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and Zeeman Syin-Syin Relaxation in the Rotating Frame*
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An experimental and theoretical study is made of the response of a single-magnetic-species spin system
to a coherent train of resonant 90' rf pulses of spacing 27, following at time v an initial preparatory 90'
pulse. The rf phase of the coherent pulses is shifted 90' with respect to the initial pulse. It is shown that this
pulse sequence will produce a sustained "solid-echo" chain for times much greater than Tg, i.e., approaching
the spin-lattice relaxation time. This therefore shows promise as a new method of chemical-shift measure-
ment in solids, as well as a direct method of measuring the rotating-frame spin-lattice relaxation time TJp.
Except for a small initial oscillation, the amplitudes of successive even or odd echo maxima in CaFI are
found to decay exponentially with a time constant T2,. It is shown theoretically that a simple diagonal
assumption for the density matrix plus the rotational symmetry properties of the dipolar Hamiltonian to
90' pulses could explain the observed v ' dependence of T2, as well as the oscillatory effect. Numerical
evaluation of the magnitude of T2. based on a cumulant-moment approximation gives good agreement with
experiment.

Further related experiments have been performed by spin-locking the F ' magnetization in long pulses of
low amplitude. These experiments are intended to simulate the multiple-pulse sequences by replacing the
coherent-pulse train with its mean Geld. The results reveal considerable oscillatory eGects due to mutual
exchange of energy between the Zeeman and dipolar subsystems in the rotating reference frame. A theoretical
analysis is given which supports these eBects. An estimate is made of the Zeeman dipolar cross-relaxation
time, and is compared with Provotorov's theory as modiGed by Walstedt.

In the multiple-pulse experiment, the "solid-echo" amplitude modulation may be ascribed to mutual
energy exchange between the rf Zeeman energy in the zeroth Fourier harmonic of the pulse train (the mean
pulse Geld) and the dipolar energy. Because of the higher harmonics in the Fourier expansion, however,
the initial oscillatory eGects disappear as r increases.

I. INTRODUCTION

HEN solid materials containing nuclear spine in
a high static magnetic field are irradiated with

two or three short 90' rf pulses within a time of the
order of T2 and at the Larmor frequency, the system
gives rise to a number of transient effects. With one
spin species, a solid echo' ' arises from a 90'—z—90 gp

pulse sequence, where the subscript 90' refers to the
relative rf phase of the pulses and v is the pulse spacing.
This case as well as other pulse sequences for one or two
magnetic ingredients has been studied theoretically by
Mans6eld, ' and a recent experimental study on solid
Xenon has also been made by Warren and Norberg. '

In this paper, we present an experimental and
theoretical study of the spin system when further
90 gp pulses uniformly spaced at 27' are applied to it in a
continuous train. The ef'feet of the pulses is to produce
a continuous chain of solid echoes, thus prolonging the
transverse decay by many orders of magnitude. '
Similar experiments have been independently reported
by Ostro8 and Waugh. Successive solid-echo peaks are
found to decay exponentially with time constant T2„

~Work supported by an equipment grant from the Science
Research Council.' J. G. Powles and P. Mans6eld, Phys. Letters 2, 58 (1962);
I. J. Lowe, Bull. Am. Phys. Soc. 2, 344 (1957).' J. G. Powles and J. H. Strange, Proc. Phys. Soc. (London)
82, 6 (1963).' P. MansGeld, Phys. Rev. 137, A961 (1965).

4 W. W. Warren and R. E.Norberg, Phys. Rev. 154, 277 (1967).
'P. MansGeld and D. Ware, Phys. Letters 22, 133 (1966).
6 E. D. QstroG and J. S. Waugh, Phys. Rev. Letters 16, 1097

(1966).

except for the 6rst few echoes. These oscillate in
amplitude slightly, the eBect being readily observable
for systems with two abundant magnetic ingredients.
In our letter, we showed that a naive assumption
regarding the progressive attenuation of the density
matrix, based on the reduction of the first solid-echo
amplitude, gives a 7 ' dependence of T2„which clearly
does rot 6t our experimental data.

In the present work we show theoretically that a
simple diagonal assumption for the density matrix for
the even echoes, based on the rotational symmetry
properties of the dipolar Hamiltonian to 90' pulses,
explains the observed v ' dependence of T2, as well as
the oscillatory eGect. Approximate numerical evalu-
ation of the constants involved gives remarkable
agreement with experiment for the predicted mag-
nitude of T2,. A similar theory without numerical
evaluation is given by Waugh and Wangv based on the
binomial decay approximation. '

Our experiments correspond to a narrowing of the
resonance absorption line shape plus the introduction of
sidebands. Viewed this way, they show promise as a
new method of chemical shift measurement in solids.
To this extent, the experiments here resemble other
line-narrowing experiments, ~" in which the sample
inclined to Hp at the magic angle is physically rotated.
The criterion for significant line narrowing is similar
in both cases.

J. S. Waugh and C. H. Wang, Phys. Rev. 162, 209 (1967).
s E. R. Andrew, A. Bradbury, and R. G. Eades, Arch. Sci.

(Geneva) 11, 223 (1958).
g L J. Lowe, Phys. Rev. Letters 2, 285 (1959).
'e J. Dreitlein and H. Kessemeier, Phys. Rev. 123, 835 (l961).
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%e have reported preliminary experiments in which
such pulse sequences are applied to the sodium reso-
nance in a single crystal of NaF." In this case it is
possible to perform double resonance experiments
analogous to those of Hartmann and Hahn" and
Lurie and Slichter. "Preliminary experiments have also
been carried out on AP~ in metallic aluminium. '4

In this case, T& is quite short, thereby affording a test
of the applicability of multiple-pulse solid-echo trains
to the direct measurement of spin-lattice interactions
in the rotating frame. In the present work, however,
we restrict ourselves to a discussion of single spin
ingredient systems, and to the dipolar spin-spin in-
teraction only. Full discussion of two magnetic species
systems and the introduction of a spin-lattice inter-
action and particularly the chemical shift will be
presented later.

We also present a theoretical and experimental
study of some related experiments in which the spin
magnetization following a short 90' pulse is "spin
locked" in a long low-power rf pulse at resonance. The
magnetization is inspected by observing the free
induction decay following rapid turnoG of the pulse.
It is found to be a damped oscillating function of time
decaying through a quasiequilibrium state to a, 6nal
steady value. Both the periodicity and 6nal value of

.the magnetization are functions of the spin-1ocking
6eld. These experiments are analogous to the labor-
atory-frame experiments of Strombotne and Hahn. "
They differ in that their system was prepared initially
in an adiabatically demagnetized state. Calculations
related to these experiments have been made by
Jeener, Eisendrath, and Van Steenwinkel, 'o and show
that the rf field can cause the magnetic energy of the
spin system to oscillate back and forth between the
Zeeman and dipolar reservoirs in times of the order of
Ts. In a further paper, 'r Jeener, du Bois, and Broekaert
have shown experimentally that the exact analog of the
Strombotne and Hahn experiments, i.e., adiabatic
demagnetization in the rotating frame followed by a
long rf pulse does produce an oscillation of the dipolar
order. A further experiment, concerned with the growth
of magnetization from the demagnetized state, has been
reported by Einbinder and Hartmann. '

Phenomenologically, the oscillations may be as-
cribed to classical precession of the spins about a

n P. Mansfield and D. Ware, Phys. Letters 23, 421 (1966).
»S. R. Hartmann and K. L. Hahn, Phys. Rev. 128, 2042

(1962)."F.M. Lurie and C. P. Slichter, Phys. Rev. 133, A1108 (1964).
'4P. Mansfield and D. Ware, in Proceedings of the Fourteenth

Collogue Ampere (Atomes et Molecules par des Etudes Radio-
Elec1rgqges) 1NZ (North-Holland Publishing Co., Amsterdam,
1966).

~5 R. L. Strombotne and E. L. Hahn, Phys. Rev. 133, A1616
(1964).I J. Jeener, H. Kisendrath, and R. Van Steenwinkel, Phys. Rev.
133, A478 (1964).

