) t'1

4m (2l)!

( )
L—1

X (l—1, l, 1;&1—m, m, +1)
r2'+'

X I'r i,~i (ri) I'r, „(r,), (2.25a)

I'i"'(ris) =2 Z (—)'+'
12

(2l)! -ils

2(2l —1)!
r l—1

X(t—1, l, 1; a1—m, m, a1)
r l+1

I'i+'(r»)
-=Z Z (—)'

r1,2 ~=1 m=i 2 2/ —1 I

co =EE„„s——2n'o Q. (2.31)

Since r is the eigenvalue of s1„it can take the value of
+-,' or ——,', depending on the orientation of si with
respect to the s axis. However, o'(= st) is the same for
both cases, which then stands for the average values,
(o'), , over the orientations. Using (o'), = is, we have

and
GP S, T' =Q T

P P (1+n4Q2r2) —i

(2.32)

(2.33)

Now the remaining job is to evaluate Q which is defined
in (2.29). Q can be readily integrated when

r2

The frequency separation (in atomic units) between
sublevels r and p'(= v —2) is

XI"r i,~i „(r,)I'i, (ri). (2.25b) f(rs) = 4~ —IN(ri) I
"i'«i (2.27)

Now we use (2.25) to expand the operator in (2.23),
which is then multiplied by Iu(ri) I' and integrated
over the volume element dri of electron 1. Since u(ri) is

independent of angle, only the 1=1 term in the ex-
pansion (2.25a) for the case of ri(rs will contribute to
the integral. Ke therefore have

(r»X ps) s

I ~(ri) I'
r12

is known. Here IN(ri) I', the density of the scattered
electron 1, is fortunately needed only in the region
0&ri&rs. In this region, N(ri) is an S wave (stationary,
with zero linear momentum) outside a shielded nuclear
core of +1 charge, and to a good approximation it can
be written as, 9

( )=(/v' ) (2.34)

where 1/gs. is the normalization constant. Substituting
(2.34) into (2.27) we have

-I'i, i(rs)= (l )'"f(")
r22

&i,+i(rs)
p (—1)

2
r2'

= f(rs) (1/rs') (rsX ps).= f(rs) (1/rs )l»,

f(rs) =e s"'(2rss+2rs+1) —1. (2.35)

The above equation, of course, would not be valid in

(2 26) region r,&r,.

where

f(r,) = —4' IN(ri) I'risdr, . (2.27)

3. EFFECT OF FINE AND HYPERFINE
STRUCTURE

Q=(~(r ) If(")(1/ ")I~(")).
The expectation value of K now becomes,

(2.29)

Using (2.26), the two-electron integral,

I=Q (rs)N(ri) I (r»Xps)*/ris'I 4 (rs)N(ri))
=Q (r&) I f(r&) (1/rs') 4*I@(rs))= r Q, (2.28)

becomes a one-electron integral, "where v is the eigen-
value of /2„and

Following the discussion in the last section, the atom,
which is initially in the ground state u with zero orbital
angular momentum (S state), can only be excited to
mi ——0 sublevel of the excited state b (which has princi-
pal quantum number e and orbital angular momentum
I) by electron impact along the quantization s' axis at
threshold energy. Now the state b has a total electronic
spin s, hence there exists 6ne-structure interaction. The
good quantum numbers in this case are j and m;, where

j(= I+ s) is the total electronic angular momentum and
m; is the projection of j along the s axis. In (j,m;)
representation, state b is as follows24:

(X)=n'o vQ (2.30) A(r') =Z 4 i, s(r')~-,
'-i L. Y. Chow Chiu, Phys. Rev. 137, A385 (1965).
's Y. N. Chiu, J. Math. Phys. 5, 283 (1964).

and for r1)r2
~ The operator, n'o f(rq) (1/rglb„which appears in (2.28),

can be considered as an efFective perturbation, on the electronic
orbital motion of the atom, by the scattered electron. The pertur-
bation on the electron spin of the atom (spin-spin interaction) is
zero for the atom in the singlet state. When the helium atom is in
the triplet state, this spin-spin interaction will be considered in
Sec. 4.

