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angle approximation, since increased scattering is pre-
dicted when this approximation is improved.

As regards the assumption made throughout this
paper that the particle suGers no energy loss in the
scattering medium, this too may be improved upon by
treating the scattering parameter ) as a function of the
distance x."The substitutions

dn'(cosn'I'"

when made in the elementary scattering formula (2),
yield formula (4) with t and p replacing x and s, respec-
tively; thus the formulas in Secs. 2 and 3 may be
adapted directly to the new variables. It should be
noted, however, that only the zero-order terms in these
formulas are valid, since to suppose that the scattering
parameter X is a function of x rather than of actual
path length is to employ the small-angle approximation.
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We study both theoretically and experimentally the magnetization loss of a nuclear spin system irradiated
with a rf Geld under a linear Geld sweep through the resonance. Two limiting cases are considered. The
Grst is that of a slightly saturating passage, in which the loss is simply related to the rf Geld amplitude, a
fact which aHows an easy calibration of the latter. The second case is that of a quasiadiabatic passage
which reverses the magnetization. Three factors contribute to the magnetization loss: (1) The passage
is sudden far in the wings of the line, and it becomes rather abruptly adiabatic at a given distance from
resonance. An entropy increase accompanies this transition. (2) The passage through the central part is
not quite adiabatic because of the Gnite sweep rate of the Geld through the line. (3) The Gnite spin-lattice
relaxation time of the spin-spin term causes a loss of magnetization at the passage on the line. The losses
are numerically computed for the Guorine spin systero in CaFs with Ho

~ ~ $100j, and they are found to
agree with the experimental values.

I. INTRODUCTION
" N this article we study the behavior of a nuclear spin„.system in a solid, irradiated with a rf field during a
single-shot passage, which we deGne as a linear sweep of
the applied dc field through the resonance value. This
encompasses the well-known fast, or adiabatic, passage,
extensively used in nuclear magnetic resonance: When
a suitably large rf Geld is applied, and when the sweep
rate is low enough, this passage results in a reversal of
the magnetization orientation with only a small loss in
magnitude. The theory of the fast passage in solids is
based on the spin-temperature concept. ' ' It is well
veriGed by experiment, ' which is a check of the validity
of this concept. This theory, however, is developed for
the case of a strictly adiabatic passage and would be
rigorously valid only if the sweep rate was inGnitely
low. In practice, the slowness of the sweep is limited by

s A. G. Redfield, Phys. Rev. 98, 1787 (1955).
s A. Abragam, The Premcjples of NNclear Magletisrl (Clarendon

Press, Oxford, England, 1961), Chap. XII; C. P. Slichter, Prin-
ciples of Magnetic Resonance (Harper 8z Brothers, New York,
1963);L. C. Hebel, in Sol@ State Physics, edited by F. Seitz and
U. Turnbull (Academic Press Inc. , New York, 1963), Vol. 15.' C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 (1961).

the condition that the entire passage must take place
in a time much shorter than the spin-lattice relaxation
time T2, whence its name of fast passage. The passage is
then never completely adiabatic, and it is the main
concern of this work to analyze the lack of adiabaticity
of a quasiadiabatic passage, and the resulting loss in
magnetization amplitude. A second limiting case is also
studied, the case of a slightly saturating single-shot
passage: When the rf Geld is small and the passage
through the line is fast, this passage results in a small
decrease of the nuclear magnetization with no change of
its orientation. The measurement of this magnetization
loss provides a simple, fast, and accurate way of
calibrating the rf Geld amplitude.

The theory of these single-shot passages is developed
in the frame of the Provotorov theory of saturation. ' '
Its validity is then restricted to the following cases:

(1) The temperature is high, that is, the nuclear
polarization is so low that it is permissible to develop
the density matrix to first order as a function of the

4 B.N, Provotorov, Zh. Kksperim. i Teor. Fiz. 41, 1582 (1961).
t English transl. : Soviet Phys. —JETP 14, 1126 (1962)g.

e M. Goldman, J. Phys. (Paris) 25, 843 (1964).
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inverse spin temperature. This excludes the case of
dynamically highly polarized nuclear spin systems.