'7 J.Jeener, R. DuBois, and P. Broekaert, Phys. Rev. 139,A1959
(1965).' H. M. Einbinder and S.R. Hartmann, Phys. Rev. Letters 17,
518 (1966).
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G. THEORY

A. Multiple-Pulse Analysis

We wish to calculate the transverse response when a
90'—r —90'so —(2r —90'go') w r rf pulse sequence is
applied at resonance to a single-species spin system of
spin I initially in thermal equilibrium in a large static
magnetic field Ho. Here Ã denotes the total nurriber of

rg R. E. Walstedt, Phys. Rev. 138, A1096 (1965).

= t'
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FIG. 1. (a) Sketch of the modulus of a

90'—r —90'ggo (2r—90oggo)

rf pulse-train envelope. The dotted curve indicates the formation
of successive solid echoes outside the equipment resolution time.
(b) Pulse sequence as in (a) above. (c) First approximation to
pulse sequence (b). The coherent phase-shifted pulse train is
replaced by its zero-frequency Fourier component.

distribution of e6ective 6elds. These are made time™
dependent by the local fields due to the spin-flip terms
in the dipolar Hamiltonian. By considering the rf
pulse train in the previous experiments as principally
a mean continuous rf 6eld, which is true for close pulse
spacing, we see physically that the origin of the initial
solid-echo amplitude oscillations is the same. The
disappearance. of the oscillation corresponds to an
attempt at establishment of a Zeeman spin temper-
ature.

A further small decrease in the spin-locked mag-
netization for long pulses has been observed. This
corresponds to an energy conserving cross-relaxation
between the Zeeman and dipolar energy reservoirs.
From these experiments we estimate the cross-relax-
ation time and compare this with Walstedt'sro theo-
retical expression.
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coherent 90' rf pulses; the subscript 90' means the
phase is in quadrature with the initial rf pulse, and v- is
the time between pulses. This sequence is represented
in Fig. 1(a).

Between rf pulses, the spin Hamiltonian is

fiX = (Xp+ Q Xg +kg) A,,
+M

where 3'.0 is the Zeeman part, LR'.8L, is the spin-lattice
interaction Hamiltonian, and 5 ++~X~ is the total
rigid-lattice dipolar interaction. In fact, we are in-
terested only in the truncated dipolar), termm XP in
the laboratory reference frame, so in this section we
may take the superscript, zero as understood, i.e.,

1 ~1 1~1 ~ (Sc)

Explicit calculation of M4, for any spin J. is given in
Ref. 3. The above expressions are easily extended for
any E, in which case restricting ourselves to a de-
scription of the echo maxima, i.e., t'=v. , we get, for
E)0 and even,

reduced by the fourth-moment-like error term M4„
where

M4, = M—p+M4„ (»)
M4 ——Tr{[Xg', [X~', I,])[Xg, [X~, I,jj}/Tr{I,'}, (Sb)

XP =X&——P (&;p+&p) &,'4+&JpI*,I,, (2) (I,(2cVr) )= (a cospppt/Tr{I, '})Tr{p(2') I }, (6a)

where for a pair of spins jk of internuclear distance
r,~, and with the vector r;~ making an angle 0;I, with Ho

A,p
———-', y% (1—3 cos'8;p) /r;pP,

8;&——-', y'fi(1 —3 cos'0;&) /r;&P.

A;~ is the exchange-interaction coupling constant. If
the rf-pulse Hamiltonian AR~))A%1, the rf pulses can
be treated as rotation operators. In this case, the
initial 90' pulse can be represented by a transformation
operator Ep ——exp(iprI„/2), i.e., a rotation about the

y axis in the frame of reference rotating at the Larmor
angular frequency oro. The subsequent 90' pulses are
rotations about the x axis and are all represented by
rotation operators E~ ——exp(ivrI, /2) . The case for
/=1 has been previously calculated, '' and gives for
the transverse magnetization at time t =r+t'

(I.)= (comppt/Tr {I,'})Tr {exp(—iX~t')

XR~texp ( ixgr) —Rpt p(0) Rp

e= (E—2)/2. (6c)

The symmetry of the dipolar interaction under 90'
rotations permits a pairing of the exponential terms to
form the operator

0=exp(iX~'2r) exp(iX~2r).

Thus Eq. (6a) may be written in terms of the new
discrete variable Eq. (6c), giving

(I,[(m+1)4 j)= (a coappt/Tr{I, '})

XTr {p[(ran+1) 4rlI, }. (6d)

where

p(2') =exp( iX—~r) exp( —iXq'2r) 0™
Xexp( —iX&r)I, exp(iX&r) 0"exp(iX&'2r) exp(iXyr)

(6b)
and

where
exp (iX )p exp (iX t )I } (3) the case of E)0 and odd, the density matrix 1n

Eq. (6a) becomes

p(o) = exp( —AK/kT)

Tr{exp(—AX/kT) }

fuopI, /kT Tr{1}=aI,

p(ZVr) =exp( —iX&r) Ot" exp( —i' r) I,
Xexp(iX~'r) 0"exp(iXqr), (6e)

where now
is the initial thermal-equilibrium density matrix, which
is approximated for high temperature T. Here k is
Boltzmann's constant. On expanding the exponential and
operators and evaluating the traces, Eq. (3) reduces to

N= (E—1)/2

0=exp(iX~2r) exp (iX~'2r) .
(I )=8 cosa)pt(1 —Mp(r t ) /2!+M4—(r—t ) /4! —' ' '

+p'M4, r't"+ ~ ~ ). (4)

M2 and M4 are the Van Vleck moments of the absorp-
tion line shape. When t'=7., this equation predicts a
"solid echo, " the maximum amplitude of which is

~ J. H. Van Vleck, Phys. Rev. V4, j.168 (1948).

We wish to calculate the decay time constant of the
train of even echo maxima. Except for an initial
transient which we discuss in detail later, experiment
indicates that successive echo maxima decay ex-
ponentially in all cases. Rather than attempt the
formidable task of expanding and evaluating Kq.
(6d) directly to give the envelope of successive echo
maxima, we propose to evaluate the logarithmic decre-
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ment for an exponential decay and in this way obtain
an expression for the effective relaxation time T2, of the
solid echo train. In general, if the logarithmic decrement
is independent of e, then Eq. (6d) is truly exponential.
Thus we wish to evaluate the quotient

&I.{ (~+2)«3)/(I. I (~+1)4 L) = &I*(t+4r) )/(I. (t) ),

where we note that the total time to the /th echo
maximum is t = (N+1)4r T.he rigorous procedure
would be to substitute Eqs. (6b) and (6d) into Eq.
(7), expand the numerator and the inverse denomi-
nator as a power series in e, then sum all terms inde-
pendent of e. This method would doubtless select the
main exponential terms and hence evaluate the time
constant. We choose to avoid expansion by making a
simple assumption regarding the diagonality of the
density matrix p(t). As we shall see, this is similar to
our previous assumption, ' but now takes account of the
rotational symmetry of the dipolar interaction. Since
we are dealing specidcally with the even echo maxima,
our assumption ignores periodic time dependencies,
which give rise to cusps in the transverse decay or side
bands in the Fourier transform.

rotating reference frame. Thus we write

p(t) =Pp(t) + (1 P)—p(t) .

The diagonal assumption puts (1—P) p(t) =0. This is
clearly not always zero from the results in Ref. 5, and
also from Sec. IIBgfor the truly spin-locked case
(discussed below) .There we show that initial transients
are set up corresponding to an oscillatory spin-locked
signal. The density matrix is clearly most diagonal
when the Zeeman signal is a maximum and least
diagonal at the signal minima. VVe have an analogous
situation here. From the rotational symmetry of the
dipolar Hamiltonian to 90' pulses we see that an even
number of pulses recovers the original Hamiltonian
i.e. R ~~XjE~=BC~ for X even. The actual time between
echo maxima in this case is 4r, which, for a single-spin
species system, corresponds precisely to a precessional
period of the spins at twice the Larmor frequency in a
mean pulse 6eld, i.e., 4r =~/yH„. We propose, therefore,
that an initially diagonal density matrix is in its most
diagonal state after an even number of pulses. Intro-
ducing a function

f(N) =0, N even

1. Diagowa/ AssnmPtiom
we modify Eq. (8) to

We introduce a projection operator P such that Pp(t)
selects the diagonal part of the density matrix in a (t) =P (t)+(1—P)f(N) (t).
representation in which I is diagonal. That is to say,
we view the spins as being partially locked in the Evaluating the quotient Eq. (7) using Eq. (9), we
direction of the mean rf 6eld along the x axis in the obtain for even E

(I,(t+4r) ) Tr{exp(—iRqr) exp( —i''2r) exp( —iRqr)Pp(t) exp(iXqr) exp(iXq'2r) exp(iXqr)I, J

(I'(t) ) Tr {Pp(t)I.jt

' . (10)

From the de6nition of the projection operator we note that Pp(t) =o.(t) I„where 0.(t) is a time-dependent function,
independent of the spin operators. Using this result and the definition of the logarithmic decrement we obtain
6nally for Eq. (10)

exp( —4r/Tg, ) =Tr{exp(—iX~r) exp( —iX~'2r) exp( —iX~r)I, exp(iX~r) exp(iX~'2r) exp(iR&r) I~]/Tr{I,'J. (11)

Successive even solid-echo peaks therefore follow the rate equation

d(I.(t) )/dt = —(I,(t) )/T2, .