= P (lsj;Om, m;)y;„,(r'), . (3.1)

where the Clebsch-Gordan coeKcient (lsj; Om, m;) is
the weighting factor for each 6ne-structure sublevel

24 The states with m, =1, 0, —1 are taken to be of the same
amplitude and phase,
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f;,, m, is the projection of s along the s' axis, and the
relation 5 „,. is implied. We again rotate (clockwise)
the coordinate system (r') rsx around the y' axis into
the new system (r), and p;,.(r') is transformed into a
linear combination of p;„(r). The subscript v is the pro-
jection of j along the new s axis. Equation (3.1) now
becomes

Ri ——2Ar g Q G*(jv)G(jv)*(jv; j'w)

Since the Qne-structure separations are usually large

(3 2) enough that

where"
r'oP(j v,' jv)))1 for jQj, (3.12)

G(jv)=P (lsj; Om, m, )D„„,~'(0,—,'s.,0).
we can neglect the terms of j4j in (3.11) and rewrite

(3.3) Ri as follows:

The time-dependent wave function of state 6 is and

Rt=Ar Q Ri(jj') (3.13)

po(r 1)=p G(jv)p;„(r) expL —(sE;„/fr+I'„&/2)ij, (3.4) Ri(jj') =2(1+x'oop) ' Q p G*(jv)G(jv)
JV

and the rate of transition from state b to a lower state c
I

which has principal quantum number I, orbital
angular momentum 1' and fine-structure sublevels

(jy)$ by emitting radiation of polarization q is
I
c.f.

Eq. (2.6)j
R(q)=A ZZEG*(j)G(i)

jj vP j~p,

&& V (i v;i 'I )V*(i v;i 'I )I:& sr~(i v; jv—)?', (3 5)

(o;=(E;,—E; s)/is (3.15)

is independent of v. The polarization of the radiation is
therefore

P= LR(x) R(y)1/LR(x)+R(y) j=Ri/Ro

where

vU' j'~) =(4»'(r) Ill rl4»'. (r)) (3.6)

(o(jv,j v) = (E;„Eg;)/h. — (3 7)

The lifetime v of transition between states 1 and l'

I
which is defined in (2.7)j is independent of j and j .

A is a proportionality constant which is independent
of all the summation indices. Here the quantum
numbers 1, j, v, j, P belong to the upper state b, and l',
j', p belong to the lower state c. We again split R(q)
into a linear combination of an interfering part Ej and
a noninterfering part Ro such that

Ro=Ar g Ro(jj'), (3 9)

where
Ro(D') =2 IG(jv) I'l*(j v;i'I ) I' (3 10)

"The rotation matrix D ~
&'

(O, p,0) equa1s the reduced matrix
d &(p) which is real. Wigner's general expression for d '(p)
can be found in page 52 of Ref. 20. However, the simple formulas
for j=I and 2 can be found in D. M. Brink and G. R. Satchler,
Anglrcr Momeetgm (Clarendon Press, Oxford, 1962), p. 24. The
formulas for j=3 has just been listed in Y. N. Chiu, J. Chem.
Phys. 45, 2985 (1966).

R(x) =Ro+Rt and R(y) =Ro Ri. (3 g)—
Eo and R~ have the following expressions:

PoUj')=2LRoUj')3 'Z Z G*U )GU )

Ro(jj') is defined in (3.10).
When the nuclear spin of the atom is nonzero, i&0,

a hyper6ne-structure interaction exists. The excited
state 5 is then a linear combination of eigenstates
p~ r(r'), where f(=i+j) is the total angular momentum
of the atom and mr is the projection of f along the s'
axis. After the coordinate system (r') has been rotated
into the (r) system by a rotation of rss. around the y'
axis, we have

g&(r') =g G(j fv)P;y„(r),
tv

(3.20)

In the above expression for I', we have included the
radiation arising from all of the allowed transitions
between the fine-structure levels j of the upper state b

and the levels j' of the lower state c. When each fine-
structure line, e.g., radiation due to a single upper level

j to a single lower level j' can be resolved, the polariza-
tion P (jj ') of each line is expressed as follows:

P(jj') =RiUj')lRo(jj') =PoUj')f, (317)
where

(3.18)



LUE —YUNG CHO "iV CH IU 168

polarization I' =Ri/Rs.

Ro and R~ are expressed as follows:

(3.23)

R.=Ar 2 2 2 I GUfv) I'I xUfv; j'f'S )12 (3 24)

where

G(jfv) =Q Q (jif; m,m;mr)

X (lsj; Om, m, )D„rr(0,22m, 0). (3.21)

v here now is the projection of the f along the new s
axis. The rate of radiation R(g) is again split into a
linear combination of Ro and R~, such that

R(x) =Rs+Ri and R(y) =Rs Ri —(3.22)
and

where W(abed; ef) is the Racah coefficient ss 1 and I'
are the orbital angular momenta of the excited upper
state b and the lower state c, respectively. The reduced
matrix element will be cancelled in the ratio in evaluat-
ing the polarization E, and only the Racah and Clebsch-
Gordan coefFicients will remain.