In this approximation, evaluation of T2, reduces to calculation of the error term for the second echo only, i.e.,
N=2 in Eqs. (6a)—(6c). As we shall see later in Sec. IIA3, the leading error term in the expansion of the right-
hand side of Eq. (11) varies as r, and its coeKcient thus has the character of a sixth moment.

We have so far discussed only even echoes. From the properties of the density matrix Eq. (9), however, we have
for odd E

p(2Nr) =Pp(2Nr)+(1 P)p(2Nr)—
=exp(-iXqr) exp( —iRq'r) PpL2(N —1)rg exp(iRq'r) exp(iXgr) .
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(a) '00 where

I,(r) =exp(iXqr) I. exp( —iXqr). (13b)

(b) M= 0-000
and

LI,=[X(,I,]
L'I, = [Xt', I,].

(14a)

(14b)

To facilitate manipulation, we introduce the I.iouville
operators ' L, and L,' defined by the relations

(c)

k

Pro. 2. Cumulant diagrams representing
the fourth and sixth moments.

This allows us to take account of the nondiagonal
character of the density matrix and thus enables us to
calculate the logarithmic decrement between successive
odd echoes.

Physically, the diagonal assumption implies that any
loss of echo amplitude at the even echoes is completely
irreversible. If this were true, another 90' pulse should
produce an echo with a fourth-moment-like principal
error term. This is discussed next for the particular case
of three pulses.

Z. Third Echo at t=6r
In this case X=3 in Eq. (6f). Expanding up to r'

only we find that

(I,(6r) )=a COS&ust(1+4M4, r4+ ~ ). (12)

This result is similar to the first-echo case Eq. (4), and
one would have to go to higher order in v in both first-
and third-echo expansions to discuss the differences.
The alternate appearance of fourth-moment-like and
sixth-moment-like principal error terms for odd and
even echoes implies an oscillation of the echo maxima
for short r, the odd echoes being lower than the even
echoes. The physical explanation of this oscillatory
behavior is discussed in more detail in Sec. IIB, but we

remark that for a single spin species, as discussed here,
the periodicity is trice the pulse periodicity, i.e., 47-.

Thus the large echoes should occur after pairs of
pulses, in spite of the fact that two 90' pulses constitute
a step rotation of only 180'. As mentioned previously,
this arises because of the symmetry of the dipolar
interaction. We emphasize that this is not true for spin
systems containing two magnetic ingredients, and in

general four 90' pulses are required to recover X~. One
would therefore expect transient oscillations with
double the period, i.e., 8r.

j. Expar4sio44 of the Quotier4t

We expand the right-hand side of Eq. (11) in a power
series in time, including all powers up to 7-. For this

purpose, the numerator is rearranged as follows:

Tr jexp( iXt r)I t(r) exp(iXy T) exp(zX1 T)Ig(r)

)&exp (—iXt'r) ), (13a)

Expanding Eq. (13) and collecting coefficients of r",
we obtain for all terms up to m=6

exp( 4r/Ts, —) = (1—Msr'/ 18+ higher-order terms),

(15)
where

Mg, Tr{ 5——(L'I,) —(L'I,) +4(L'I, ) (I."I,)
—12(L'I,) (L"I ) 6(L'I ) (L—'L'I, )

9(L'L'I, )—(L'L'I ) I/Tr II 'I (16)

and is not in general equal to the sixth-moment error
term for the first echo. If r is small and r/Tz, ((1, we

may expand the exponential in Eq. (15) and take
(Ms, /18)r' to be the principal error term, yielding

Ts, ——72/Ms, r'.

The right-hand side of Eq. (15) is of course the nor-
malized second-echo amplitude at t=4r. Unlike the
first- and third-echo calculations, we note that the
coefFicient of r4 vanishes. "

4. Approxi4r4ate Evaluatiom of Ms,

In order to evaluate the rather complex traces in Eq.
(16), we adapt the method of cumulant averages to
obtain an approximate expression. This method has
been used by Horwitz and Callen" in ferromagnetic
problems and is related to diagrammatic methods of
lattice summation. The specific application of this
method to the present problem is presented in Appendix
A. As an example of the technique, the Van Vleck
fourth moment can be related to products of lower
nonzero moments plus a cumulant remainder, i.e.,

M4= 3Mss+K(L4),

where K(L') is the fourth-order cumulant remainder.
This follows from Eq. (A9) plus the fact that there are
no irreducible second-order cumulants. We can of
course evaluate M4 and related quantities exactly, but
for higher moments, in particular M6, exact evaluation
is extremely tedious. In our approximation, we con-
sistently discard all sixth-order cumulants, retaining all
lower orders.

~~The use of the Liouville operator and projection operator
closely follows the methods of Provotorov (Ref. 25).

~This fact is pointed out by Ostroff and Waugh in Ref. 6.
44 G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961).



NMR SPIN DYNAMICS IN SOLID S 323

T2, —12/MIM4, r'.——

5. Eci'~e Theory

(2o)

We include a brief discussion of our earlier elementary
approach. ' It was assumed that the density matrix
describing the spin system at the first and subsequent
echo maxima was in essentially the same state as after
the initial 90' pulse, but slightly attenuated, i.e.,

p(2') =p(2[X—1)r) (1+-,'M4, r'+ ~ ) .

We may represent the class of cumulants E(L") by
a connected diagram of e lines and e vertices. The
fourth- and sixth-moment diagrams in this scheme are
shown in Figs. 2(a) and 2(b). From Fig. 2(b) our
sixth-moment approximation is therefore

M~~ 15M4Mg 30—MP.

We point out that the vertex points in E(L'), Fig.
2(a) for example, do not necessarily represent dif-
ferent lattice sites. In this particular case, there are
three distinct vertices i, j, k, so that this class breaks
down into three four-line particle diagrams Figs.
2(c)-2(e).

Applying these ideas and Eqs. (A9)-(A11) and
making the further approximation that the sym-
metrized averages may be replaced by normal averages,
we obtain the approximate expressions for the traces
appearing in Eq. (16):
Tr j (L'I,) (L'I,) }/Tr II '}= —15M4M~+30M&', (18a)

Tr I (L'Ig) (L"Ig) }/Tr II '}

=9MgM4, +6MpM4 —30M/, (18b)

Tr I (L'I ) (L"I,) }/Tr II '}
=9MsM4+6M2M4, —30M/, (18c)

Tr f (L'I,) (L'L2I, ) }/Tr II,m}

= 10M2M4, +SM2M4 30M—g', (18d)

Tr I (L'L'I ) (L'L'I.) }/Tr fI,'}
= —5M,M4 —10MRM4, +30M2'. (18e)

Substituting the above expressions into Eq. (16) and
usmg Eq. (5a), we obtain finally the surprisingly
simple result

3f6,~—6M2M4, .
Substituting this into Eq. (17) gives us the central
result of our calculation:

(I )0 exp( —2et), where t=2Nr, yielding an efl'ective
transverse relaxation time T2, ———8/M4, r'. As previ-
ously noted, this expression gives the wrong r depend-
ence for T2„ though its magnitude will clearly straddle
the experimental data.

We also note that even for small E, successive echoes
give good exponential fit in CaF2. Thus it seems more
appropriate to assume an exponential decay directly
rather than a binomial decay.

B. cw Spin Locking

It is clear from Fig. 1(b) that an alternative analysis
of multiple-pulse trains can be made by considering the
evolution of the spin system under the inhuence of the
various cw Fourier components of the coherent-pulse
train. Strictly speaking, this is true only if the various
Fourier harmonics produce proportional changes in the
density matrix, i.e., if the system is linear. (It is evident
that very low intensity Fourier components will not
produced linearly additive terms because of relaxation
processes. ) For simplicity, consider the Fourier trans-
form of an infinite train of pulses of spacing 2v and
pulse width t„. Let the origin of this sequence be 0'
with respect to the original pulse sequence /see Fig.
1(b)j since we are describing only the coherent pulses.
The error in total time is small if we take t=t'+r,
neglecting t„/2. By doing this the Fourier transform is
an even function about O'. Thus we may write the rf-
field Hamiltonian applied at time r as

fiX,(t') = (fiX„t„/2r) + g fi8i cos(l~/r) t', (21)

where
0', i ——(X„t /r) (sinP/P),

p = (lnt„/2r) .l =1,2, 3 ~ ~ ~

From now on we take the primed time frame as under-
stood. If the coherent pulses are applied at angular
frequency or along the x axis in the rotating frame,
we have

X„= yH~ exp(io)I, t)—I, exp( —~I,t) .
Thus the equation of motion of a transformed density
matrix

p*(t) =exp( —iM, t) p(t) exp(ii0I, t)

under the influence of the total Hamiltonian SX=
A, (XO+Xi+X„) is

dp*(t) /dt = —i f—haoI, +Xi—(u„I,

This follows from Eq. (4) evaluated at t'=r Thus, .
after S coherent pulses, and taking M4, to be the
principal error term, we get the binomial decay

&I.) = &I.)o(1-«)
where ~ = —~%4,7'. For cr& 1 and X large, the
above expression may be approximated by &I,)=

where

and

—g yAi Leos(lx/r) t)I„p~], (22)

cy„=yH„=y(H„t /2r),

Ag —eIi/yI. . ——
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st(8) p*s(8) =p*'. (24)

In the remainder of this section, we calculate all quanti-
ties in the tilted rotating frame, taking the asterisk and
prime as understood. Thus Eq. (23) becomes

As in the previous section, we ignore the spin-lattice
interaction. This is valid if the experiment is performed
in a time less than T». In the analysis which follows, we
consider only the zeroth Fourier component or mean
value of the rf pulse train. Thus we do sot expect to
predict by this method the details of solid-echo trains.
This would clearly require including at least the first few
Fourier harmonics, However, to the extent that the
mean Geld is dominant in these experiments, i.e., for
fairly close pulse spacing, we may expect to predict
some of the characteristics of the spin magnetization.
As we shall see, neglect of the harmonics predicts a
constant spin-locked magnetization for large times.
Following Redfield's ideas, '4 Eq. (22) may be written as

dp*(t)/dt= iI —~„, «exp( iO—I„)I,
&&exp(iOI„) +Xi, p*j, (23)

where
~"«=v'(A~'+~. ')

and tanO=o~„/Aco. I, is the spin component along the
new s axis of quantization which is the effective Geld
vector in the tilted rotating frame. We transform the
density matrix into this tilted frame by a time-inde-
pendent unitary transformation:

axis, which then gives

dp/dt = i—/C, p],
where

G = exp (ioi„,«I,t) G exp( —m„rfI,t)

(26)

L",LG(t.), p(r) I "Z.«.. (2g)

The subscript e and the dots denote an e-fold time-
ordered commutation of G(t) with p(r).

1. Evatnatiom of Tralsietst Respomse

We wish to evaluate the spin-locked magnetization at
exact resonance, i.e., 6~ =0. Thus we require

&I )= Z &I*).= ZT Ip=(t

p=exp(iMr effItt) p exp( —ster e«IIt).

A reiterative solution of Eq. (26) may be obtained as a
series of time-ordered integrals, i.e.,

p(ti r) =po(0, r)+pi(t, r)+Ps(t, r)+ ~ ~, (27)

where ps(0, r) =exp( —iGr)p(0) exp(iCr) and is the
density matrix after the initial 90' pulse, but just before
the spin-locking Geld is switched on. The eth term in the
expansion is given by

where

and

dp/dt= —sP —ro„,«I,+ g Gsr, pj,

StXiS=G= g Gsr,

Go= Q AsI, 'Is 4+B;~'I*;I.i.,
k&q

Ggi= Q Eyj'(I.i';+I*iIga),

(25)

Ps, Gsr7=~Gsr, (30)

and the transformation

exp( —ice,I,t) Gsr exp(ioi„I, t) =Gsr exp( —infra„t), (31)

We specialize to v=0 for simplicity, although this is
strictly not equivalent to the multiple-pulse experi-
ment.

In order to introduce damping in Eq. (29) it is
necessary to carry the calculation to at least fourth
order in the perturbation expansion. Using the com-
mutation relation

G~, = g D;,'I+;I+,.

The primed quantities are deGned as follows:

A;i,
' ——J;s+-',A;i. (3 cos'8 —1),

B;I,' ———',B;I,(3 cos'8 —1),

D; '= ', (B;s sin'8), -

E;I,' ———is (B,7, sinO cosO) .

In order to integrate Eq. (25) we finally make a trans-
formation to a reference frame rotating about the s

s4 A. G. Red6eld, Phys. Rev. 98, 1787 (1955).

and noting that the terms for odd rt vanish in Eq. (29),
we evaluate the even terms as follows.

Zeroth-order term. This case is trivial and corresponds
to the free-induction decay amplitude at 7.=0, i.e.,

&I.)o=Tr(ps(0)I ) (32)

"B.N. Provotorov, Zh. Eksperim. i Teor. Fiz. 41, 1582 (1961)
)English transl. : Soviet Phys. —JETP 14, 1126 (1962)g.

where ps(0) =aI, . We do not include the dipolar part of
the density matrix in this treatment. For dipolar-
Zeeman cross-relaxation processes, discussed later on,
this must be included, together with a two-temper-
ature assumption following the work of Provotorov"
and of Walstedt. "In the present calculation we tenta-
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tively assume that cross-relaxation is slow compared
to the Zeeman temperature equilibration time, which is
related to T2.

Second order-term. From Eqs. (28) and (29) this is

Tr {ps(t) I,}
t

dt, 4 [g[t,), [0[4),I.]]I.I. (33)
0 0

I ~ ~ ~
I I ~

'
~

~ I I E ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ I ~ I ~ ~ ~ ~ ~ ~ ~ I ~ I ~ ~

~ ~ ~ ~

~ ~ ~ ~
I I
~ I ~

~ ~ ~ I

~ ~ I I

Since we are discussing the case at resonance, 0=90',
therefore

and

G(t) =Gs+exp( —i2a)„t)Gs+exp(i2e)„t) G s, (34)

[6(t), I,)=2 exp( —i2&u„t) Gs —2 exp(i2a)„t) G s. (35)

Thus rearranging the trace, substituting for the com-
mutators, and integrating, we obtain

hI ~ tc....' 'l &VFRW

FIG. 3. Photograph of positively detected solid-echo train in a
single crystal of CaFs with its t 111jaxis along Ho. The 90' pulses
are too fast to be observed. Only the evolution of the magnetization
between ulses is observed. 7 =30psec and the time-base sweep is
100 @sec div.

Z. Gaussian Damping Function Approximation

Contracting the trigonometric expressions in Eq.
(38), we obtain the approximate form

since Tr{GsrGsr'} is zero unless M+M'=0.
Fourth-order term. Substituting for the commutators,

multiplying out, and noting that the only nonvani hing This is valid if
traces occurring are Tr{[Go, Gs][Go, G s7} and Tr{[Gs,
G s]'}, we obtain Anally after integration, for the
fourth-order contribution,

+[48t'/(2 „)'I',j cos2 „t+.~ ~ )}. (40)

2e)„I'st/I'g(&1.