4. NUMERICAL VALUES FOR He ATOM

A helium atom at the ground 1 '50 state can be excited
into either a singlet excited state e I ~ or a triplet ex-
cited state m 'L;. In the case of a singlet state, '7 we need
to calculate the frequency splitting cv=2ri'oQof Eq.
(2.31).The integral Q which is defined in (2.29) has
the following expression:

and

B' ff' vS
Q„=Q „,(r2)

~
f(r2) (1/r2') ~4„,(r2)), (4.1)

(f; f ))= (» .—& .-)/& (3 27)

In the above equations, the quantum numbers j, f, f,
v, v belong to the upper state b and the quantum
numbers j', f', ss belong to the lower state c. The life-
time r is the same as defined in (2.7). In writing down
the expression for Ri in (3.25), we have assumed that
the frequency splitting between the fine-structure level

j and the level j&j is large, so that the terms of j&j
have been neglected. If the hyperfine splitting is also
large that

then
r2(o '(fv fv)))1 for fW f (3.28)

Rt=Ar P 2(1+rsarrs)L P P G*(jfv)G(j fv)
i'fry»v

Ri Arg ——P g 2G*(jfv)G(j fv)x(j fv, j'f's)
iir f'Irs fv)fv

Xx*(jfv;j 'f's2)$1+rso&r2(fv, fv) j—', (3.25)

where
x(ifvii'f'ss) =(err. (r) I x14»'r v(r)) (3 26)

where f(r2) is shown in (2.35), and p„~(r2) is the wave
function for the outer excited electron 2 of the helium.
The inner (unexcited) electron, which remains in the 1s
orbital, does not contribute to the frequency splitting
co. We use the following approximate wave fun ction
for y„((r2):

y„~(rs) = (2n!)—'s2 (2f') "+'I'r "—'s—&"'I'(„(82q 2) . (4.2)

The f' values are chosen by Slater's rules. 's We will

calculate the polarization of the following transitions:

2'P —& 1'S) 3'P —+ 2'5 3'D —& 2'P

4'D —+ 2'P, and 5'D —+ 2V'. (4 3)

The chosen f values for the corresponding upper state
of the above transitions are, for He,

f (2P) =0.575, f(3P) =0.333, t (3d) =0.333,

f (4d) =0.270, and f (5d) =0.250. (4.4)

Using the wave function in (4.2) and the expression
in (2.35) for f(r2), integral Q„ in (4.1) is integrated to
give the following:

where
~ r = (& r. &r. 2)l&—-(3.30)

XxVf» i'f'S2)x*(i fv';i 'f'S )j (3 29) (2f')2++1 1

2n(2n —1)(2n—2) (2t')2" '
2 (2n—1)(2n —2)

(2f'+ 2)2n

Similar to the dipole matrix element x„„in the last
section (Eq. 2.17), the matrix elements x(j v; j's ) and
x(j fv', j'f's) can also be expressed in terms of the
reduced matrix element (l~(r(( l') as follows":

*(iv;i's)=(1/V'2)( —)' ' 'L(i'1i;s1v)- (j'»;s, -1, »L(2l+1)(2j'+»j"
XW(l'j'lj; s1) (l)(r() l') (3.31)

ancl.

X(ifv'i'f'Ss)= (1/V'2)( )'+ ' "—~r-
XP(f'1f;S1v)—(f'1f; Si, —1, v)j
XL(2l+1) (2j+1)(2j'+1)(2f'+1)j'~2

XW(j'f'j f; 21)W(l'j'lj; ~1)(lllrlll'), (3.32)

2(2n —2)

(2t +2)2n—1 (2t'+2)2n —2
(4 5)

The values of Q for all the above-mentioned excited
states are calculated and listed in Table I. The depolar-

'6 J . C. Biedenharn, J. M. Blatt, and M. E. Rose, Rev. Mod.
Phys. 24, 249 (1952); A. Simon, J. H. Vanderslui, and L. C.
Biedenharm, Oak Ridge Nation al Laboratory Report No.
ORNL-1679, 1954 (unpublished)."If we use a symmetrical wave function, (r)'~2L@„&(rs)p»(r2)
+4 & (r2)4&. (r2) g, for the singlet state of the helium atom (which
has electrons 2 and 3), the eGectIve operator n'0 f(r2) (1/r23) lg,
(see Ref. 23) should be replaced by n'apf(rr)(1/r23)l»+ f(r~)
X (1/rs')4. $, but the 6nal results will be the same.