Because we truncated the expansion at m=4, Eq.
(40) does not exhibit damping as it stands. However,
the appearance of the 48t'/(2a)„)'I'r term suggests that
it is the Grst term of a damped function of time.
Through a lack of knowledge of the higher-order terms,
which would be extremely tedious to calculate, we
assume the form of the damping function is Gaussian.
In this case, we may write Eq. (40) in approximate,
but closed form as

t' —4 (cos2e)„—1)
(I,),=4a Tr{[G„G,)'}

~

2t sin2co„t —Tr{[Gs, Gsj[Gs, G sg}

(6(cos2e)„t—1) P cos2e)„t 4t sin2e)„t )

(».)' (».)' (2~.)' &

(I,)s=8a[(cos2e),t—1)/(2e)„)'j Tr{GsG s}, (36) I, =b 1-1', r, cos2~„t 1 I's r,

Adding all contributions and simplifying the notation
we obtain

and

I'r =+8A/(2a)„) '—(248+16C)/(2ea„) '+ ~ (39a)

(I,)=b {1—I' +I' [(1+48P/(2a)„)'I' ) cos2e)„t

—2e)„t(I's/I'r) sin2e)„tj}, (38)
where

(I,) 5{1—I'r+I'r exp[48P/(2', ) 'I'Q

Xcos2e)„t(1+1's/I'r) }. (42)

When expanded in powers of time Eq. (42) agrees with
the exact expression up to t' The ineq. uality Eq. (41)
is well satisfied over the range of interest in the experi-
ments presented, i.e., for the spin-locking Geld greater
than the local Geld. The truncation of F& and F2 is also
justiGed if we restrict ourselves to high Gelds.

(39b)

8=»{[Gs,Gsf[Go, G sj}/»{Is},

b=a Tr{I,'}.

C. Thermal Equilibrium
I's ——(168+8C)/(2e), ) '+ ".

The calculation presented in Sec. IIB represents the
The quantities appearing in Eqs. (39a) and (39b) are approach of the spin-locked system to a quasiequilib-
deGned as follows: rium state in a constant rf held. From a classical view,

we may regard the initial oscillatory nature of the
A=Tr{G,G s}/Tr{I, }, magnetization as originating from coherent precession of

the spins about a distribution of effective fields. ln
particular, the ith spin situated in its local field vill

C=Tr{[Gs, G j'}/Tr{I '} precess about its effective field, which is the vector sum
of H„and the Jocal Geld at the spin site. Because of:the
spin-Qip terms, the local Geld is not static, but changes
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100

Fxo. 4. Log—log graph of T2, versus v.
The circles are experimental data. The
solid line is the theoretical expression,
Eq. (20).
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classically at angular frequency ~„,«. Thus the s
component of magnetization oscillates at 2'„,«. We
point out that in a spin system consisting of two
magnetic ingredients, and when the local field at the
resonant spin site is dominated by the nonresonant spin
species, the spin-Rip term is quenched. In this case the
local field is nearly static, and the transient oscillations
occur at angular frequency co„.

It is clear from the previous section and other cal-
culations"" that while we have been concerned with
evaluating the Zeeman magnetization only, the expec-
tation value of the dipolar Hamiltonian will be nonzero
and time-dependent also. Thus the initial oscillations
also correspond to a mutual exchange of energy be-

tween the Zeeman and dipolar systems. When the
oscillations have died out we may describe the Zeeman
system by a time-independent density matrix in the
rotating frame. That is to say, the quasiequilibrium
state is characterized by a spin temperature. This will
in general be lower than the initial lattice temperature.
We regard the establishment of a Zeeman spin temper-
ature as the 6rst stage in the approach of the system to
thermodynamic equilibrium. The second stage is
thermal mixing with the dipolar subsystem, therefore
establishing a 6nal common spin temperature. The
rate at which stage two occurs has been studied theo-
retically by Provotrov" and adapted by Walstedt"
and is discussed later.
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1. Conservation of Energy

The procedure of rapid spin-locking described
previously and represented in Fig. 1(c) corresponds to
the sudden approximation in quantum mechanics.
Slichter and Holton" have discussed this for a similar
system involving a single long pulse oG resonance.

Immediately following the spin-locking 6eld the
magnetic energy of the system is

E= MpH.—CH1,2/—Tz„ (43)

where Mp=CHp/Tr, is the equilibrium magnetization in
the static field, and TI, is the initial lattice temperature.
II& is the local 6eld de6ned by the relation Hl, ' ——

TrI)pG} and C=I)lI(I+1)ypfP/3k is Curie's constant.
We equate this to the energy of the spin system at
equilibrium, i.e.,

MpH, +CHI2/Tr, =MPH„+CHr, '/Ty, (44)

where the subscript f refers to the final state, and Tr
is the final common spin temperature of the dipolar and
Zeeman thermal reservoirs. Rearranging Eq. (44) we
obtain

(H„+H„H, /H, ) M,H„

H 2+Hz, 2 H 2+Hi, 2

$.0

p.a

0.6

0.4

pe 2

0
0 10

C,F2 H, alang [n)j

I I I

20 30 4p 5p 60
t&qsEc&

It is of interest to compare this expression with the
case of adiabatic demagnetization from an initial state
i in high 6eld to a lower 6nal state. This gives

. ) H 2+H 21 (H 2+H 2)1/2

for H„;))BL,. The constant-entropy curve predicts
slightly higher final magnetization for given II„and
Hr, than the constant-energy curve LEq. (45)$. The
difference in magnetization represents an irreversible
loss due to transverse relaxation in the local 6elds.

Z. DiPole Zeernan Cross Rel-axation

The basis for the calculation of the approach to
thermal equilibrium has been given by Provotorov, and
adapted by Walstedt" to the case of large B„.The
calculation is strictly only valid when the nonsecular
terms coupling the Zeeman-dipolar terms are small with
respect to both of these. In this case, a two-spin
temperature assumption seems valid. In our case, with
dipolar spin-spin coupling only, the above condition is
not satisfied, the nonsecular terms in this case being
of the same order as the secular terms.

In view of the quasiequilibrium state, it might be
more appropriate to consider a three-temperature
system in which the Zeeman and nonsecular dipolar
terms form a reservoir at an intermediate spin temper-
ature, which finally cross-relaxes with the secular dipolar
reservoir.

'6 C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1' 01 (1961).

FIG. 6. Comparison of the free induction decay with the first
and second echoes for times greater than or equal to 2v and 4r,
respectively.

We do not propose to pursue this model here, but
rather we shall take the two-temperature assumption of
Walstedt. It is certainly true that the establishment of
the quasiequilibrium state is very rapid. Thus for all
practical purposes, the slow cross-relaxation process
follows a two-temperature model.

For convenience, we write Walstedt's expression for
the Zeeman-dipolar cross relaxation time in our notation
as follows:

axe = Z Mr Tr f r)t exp(rMe),
X IGM exp(iGpt) G M exp( —iGpt) j/TrII 2j, (46)

where M=1, 2. Also making the assumption of a
Gaussian distribution of local fields, the trace simplifies
to

TrIGM exp(iGpt)G M exp( —iGpt) j~Tr{GMG Mj

Xexp( —t2/aM2), (47)
where

1/a '= ——',TrI(Go, GMXGo, G )j/Tr(G G

In our case, M =2 only since we are presently interested
in cross relaxation at exact resonance. Thus integrating
Eq. (46) we find that

1/Tzi) =42 (—2A2r/B) "' exp(2A p) '/B), (48)
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90 pulse

FREE INDUCTION DECAY

90'rf phase shift

FREE INDUCTION

DECAY

FIG. 7. Sketch of pulse sequence
used in the long-pulse spin-locking
experiments.

TIME

where A and 8 are as defined previously in Sec. IIB.
We notice that within the assumptions made in
Walstedt's calculation, the cross-relaxation process in-
volves fewer lattice sums than the similar calculation
for establishment of the Zeeman spin temperature.
Implicit in Eq. (48) is the two-temperature density-
matrix assumption and single exponential relaxation.
We note from Eq. (48) that for cp„=0, Tsn—Ts.
As expected, Tzo rapidly increases for large co„. This
corresponds to the decreased ability of the dipole
system to conserve the' energy of the Zeeman transi-
tions. For co„ large, TgD is rather sensitive to the
spectral distribution of the dipole reservoir, particularly
in the wings. This makes TzD especially sensitive to the
form of the spectral assumption made.