22 J. C. Slater, Phys. Rev. 36, 57 (1930).
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TABLE I. Polarization of the e-He impact radiation at threshold energy, singlet-singlet transitions. '

Transition

2 'P —+1 'S
3'P~2'S
3'D~2'P
4~D~21P
5'D-+2'P

Wavelength
(A)

584
5016
6678
4922
4388

r(10 'sec)

0.427
1.739
0.415
0.424
0.426

—Q„(10~a.u.)

63.4
2.37
2.37
0.468
0.174

(~R) r5

3.54X103
8.23X10
4.69
1.91X10-&
2.65X10 '

2.8X10-4
1.2X10 '
1.7X10-'
8.4X10-~
9.7X10 ~

100
100
60
60
60

Pp
f= (1+(cu') r') ' (%)

P
(%)
0.03
1.2

10.5
50
58

a r(sec) here is to be converted into r(a.u.). In computing f, co and v both should be in atomic units. Unit of time (r) =fig/me4 and unit of frequency
(co) =me4jfis. (co')a& =o4Q~~. The values for v here are those of Ref. 2'g.

ization factor f,
j= (1+(oP). r')-'= (1+n'Q'r') '

as well as the polarization P from (2.33),

(4.6)

to know (oiP)„. Instead of evaluating the integral I as
shown in (2.28) for the singlet states, we now evaluate
(X) in the (jv) representation

p= p,f=p, (1+n4Q„srs)-i (4 7) (3')=n'o (p;„(rsrs) I p f(r ) (1/r )l;,Ip;„(rsrs)}, (4.10)

are thus obtained and listed in Table I.Pp, which is the
threshold polarization by conservation of angular mo-
mentum, is calculated by (2.14) and is also listed in
Table I.The lifetime v used here are those calculated by
Goldberg "

%hen the principal quantum number ts becomes
large, say e&3, the last three terms in the curly
bracket of (4.5) becomes negligibly small comparing to
the first term. If we neglect these three terms, Q„
becomes

Q„=—(2|)s/C2m(2m —1)(2is—2)$ when I)3. (4.8)

The above approximate expression for Q„ indicates
that

I Q„I decreases as I increases. Since the lifetimes r
of the excited singlet states are of the same order of
magnitude, the depolarization factor f increases as e
increases (see Table I). When e)5, f -+ 1 and hence
P~Pp. In fact, this general conclusion on the n
dependent of the polarization agrees very well with
the experimental observations. '4 The present calcula-
tion on the individual transitions is by no means exact
considering the approximations included, and it will be
improved when better wave functions are used. Never-
theless, this new mechanism with a simple minded
calculation does seem to explain satisfactorily the dis-
crepancies between the expected threshold polarizations
Pp's and the observed values.

%hen the helium atom is excited into a triplet state,
e'I., and then decays into a lower triplet state, e"L',
by electric-dipole transition, the total polarization of
the radiation shown in (3.16) cannot be written in a
form similar to that in (4.7) for singlet transitions.
However, when one-structure lines are resolved, the
polarization between a pair of fine-structure levels j (of
the upper state) and j' (of the lower sta, te) can be
measured. This polariza, tion, which is shown in (3.17),

P(j,j') =Po(ii')f =Po(jj ')/I:1+r'( ')-3 (49)

is quite similar to the expression in (4.7). Here we need

+ L. Goldberg, Astropbys. J. 90, 414 (1939).

where r2 and rs are the coordinates of the two atomic
electrons. The operator""

K(eff) =u'o p f(r;)(1/r s)l;,
i=2

(4.11)

xC'IIX f(r')('/"')&'IIV (4 ")
The orbital wave function&„i(rs, rs) of the excited helium
atom is again approximated by an antisymmetrized
product wave function, (1/+2)Cp„i(rs)pi, {rs) i'„i(rs)—
Xgi, (rs) j, and the reduced matrix element becomes

C~IIZ f(r*)(1/r")I'IIV= C~(~+1)3'"Q., (4»)

where

Q = (4-i(r) I j(r) (1/~) l4-i(r))

is the same as that in (4.1) for the singlet states. The
expectation value of K now reads

where
(X}= vn'o g,Q (4.14)

gi=C.j(j+1)+l(l+1) s(s+1)3/2j(j+1) {415)

and a- is the projection of the spin of the scattered elec-
tron along the 2' axis, and which can take values
+-, or ——,.1 1