III. EXPERIMENTAL DETAILS AND RESULTS

A. Apparatus

The multiple-pulse sequences are produced with a
coherent high-power transmitter. The signal from a
freely running 9.0 Mc/sec crystal oscillator is fed to two
Blume gates" via two resistance-capacitance phase
shifters. The gate outputs are combined and amplified
in a broad-band amplifier to produce a linear rf magnetic
6eld at the sample of 100 0, corresponding to a 90'
pulse length of 1.3 @sec for Quorine spins. The circuits
are of straightforward design. The receiver is a broad-
band synchronously tuned ampli6er'8 but modified to
take a reference signal for coherent detection. The
recovery time measured from the end of the gating
pulse is 10 @sec. In the long-pulse experiments, because
of the necessity of varying H„, an entirely separate
gated amplifier" is used. The input of this ampli6er
is fed from the reference signal. The output is directly
combined with the short-pulse amplifier output at the
transmitter head matching circuit. In this way, it is

"R.J. Blunm, Rev. Sci. Instr. 32, 554 (1961)."P.Mansfield and J. G. Powles, J. Sci. Instr. 40, 232 (1963).
"We are indebted to Mr. D. K. Needham for constructing the

Iong-pulse transmitter.

possible to produce a short high-power 90' pulse
followed by a phase-shifted long low-power pulse.

The signals were either photographically recorded
directly from an oscilloscope trace, or recorded using a
digital 'boxcar' circuit" developed in this laboratory. A
Varian 9-in. 6eld-stabilized electromagnet provided the
static field. The calcium fluoride crystals were obtained
from Harshaw Chemicals Inc. , and all data were
recorded at a temperature of 298'K. The crystal was
aligned with Hp along the $1117direction by observing
the maximum time to the 6rst-free induction decay
zero and judged to be correct to better than 1', in
agreement with the experiments of Barnaal and Lowe."
With this orientation T~~30 @sec and T~ 6.0 sec.

The transmitter coil is a rectangular cylindrical
Helmholtz construction following the design of Lurie
and Slichter. " The receiver coil is fixed with its axis
orthogonal to the transmitter coil, but allowing easy
removal and orientation of the sample.

B.Multiple Solid-Echo Trains

Multiple-pulse 90'—r—90'pp' —L2r —90 pp 7s r se-
quences have been applied at the Larmor frequency to
the F" spins in CaF2. The effect of these pulses is to
prolong the free induction decay by many orders of
magnitude. This is equivalent to arti6cially narrowing
the resonance absorption line shape. The amplitudes of
successive multiple echoes were mostly found to decay
exponentially. There is a very small oscillation of the
first few echoes, however, but in a single-species spin
system this is of the same order as the noise and is hard
to detect. For 7 T2, well-resolved echoes are obtained
(Fig. 3), but for close pulse spacing, the individual
echoes merge into an apparently continuous signal.
In this case, for AD&10 psec we have observed non-
exponential monotonic behavior, but we attribute this
to receiver recovery. The best exponential 6t was taken
in these cases, giving rise in some instances to rather
large errors. Since the receiver-recovery effects tend to

» D. ~are snd P. Mans6eld, Rev. Sci. Instr. 3'7, 116/ (1966)."D.E. Barnasl and L J. Lowe, Phys. Rev. 148, 328 (1966).
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increase the observed T2„we would attach more weight
to the short end of the error bar. The experimental
results together with the theoretical expression Eq. (20)
are plotted in Fig. 4. Variation of the phase shift by
&20' about the 90' condition made no appreciable
difference to the observed values of T2,. We have also
measured the first-echo amplitude at t=2r and the sec-
ond-echo amplitude t=4r for various pulse spacings.
These results are plotted in Pigs. 5(a) and (b) together
with the theoretical expressions, Eq. (4), and. the right-
hand side of Eq. (15). Since the coeKcient of r4 vanishes
for the second echo, we might expect the second solid
half-echo shape to be closer to the initial free induction
decay shape than the first solid half-echo. Experimental
data in Fig. 6 confirms this and is also compared with
Barnaal and Lowe's free induction decay. " Checks
out to the first fourteen echoes indicate that odd echoes
are narrower than even echoes. This supports our
assumption regarding the diagonality of the density
matrix.

C. Long-Pulse Spin-Loddng Experiments

Experiments have been performed on Quorine in
CaF2 at exact resonance in which the magnetization
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following an initial 90' rf pulse is rapidly spin locked at
time ~ later in a second long, low-power rotating mag-
netic Geld B„ofpulse length t . This is achieved by a
90' rf phase shift of the long pulse. The state of the spin
system is observed by rapidly switching off the spin-
locking Geld and observing the amplitude of the free
induction decay. The pulse sequence is illustrated in
Pig. 7. All data is taken with He along the L111]
direction.

For fixed B„, the spin-locked magnetization is found
to oscillate as a function of t„„damping out to a quasi-
equilibrium value in around 100 psec. Ke have repeated
these experiments for a number of values of spin-
locking Geld. Results for H„=2.0, 1.5, and 0.9 6 are
shown in Fig. 8, together with the theoretical ex-
pression, Eq. (42) .We note in Pig. 8(a) that reasonable
agreement between theory and experiment is obtained.
For lower Gelds, the oscillations become more violent,
Pig. 8(b) and 8(c) . Unfortunately, the theory rapidly
breaks down here due to the truncation of I'~ and I'2

at fourth order. The disappearance of the oscillations
corresponds to an establishment of a Zeeman spin
temperature. We have plotted the experimental spin-
locked magnetization out to t„„=10msec and for B„=
2.0 and 1.5 0 there is a further small monotonic de-
crease in amplitude of the equilibrium magnetization.
We attribute this to dipole-Zeeman cross relaxation
and this is discussed separately. Although we give no
theoretical analysis for nonzero v, in these experiments,
we find that provided the time origin is taken im-
mediately following the 90' pulse, the high-Geld data
seem to fit Eq. (42) independent of r at least'up to 10
@sec.
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D. Equilibrium Magnetization

Long-pulse spin. -locking experiments were performed
with t„„held at 10 msec and with B,varied from 0.5 up
to 6.0 G. The experimental data are plotted in Fig. 9.
These are compared with the theoretical curve )Eq.
(45)j, which assumes that the initial magnetic energy is
conserved and that the dipole and Zeeman energy
reservoirs equilibrate to a common spin temperature.
In CaFs for Hs along the $111jaxis, the local field Hr, =
0.86 G. We see that good agreement is obtained between
theory, tsolid curve (a), Fig. 9j and the data for
II„&HI.. For increased H„ the magnetization does not
come into equilibrium with the dipolar reservoir in the
time of the experiment. The normalized magnetization
in this case is predicted by the time-independent part
of Eq. (42), i.e., (I,)=1—I'&. This expression is also
plotted, Lcurve (b), Fig. 9]. We see there is good ex-
perimental agreement for high field. As expected, how-

ever, the theoretical expression breaks down for H„&
2Hl„as indicated by the sharp downwards deviation at
H~1.75 G.

As a matter of comparison, we also plot in Fig. 9 the
theoretical magnetization for a sample which is adi-
abatically demagnetized from an initial field much
greater than HL, . The quasiequilibrium state clearly
should always fall between the two extreme curves of
constant entropy and constant energy.

The experimental data of Figs. 8(a) and 8(b) is
replotted semilogarithmically in Fig. 10 to include all
points out to 10 msec. This illustrates the slow cross
relaxation between the dipolar and Zeeman reservoirs.
For H„=1.5 G the data indicate exponential cross
relaxation with a time constant Tzo=0.37 msec. Since
all the data of Fig. 9 is taken with t„„=10msec, we can
infer a lower limit for TzD for H„)2.0 G. Our experi-
mental values of TzD are plotted in Fig. 11 together
with the theoretical expression, Eq. (48). We see that
there is order-of-magnitude agreement. Since Eq. (48)

is critically dependent on the Gaussian assumption for
the dipolar spectral distribution, the agreement is
gratifying. The exact form of the spectral distribution
can be obtained experimentally from the damping of the
initial oscillations and used to calculate the cross-re-
laxation time. However, since the Gaussian approxima-
tion is so good for large H„, it is doubtful if much better
agreement with the cross-relaxation data would result.
Ke stress here that some of the difference between
theory and experiment is doubtless ascribable to the
large uncertainty in the data.

In order to improve the dipolar spectral distribution
function, Eq. (38) would need to be carried through to
at least sixth order.

IV. CONCLUSIONS

We have shown experimentally that for the E"
resonance in a single crystal of CaF2, the free induction
decay following a 90' rf pulse can be prolonged many
orders of magnitude by further application at time r of
a coherent train of 90 pulses uniformly spaced at 2r.
The rf phase of the pulse train is shifted 90 with
respect to the initial pulse. The eGect of these pulses is
to produce a continuous train of solid echoes. This
corresponds to a narrowing of the resonance absorption
line shape plus the introduction of side bands, and is
most eGective for r&T2. The evolution of the spin
magnetization is observed between the rf pulses and the
peaks of successive solid echoes are found to decay
exponentially with an eGective relaxation time T2,
which is a function of r. Measurements of T2, versus r
have been made and for the shortest r used (around
6 @sec), the transverse decay persists for as long as 1.0
sec. The normal transverse relaxation time T2 30
@sec for Hs along the L111jdirection.

A theoretical expression is derived relating T2, and
r, and is based on a diagonal assumption for the density
matrix describing the even-echo peaks. This gives the
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correct 7 dependence. Evaluation of the magnitude of
T~, using an approximate trace calculation gives re-
markably good agreement with experiment. In these
calculations, spin-lattice-relaxation eGects are entirely
ignored.

Calculations of the 6rst three echoes shows that there
should be a small oscillation of amplitude, the second
echo being slightly higher than the Grst. The diagonal
assumption carries this oscillation throughout the echo
train, but with reduced amplitude. Since the effect
is so small, we have not been able to delnitely resolve
it experimentally. In spin systems composed of two
magnetic ingredients, and where the nonresonant spin
contribution to the second moment is large, we would
expect a much larger oscillating eRect. Also, because of
the diRerent rotational symmetry of the I-S term in the
dipolar Hamiltonian, the period should be twice as long.
A full discussion of this case will be given later.

The continuous rf pulse train can be represented by
an even Fourier series composed of a mean cw rf field
plus cosine modulated harmonics of the pulse period.
For very close pulse spacing, the pulse train becomes
more like a cw signal. In the limit, when the pulses
merge, we have the normal spin-locked condition.

The physical nature and origin of the solid-echo
amplitude modulation may be understood by simulat-
ing the rf pulse train. This has been done by applying at
resonance a long continuous spin-locking pulse of low
power immediately following the initial 90' pulse.
Large damped oscillations of the longitudinal or spin-
locked magnetization about a final steady value have
been observed for several values of the spin-locking
6eld. The oscillations are due to coherent precession in
a distribution of eRective 6elds. Theoretical expressions
based on a perturbation expansion of the density matrix
are given which predict the correct periodicity and final
steady value of the magnetization. Dissappearance of
the oscillations corresponds to the establishment of a
spin temperature in the Zeeman energy reservoir. For
H„(2H~ the perturbation expansion breaks down.
The final magnetization may be calculated in this region
by assuming that the initial spin-locked magnetic
energy is conserved. In this case, a redistribution of
energy between the Zeeman and dipole energy reservoirs
takes place fairly rapidly, thereby establishing a
common spin temperature in the system. This is a good
approximation when the dipolar spectral width is
comparable to the Zeeman splitting, i.e., when B„(BL,.
Experimental results give good agreement with the
theory. For H„&HL, , the establishment of a common
spin temperature takes longer, due to slower cross
relaxation. For B„&2.0 G, the experimental results
indicate that very little redistribution of magnetic
energy has taken place in 10 msec. Thus, we are able
to infer a lower limit to the cross-relaxation time TzD.
Ke have also estimated a value for an intermediate
6e1.d of 1.5 G. Our values agree within an order of
magnitude with those predicted by Walstedt. His
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APPENDIX A: MULTIVARIANT CUMULANT
EXPANSION

In this Appendix, we define the multivariant cumul-
ant averages or connected averages, and relate them to
the normal Van Vleck moments of the absorption line
shape. The method closely follows that of Horwitz
and Callen. 2' For this purpose it is convenient to Grst
consider the transverse response function of a spin
system" for t&0, i.e.,

(~*)=»Ip(o) LI+(&), I-)I
= (P+(&), I-]), (Ai)

» See, for example, P. Mansaeld, Phys. Rev. 151, 199 (1966).

theory uses a similar Gaussian assumption for the
dipolar spectral distribution as we make here for the
damping of the initial oscillations. Since we find good
agreement in the transient experiments with the
Gaussian damping approximation for high fields, the
exact form for the dipolar spectral distribution, ob-
tained experimentally, would probably not improve
agreement with our cross-relaxation data. In view of the
rather large errors in TzD, due to the relatively small
reduction in magnetization involved in achieving final
thermal equilibrium, it would be surprising to obtain
quantitative agreement with the cross-relaxation
theory.
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Z A;j' (A. ')
i

Z A;s4 (A ") Z A;ssAgAs) (A. ")
jNIc

TABLE I. Lattice sums in inverse angstrom units for CaF2 with
the static Geld along the principal crystal axes. The first column
includes an integrated contribution taken from the 21st shell.

de6ned above, the usual rules of manipulation of ex-
ponential functions apply.

%e next introduce a set of vanishingly small c-
numbers o.„, and an operator D „=8/Bcs„, such that

[100] 3.259X1M

[110] 1.235X10 '

[111] 5.607X10 '

2.147X10-4

1.664X10-~

1.399X10 6

9.45X10-'

2.53X10 '
4.12X10 '

t„"D „"fa„"L„l
m! & is&! & tn!

(A6)

i.e») u„ is replaced by t„. Here m is a positive integer.
Thus by applying Eqs. (A6) and (A5) to Eq. (A4) we

' Footnote added in proof. The values computed here refer to the spatial have
and angular sums only, i.e., the 2Ps(cosmos)) /ri)s part of As), etc.

where the angled brackets denote the high-temperature-
approximation thermal averages with respect to the
unperturbed density matrix and

ln([exp (i Q L„t„)I~, I j)
=lim exp( P t„D „) ln(/S exp(i g n„L„)I+, I j).

o-+0

I+(t) =exp(iR, t) I+ exp( —iB('.~t), (A2) (A7)

also I+ are the usual spin displacement operators.
Introducing the Liouville operator I. /see Eq.

(14a)j we may write the normalized transverse
response function Eq. (A1) as

remembering that L operates on everything to the right

up to and including I+.
We now generalize Eq. (A3) for a set of operators

Ln) &e)

&Lexp(i Z L-t-) I+ I-j)/(LI+, I-1)

pil. ..p l

S(I m. ..I y») — Q (P (IP& ~ ~ ~ I n»)
(pi+" p)'

where 6' means that we must take all permutations of
the product. The purpose of this operator is to gen-
eralize the exponential function so that we may use
normal commuting algebra, i.e»)

exp(i Q L„t„)=—Sg exp(iL„t„). (AS)

(it ) y»'l—=-p QZ(L;" I -) Q "
~, (A4)

un p. ! J'

where n and p„are positive integers, and p„runs from
0 to co for all n. Equation (A4) thus defines the set of
curnulant averages E(L~ ~ L„). This technique is

really only applicable to cases involving no logarithmic
singularity for 6nite times. That is to say, it will be
particularly useful for line shapes near to Gaussian, as
in the case of CaFs with the L111jaxis along Hs.

In general the Liouville operators are q-numbers.
Following Kubo33 we introduce a symmetrizing oper-
ator 5 such that

The notation for the limiting procedure means that we
take the limit n]—+0 after all the operations by D, are
complete, then the limit n2~0, etc.

We now expand exp( P„t„D „) in a power series
and obtain, by substituting Eq. (A7) into the logarithm
of Eq. (A4),

(it )'"
Q Q(Lp& ~ ~ sL n») Q
un n S»

=limp+ " " ln([S exp(i P L )I, I )),
(t„D.„)-

~0» y» p» ~ n

(A8)

where e& j.. The n=0 term on the right-hand side of
Eq. (A8) is subtracted in the limit n& ~ n„+0 by the-
normalizing denominator (see Eq. (A4) j. Thus
rearranging Eq. (A8) and equating coefficients we
obtain for the multivariant cumulants, up to eth order,

i"E(L" ~ ~ L„"")=lim Q D „".