Since the total electron spin of the helium atom in a
triplet state is nonzero, there are magnetic interactions,

is the eft'ective perturbation on the atomic electronic
orbital motion by the scattered electron. By the%igner-
Eckart theorem, m (4.10) may be expressed as a product
of a reduced matrix element in the l representation, and
a coefBcient which contains the quantum numbers p,

j, 1, ands,

vusoC j(j+1)+l(1+1)—s(s+1)j
(3'.)=

2j(j+1)Cf(l+1)j ~
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K„, between the spin of the scattered electron 1 and by the scattered electron.
the spins of the atomic electrons 2 and 3, in addition to
the interaction K considered above. It is expressed (in
atomic units) as follows~:

3(st rt;)(s; rt;)-
X„=g (n'/rg ) (st s;)—

i=2
(4.16)

X[~;.—3st;(s; rt~)/rt, '] l
I (r&))

Ke take the expectation value of K„over the product
wave function of electron 1 and the electrons of the
helium atom (in the excited state n'L, ).Here st, and j,
are quantized with eigenvalues 0. and v, respectively.

(3'.„)=n'o(N(rt)y, „(r,,rs) lP (1/rt )
i=2

X s. —

= —n'n P [h(r;)/r s][s;,—3s, (s,"r;)/r s],
i=2

(4.22)

h(r;) = s4r so "'+—f(—r,) (4.23)

n'o(j 1—j;v0v)(jlsllg [h(r;)/r ]

and f(r~) is dehned in (2.27). The expectation value of
3'.„is as follows":

«-)= Q,.(2,3) l ~„(«)
l g;, (2,3))

The vector operator in (4.17) can be expressed as a
contraction of a tensor, Fs(rt~), and a vector, st,

where
X[s;—3r, (s; r;)/r s]ll jls) = vn o Q„g;, (4.24)

(1/rq, ') [s;,—3sq;(s; rt;)/rtP]

= (8s)'~s P (211;p, —p, 0) (1/rt;s)

X Fs,„(rt;)s „(i). (4.18) @"=Q"+Q& ~

g;= {[4+l(l+1)—j(j+1)][3j(j+1)+l(l+1)]—12}l
[4j(j+1)(2l—1)(2l+3)], (4.25)

(4.26)

Furthermore, we can expand the two-electron operator,
Fs,„(rt )/rtP, as follows" ".

For ri&r1

and

Q-'= sQ-t(r) lo '"le-t(r)).
The total interaction energy is

(4.27)

Fs„(rt;) , ~ & 4n. (2l)!=ZZ (—)'
rtP t-s ~ t —4!(2l—3)!

X (l—2, 1, 2; p, m, m, IJ,) (rt' '/r '+—')

~~'= «+&-)= vn'n(Q-g~+Q. g,) . (4.28)

The frequency separation (in atomic units), oo;, between
the levels (jv) and (jv—2) is

for ri(r1
XF .. -(")F.(;), (4.19) S;„„

s= 2n'n(Q-g~+-Q-g;) . (4.29)

(4.30)
Fs „(rtg) ~ & 4n. (2l)!=ZZ( —)'

2 ~=& 4!(2l—3)!

X(l—2 l 2 p—ns I p,)(r' '/r '+')

we have

(-'')-=-'(Q-g, +V.g,) .
Substituting (4.31) into (4.9), the polarization of the
line e L,~ g"L, ' becomes

and fOr ri=r1,
X F) s,„(r;)Ft (r,), (4.20) I' (jj')=~.(jj )f;

f =(+ '& )..)-'=[1+ ' '(Q.g,+Q„g,) ]-.
When the 6ne structive lines are not resolved the total
polarization for the transition I'I ~ ~'sL'
(3.16)]

(4.21)

Substituting the above expansions into (4.18) and inte-
grating over the spherically symmetric wave function
N(rq) of electron 1, we obtain the effective perturbation,
3!„(eff),on the electron spins of the triplet helium atom,

(4.33)

'I For detailed steps to evaluate the (diagonal and oK-diagonal)reduced matrix elements of this type, see: (a) A. R. Edmonds30 H A. +cthe and F. K. Salpeter, QNuntzcm Mechanics of One Angular Momentum in QNuntlm Mechanics (Princeton Universitops Z'too P&co[roe Atoms (Academic Press inc. , ¹wYork, 1957), P~ess, P~incetoe, ¹wJersey, 1960), p. 110; (b) L. Y. C. ghi~up. 181.
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TmLE II. Polarization of the e-He impact radiation at threshold energy, triplet-triplet transitions. '

Transition

Wave-
length y —Q

(A) (10 'sec) (10 ' a.u.)
—Q.

(10 ' a.u.)
~j av

(10 "au) 10'f,
pp
(%)

p
('Fo)

pcorr
(%)

3 'Pp —+ 2 'Sg
3 'P1 —+ 2 'S1
3 'EP ~ 2 'S1
33P ~23S
4~D3 —+ 2'p2
43Dg —+ 2 SPg

4'Dg —+ 2 'P1
4'D1 —+ 2'pg
4 'D1 ~ 2 'P1
4'1Dy —+ 2 Ipp
43D —+ 2 ~p

3889 9.43
3889 9.43
3889 9.43
3889 9.43
4472 2.76
4472 2.76
4472 2.76
4472 2.76
4472 2.76
4472 2.76
4472 2.76

2.37
2.37
2.37
2.37
0.468
0.468
0.468
0.468
0.468
0.468
0.468

2.29
2.29
2.29
2.29
0.467
0.467
0.467
0.467
0.467
0.467
0.467

i
10
1
2

—2/21

2.59
1.5.4

0.202
0.621
0.621
2.48
2.48
2.48

0.254
0.043

1

37.9
12.4
12.4
3.10
3.10
3.10

21.4
0
0

12
25.5

—60
100

4.76
—333

33.3
27.8

0.54X10 '
0
0

o.30X10-3
0.10

—0.07
0.12

1.5 X10-3
—O.oi

0.01
0.067

0.54X10-3
0
0

030X10 '
0.09

—0.07
0.12

1.5 X10-3
—0.01

0.01
0.066

'To compute fj =(1+(epj2)av72) 1, co and r both should be in atomic units. The unit of frequency (co) =(me4/As) and the unit of time (z) =(fp/rge4).
(0)j~)av =a4(gng j +Ongj)». For transition between tw'o fine-structure lines, n pLq ~ n' lL j', the values in column Pp and P are those for Pp(j j ') and p(jj '),
which are defined in (3.19) and (3.17) respectively. The values in column Pepri' are computed directly from (4.43) and (3.16) (where off-diagonal matrix
elements in j have been considered). The values for 7 are from Ref. 27.

where

Ri'(jj')=RiUi')f ' (4.34)

and Ri(jj') and Ro(j j') are defined in (3.14) and (3.10)
respectively. The P'0 in this case is defined as

which are nonlinear in v). Since the fine-structure
splittings of helium are not too large, j is not a good
quantum number and the oG-diagonal matrix elements
in j should also be considered. For perturbation up to
the second order, the interaction energy is as follows:

I'e lim I——' =P Rio(jj ')/P Ro(jj '), (4.35)
all fg-+1 where

E.„=E.„(i)+E„(2) (4.36)

which has the same meaning as before, namely, it is the
threshold polarization when only the simple conserva-
tion law of angular momentum is considered.

In Table II is listed the polarization for the transi-
tions 3 P —+ 2' and O'D —+ 2'P. The depolarization
factors f's and consequently the polarization I"s here of
the triplet transitions are considerably smaller than
those of the singlet transitions. This is due to the fact
that the lifetimes of the triplet transitions are nearly
two orders of magnitude longer than those of the singlet
transitions. In addition, the fine-structure effect would
also decrease the Po's and hence the P's. The Po's in
Table I for singlet transitions agree with those pre-
viously calculated. "However, the Po's in Table II for
triplet transitions do not agree with all the previous
values. For example, the Po for 3'P' —+ 2'5 transition
was shown' ' to be 36.6%, whereas our value is 12%.
The reason is that we have included the interference
eBect in the present treatment while it has been neg-
lected previously. For singlet transitions and for the
case of complete degeneracy, this interference is not a
true eGect as has been discussed in Sec. 2. Since Po
corresponds to the value of P when magnetic sublevels
are degenerate, i.e., so=0, it will be the same whether
the interference effect has been included or not in
computing Po for the singlet transitions. The situations,
of course, will be diferent for the triplet transitions, be-
cause the interference remains effective even when the
sublevels are degenerate, i.e., co,=0.

So far we have neglected the nonlinear effect on the
energy separation, &o; =E,„E;„2(E;„may have terms—

E;„&')=(jv~K(eff)+K„(eG)
~j v)

' (Q-g;+Q-g;) (4.37)

is the same as that in (4.28) and is linear in v, and

1(j'v I ~(«)+~-(eff)
I jv) I'

E„(2)= Q (4.38)

L(j+1)'—"712
(j+1, v K(eff)+Be„(eff) 'v =n'~

2(j+1)
V+~+3)(~ j+1)(j f+2)—(~+j ) '"—

X
(2j+ 3)(2j+1)

L3 (j+1)'—l (3+1)—6)Q„x Q—
2 (2/ —1)(21+3)

(4.39)

The energy splitting is then

~(j v,j v 2)=E;„E;„2— —
=(g +E „i2)—E.„q(2)

where

=2~'~(Q-g +6-a') (4.41)

is the same as (4.29). Since co, is linear in 0 which can
take the values +-,' of ——',, we have

&;),=0,

The o6-diagonal matrix element has the following ex-
pression (detailed steps are shown in the Appendix):
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and hence work and for discussions, and Dr. M. J. Seaton for his
interest and criticism.