Xin(LS exp(i g n„L„)I~, I j), (A9)

where g„p„=e. The above expression may be
simplihed by using the following identity:

limD, 1n(LS exp(i Q n„L„)I+., I j)

n

(LSLg exp(i Q u„L„)I+, I j)
2

n

(LSexp(i Qn„L„)I~,I $)
2

Thus, provided we take the symmetrized sums as

"R.Kubo, J. Phys. Soc. Japan 17, 1100 (1962),

= (sL,).. (A10)

I'rom Eqs. (A9) and (A|0) we may write the cumulant
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1~(L-)„=(L;)=&V„; (A13)

i.e., the eth Van Vleck moment of the absorption line
shape. For complex pulse sequences, the Liouville
operators are not in general equal. Averages like
(SLt ~ L„), are not recognizable as normal moments,
but are related quantities. For experiments involving
repeated 90' pulses, the averages involve only two
types of Liouville operator J and J.'. Thus we recognize
the average (L'I.") as the fourth-moment-like term
M4, defined previously.

The symmetrized averages are not in general equal to
the averages for S=1.As an example

(SLL'L) = ', ((LL'L)+ (L'L-')+ (L'L')) .
The last two terms may be reordered by introducing a
commutator C=t Kt, Kt'j. In this case

generating function conveniently as

D „(SLt ~ L„g) =(SLg ~ ~ .L„)
—(sr.„).(sL,," I,„,).. (A11)

Using Eqs. (A10) and (A11) we generate the first few
cumulants as follows:

E(Lt) = (SLg),

x(L„r ) = (sr.,I ).—(sr.,).(sr ).,
K(L„Ls, Ls) = (SLiLsLs) —(SLt) (SLsLs)

—(SLs) (SLL )
—(sr.,).(sL,,I ).
+2(SLt) (SLs) (SLs) .

(A12c)

For the special case of the response function $Eq.
(A1)] the Liouville operators are all identical and
therefore commute. The symmetrizing operator may
therefore be replaced by unity. In this case by examin-
ing the traces we identify

TABLE II. Computed values of quantities de6ned in Sec. II.

Quantity
evaluated along

pttj

14.24~'&10' rad' sec '
—15.46)&10'~ rad4 sec 4

17.80m'&&10' rad' sec '
—1.01m4&(10'5 rad4 sec 4

8.72x4)&10'4 rad4 sec 4

operations. The terms involving C are in the nature of
correction terms which in the present work we neglect
entirely.

APPENDIX 8: EVALUATION OF TRACE
PRODUCTS AND LATTICE SUMS

where

( jk) ~ =+~;a'D~''( —Ig,'I.~)

+(klj) ~+(ljk)~,

+ (Ajs +Bjs ) Djs (IyjrysIgs+Iy&'Iys/2)

( jki) +=~I*~4s4i ( ~;~'(Du —Di, ')

+~,i'(Dw' Ds/ ) + (B,g'+—B;(') D~( j,.
The commutator occurring in term C may be expressed
as

LG, G-7= Z ( jk)'+(kj)'

In this Appendix, we evaluate the various traces
occurring in Sec. II. Term A is straightforward to
evaluate and is given below. Term 8 involves the
product of two commutators. These may be written

EGo, G+3= Z(jk)++(kj)++ Z (jkl)+

(LsL') = (LL'L)+ (LC)

(L'L') = (LL'L)—(CL), where in this case

+ Q ( jkl)'+(klj)'+(ljk)',
k&q&E

where

(LC) =(I L&, t.c, I+jj, I-j),
and

(jk)'= ,'B; ' (I„I,+I„I I )-
(cr)=(LLC, pe„r,y, I g).

Substituting these averages we obtain for the sym-
metrized average

(SLL'L) = (LL'L,)+ -s, ((LC)—(CL)) .

All the mixed symmetrized averages can be rearranged
in this way by the introduction of further commutation

(jkl)'= (B; 'B )I„.(I I,+I I -).

The appropriate commutators are multiplied together
and summed over all subscripts.

The traces of the spin products are evaluated in the
spherical basis using the well-known trace relations. 3'

~ E. Ambler, J. C. Kisenstein, and J. F. Schooley, J. Math.
Phys. 3, 760 (1962).
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All the sums are evaluated for the case when 0=90'
and A;1,=0. After much algebra, we obtain the results

A=Tr{GsG s}/Tr{I,'}

= (3/gN) Q A;ssI(I+1),

&=Tr{LGo, Gsj{ Go, G sj}/»{I.'}

=—(9/32N) Q A s4L(12I(I+1)+1)/15——,'j

—(9/24N) Q (AstsA s'+2A s'A tAst)P(I+1)'

C=Tr{(Gs, G s]'}/Tr{Is}

= (27/64N) Q A 14{4(2P+2I+1)/5—1}I(I+1)

+(9/24N) Z A '&'A&tsP(I+1)'

The lat tice sums required to obtain numerical
evaluation have been calculated on an electronic
computer (KDF9) for the static magnetic field along
the three principal axes in a single crystal of CaF2.
The lattice constant used in these sums is a=2.7255 A,
and the sums include all interactions out to 484 nearest
neighbors. This corresponds to 21 nearest-neighbor
shells, or to a distance of 13.35 A. The contribution
to the single summations from the remainder of the
lattice is estimated by an isotropic integration. In the
sums involving A;I,' the integrated contribution is less
than 1.0%, whereas in the sums involving A;I,' the
contribution is found to be less than 0.005%. In the
A;~'3;~31,~ sum an integrated contribution cannot
easily be obtained, but from the convergence of the
sum, we estimate the asymptotic value to differ from
our truncated value by less than 10%.The lattice sums
required to evaluate all quantities in this paper are
presented in Table I. Using these results, the numerical
values of the quantities appearing in Sec. II have been
calculated and are given in Table II.
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Isotope Effect in Crystal-Field Splitting
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The Van Vleck orbit-lattice interaction attributed to the normal coordinates of the cubic molecular cluster
transfornung like F4„ is used to calculate the ground-state splitting induced by the lattice vibrations. With
the aid of the result obtained by Visscher, we have shown that the isotope shift in the crystal 6eld splitting
of the ground state follows the isotope-mass-difFerence-ratio relationship. We have also found that the
temperature-dependent part of the isotope shift is due to the quantum corrections and should vanish in
the classical limit.

r iHE isotope effect in the crystal-field splittings for..the ground states of Fe'+ in calcite, Cr'+ in mag-
nesium oxide and Gd~ in thorium oxide have been
observed by Marshall and his co-workers. ' ' According
ta their experimental data and analyses, the isotope
shifts in the ground-state splittings follow a simple
isotope-mass-difference-ratio relationship. They were
able to interpret their results by proposing a mecha-
nism in which they included the inQuence of the
dynamical crystal 6eld. In this mechanism, they as-
sumed that the molecular cluster is completely isolated
from the rest of the crystal and that the frequency of
vibrations of this complex is given by a simple relation
,r=o(E 3/II')' tswhere M' was regarded as the mass

of the paramagnetic ion. In a real crystal, it is not easy

to justify this isolated complex model because, as

specifically pointed out by Van Vleck, 4 the vibrations of
the ions in a molecular cluster arise from the lattice
vibrations of the crystal as a whole. Furthermore, the
re1ation between the frequency of the vibration of the
complex and the mass of the paramagnetic ion is not so
simple. ' In this paper, we shall use the Van Vleck orbit-
lattice interaction and shall try to interpret the isotope
effect in the crystal-Geld splitting of the ground state
in a more natural way. However, for simplicity, we
shall restrict ourselves to the XI'8 cubic molecular
cluster and also focus our attention to the discussion of
the isotope effect in Gd'+ doped thorium oxide in which
Gd~ sits at the center of the XI'8 cubic molecular
cluster with eight oxygen ions at the corners.

~ S. A. Marshall, J. A. Hodges, and R. A. Serway, Phys. Rev.
133, A1427 (1964).

~ S. A. Marshall, J. A. Hodges, and R. A. Serway, Phys. Rev.
136, A1024 (1964).' S. A. Marshall, Phys. Rev. 159, 191 (1967).

J. H. Van Vleck, Phys. Rev. 57', 426 (1940).
'The relation, a&= (E'/M')"", is not true even for the Xyq

molecular cluster /see, for example, Gerhard Herzberg, Motecgtar
Spectra and 3IIolecular Spectra (D. Van Nostrand Company, Inc. ,
Princeton, N.J., 1954), p. 154).