&~'(i v;j v 2)—)-
—(~ s) +((E. (s& E, sir&)s) (4 42) APPENDIX

OFF-DIAGONAL MATRIX ELEMENTTo compute the polarization P(jj '), we use the
original formula

%'e evaluate the following o8-diagonal matrix element
which appears in (4.38):

where Rp(jj ) the radiation without interference, is the
(y,+i,.(rs, rs) IX(eff)+X„(eff)I;,„(rs,rs)}, (A1)

same as defined in (3.10) and Ri(jj'), the interfering
part is now as follows: where

Ri(jj ') = 2A r g G*(jv)G (j v 2)x(j—v;j 'y)
PsV

X(eff)=a'o Q f(r;)(1/r s)l;,
i=2

(A2)

Xs*(jv—2; j'y)[1+r'(o&'(j v;j v 2)),—) '. (4.44)
3

Since the off-diagonal matrix element depends on v', X,.(eff)= —n'o. g h(r;)(]./r s)[s,,—3z;(s,"r,)/r;s) (A3)
we have i=2

g. (2) —g. P)

~(i, 1'j —1)=~ .
are defined in (4.11) and (4.22), respectively. For the

(4 45) matrix element of X(eff), we have'

The second-order perturbation, therefore, has no
effect on the energy separation between (j, v=1) and

(j, v= —1).For transitions O'De~2 sP;, 4'Di —&2'P;,
and 3 'P j ~ 2 'S& considered here, only the interference
between (j, v=1) and (j, v= —1) contributes to the

Ri(jj ') in (4.44). The polarizations, P(jj'), for those
transitions are therefore the same whether they are
computed by (4.43) or by the previous formula (4.32),
where the nonlinear eBect has been neglected. For tran-
sition 4 Ds+s2sPs, Ri(jj ) has contributions from terms
which contain (o&'(3,3; 3,1)), , (o&'(3, —1; 3, —3))„,
and (ops(3, 1; 3, —1)),„. To compute (o&'(3;3; 3,1)},
[=(o&'(3, —1; 3, —3)), ), we need the second-order
energy correction E, s „ i&'&, (E;=s,„=s" =0), and the
fine-structure splitting E(4 'Ds) —E(4 'Ds) =8.9X10 '
a.u." is used. Similarly for transition 3 P2 —+ 2 'S&,

Ri(jj') has contributions from the interference between

(j=2, v=2) and (j=2,v=0). Tocompute(o&s(2, 2;20)),
we need the second-order energy correction Ej—2 p( ),
(E; s,,=s"' =0), and the fine-structure splitting E(3 'Pi)
—E(3 sPs)=1.0X10 ' a.u." is used. Because of the
smallness of the oQ-diagonal matrix element, both
(Es i"')'(=6.5X10 " a.u.) and (Es e&'&)'(=2.5X10 "
a.u.) contributes less than 5 jq in computing (o&'(jv;
jv 2))„—. The (o&'(jv; jv —2)), 's are used to compute
Ri(jj') and P(jj'). The polarizations thus computed
are listed in the last column of the Table II under the
heading "E„„"which differs very little from the values
in the previous column, where the second-order correc-
tions are neglected.
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"See Ref. 30, p. 188, E(33P1)—E(3'Pg) =1.0)&10 ' a.u. is
the experimental value. E(4 sDs) Z(4 'DI) =8.9X10 ' a.u. is the—

(j+1,vlsIX(eff)
I jvls)

= (—)'-'-Jrr'o[(2l+1)(2j+1))»s

X (j1,j+1;v0v)W(ljl, j+1;s1)

X[~II& f(r~)(1/r")1'IIG (AO)
i=2

By writing the Clebsch-Gordan coefFicient and the
Racah coefficient" explicitly (s=1), and using (4.13)
for the reduced matrix element, we have

[(j+1)s vs)1/s

(&i+i, (»rs) I
X(«)

I ei.(rsrs)) =~'~Q.
2(j+1)

(~+j+3)(~—j+1)(j—&+2) (&+j)-'"
X

(2j+3)(2j+1)
(A5)

X{j+1,&sligo( )r( /r1, )
i=2

X [s—3r;(s r;)/rp)ll j/sj . (A6)

Since the vector operator [h(r,)/r s)[s—3r;(s r,)/r s) is
a contraction of a vector s and a tensor [h (r;)/r s)C &'& (r,)
[where C &s&(r,)= (47r/5)'I'Fs, ~(r,)), the reduced ma-
trix element can be expressed as a product of (sllrlls),

[~llr. P (r')/r'') &"'(r') lln

value from the approximate formula (40.12), which has peen
corrected for estimated experimental deviation.

Since the matrix element is diagonal in s(s= s,+s,),
for the matrix element of X„(eff) we have's

(j+1, vi, lX,.(eff) Ij vis)= (—n'o/2)(j1, j+1;v0v)
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and some coeKcient. "After evaluating all of the reduced needed oG-diagona1 matrix elemerjts have the following
matrix elements and writing out all of the coeKcients simple expressions:
we have

(4,.('& ) l~( ff)+~-( ff)14,.('& ))
(y;+, ,„(r„r,) lee..(eff) ly;, (r„r,))

3 (j+1)'—l (l+1)—6

4(j+1)(2l—1)(2l+3) and,

(4—v') 'ts

(Q.—lQ ) (Ag)
k 3 j

-(j+l+3)(i+j)(j-i+2)(i-j+1)-'"
(2j+1)(2j+3)

(A7)
Q s,„('D,)1X(eff)+3'.„(eff)

1 ys, „(sDs))

To compute the second-order energy correction, the
'n'a-P(9 v'—)g'tsar Q.——Q 1. (A9)
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Nonorthogonal Formulation of Hartree-Fock Perturbatjon Theo~*
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Perturbation theory, up to erst order in the wave function and second order in the energy, is formulated
for a many-electron system without requiring the perturbed one-electron states to be orthogonal. The most
general self-consistent coupled equations, referred to as Method 1, form the counterpart of Langhog, Kar-
plus, and Hurst's (LKH) Method a for orthogonal orbitals. The uncoupling of the perturbations bp;, Stt, to the
zero order wave functions p and lIt'; produces equations referred to as Method 2. Further approximation in the
Method-2 equations yields a set of equations called Method 3. Methods 2 and 3 are counterparts of LKH' s
Method $, but have computational advantages over Method b in that normalization and orthogonalization
are accomplished in a particularly simple fashion. In comparing the uncoupled Method-3 equations with
Dalgarno's equations, an additional difference is found involving the overlap integral between perturbed
states, besides the difhculty pointed out by LKH. Application of the Method-2 and -3 equations is made
to the spin-polarization problem of the Fe+' ion, leading to a hyperfine constant in reasonable agreement
with earlier unrestricted Hartree-Fock (UHF) calculations. A comparison between results obtained by
Methods 2 and 3 and Dalgarno's equations permits a relative evaluation of these methods. +le have also
studied the eRect of indirect spin polarization of the s electrons through the action of the p electrons which
are in turn Polarized by the unPaired d electrons. This contribution is found to be about 10oro of the di-
rect eRect.

I. INTRODUCTION either of two equivalent forms:

''N a recent paper, Langhoff, Karplus, and Hurst'
~ ' (LKH) have examined some methods of applying

perturbation theory to Hartree-Pock systems. In par-

ticular they showed that some important terms were

omitted in the perturbation equations derived by
Dalgarno' which led to inconsistencies. Thus, in the
Hartree-I ock equation for the zero-order wave function,

the Coulomb and exchange terms can be written in

*Supported by the National Science Foundation. Portions of
this work were reported briefly at the American Physical Society
meeting at Chicago, March 27-30, 1967.

' P. W. Langhoff, M. Karplus, and R. P. Hurst, J. Chem. Phys.
44, 505 (1966).

'A. Dalgarno, Proc. Roy. Soc. (London) A251, 282 (1959).

le '(1)u'(1)= g ((u,o(2) (r» r lu o(2)—)u o(1.).
j'=1,j'Qi

—(use(2) lrrs-'lu (2))u, o(1)j (1)

= g 1 (u, (2) 1
rrs '1 us (2))u;e(1)

—(us'(2) (rts 1u'(2))ui'(1)g= It(1)«u,.o(1) . (2)

However, this is only true if the one-electron Hamil-
tonian acts on the zero-order wave function I;, since
in this case the self-Coulomb and self-exchange terms
cancel. When the Hamiltonian acts on a erst-order
correction to the wave function, there is no such can-