(2) The rf field Hi is far smaller than the local 6eld
experienced by the nuclei due to their coupling with
the neighboring spins.

and the mixing rate 8' is equal to

W(~) = i~i'g(~) (6)

where g(h) is the shape of the absorption signal at low
rf level, normalized to

which means that the term or~I is indeed small com-
pared with AI, and XD'. Equations (4) are established
on a time scale of the order of T2 D ', and they are
meaningful only if

A. Provotorov Equations

Ke consider, in a solid, a spin system I in a large
magnetic field EIO, irradiated with a rf field of amplitude
B& rotating with frequency co. In a frame rotating with
frequency co around the direction of the dc field, the
evolution of the density matrix of the system is governed
by a time-independent effective Hamiltonian (measured
in frequency units),

(9)R-~&&T,.

As an order of magnitude, we have 8' ~~'T2, and the
condition is

ppi Tp ~(Mi/D) ((1.

The experimental verification of the theory is per-
formed on the Quorine spin system in CaF2, with the
magnetic field parallel to the I 100j direction.

pre first recall briefly the Provotorov equations The conditions for Eqs. (4) to be valid are

before analyzing in turn the slightly saturating passage a) «6 DM] ) )
and the quasiadiabatic passage.

where

X=DI,+ppiI, +Xn,

QBO M)

(dy = —PHy)

and XD is the secular part of the spin-spin interactions.
If the Zeeman coupling with the rf field, co~I„ is small

compared with AI, and X~', it can be treated as a small
perturbation of the main Hamiltonian:

Xp =AI.+Xg)'. (2)

with different inverse temperatures n and P for the
Zeeman and the spin-spin terms. The effect of the
perturbation co~I„which commutes with none of these
terms, is to cause an evolution of the inverse tempera-
tures n and p toward a common value. A treatment to
second order in the perturbation yields the following
evolution equations:

du/dt = —W(n —p),

dp/dt=W(s'/D') (~—p),

where D, the local frequency, is defined by

D'= Tr(Xg)")/Tr(IQ)

(4)

This main Hamiltonian is a sum of two commuting
operators which are then separately invariants of the
motion. By an extension of the spin-temperature hy-
pothesis, it is assumed that the system reaches, in a time
of the order of the spin-spin relaxation time T2, a state
of quasiequilibrium corresponding to a density matrix'.

o pp 1—nhI, —PXii',

This condition is already met in Eqs. (8) .
The Provotorov equations (4) are established for an

irradiation at a constant distance 6 from resonance.
They have to be modified when 6 is varied, for the
following reason: The inverse temperature o. is propor-
tional to I, but it also depends on b.Pn pp (I,/6) j, and
the first of Eqs. (4) is no longer valid when 6 is not
constant. If, instead of Eq. (3) we use a density matrix

0' pc 1 cl' ldpI~ —p—Xg)

with n'=nA/~p, the system of Eqs. (4) is replaced by

dn'/dt = W/n' (6—/(op) pj—,
dP/dt=W(a/D') )~~' ~Pj. (10)

Both systems are equivalent when 6 is constant. The
variation of the inverse temperature n' is the same as
that of the magnetization, and Eqs. (10) can be used
when the distance 6 is varied, as well as when 6=0 at
the center of the line. Two conditions are necessary for
their validity:

(1) Condition (9), which can be rewritten

cog«D.

(2) The variation of 6 must be very small during
time T2. Consider for instance a linear sweep through
the line, i.e., dh/dt=tt =Cte The linewidth . is com-
parable to D, and the condition means that the time ~
necessary for 6 to vary by an amount equal to D must
be far longer than T2.

r = (D/3)))Tp D '.

Introducing the local field Hz, '= (D/y), we get

dH/dt&(pe"
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We use, in the rest of this article, a slightly different
form of Provotorov equations. We use the quantity
0.'oro, proportional to the magnetization, which we call
I, as a short-hand notation. We then get the following
system:

(12)

II. SLIGHTLY SATURATING SINGLE-SHOT
PASSAGE

We consider a linear passage through the resonance
line, starting from a field well above resonance and
ending at a Geld well below resonance, in a time much
shorter than the mixing time lV ':

7=(D/h)) ((2' 'g '~(o 'D

This condition is also

dH/dt»yHP. (13)

It is supposed to be fu1611ed together with condition
(11).During such a passage, the quantities I. and P
suffer only a very small change and it is possible to
perform an integration of Eqs. (12) taking I, and P
as constants in the right-hand sides. This yields, for the
variation of I„

IVdh+pf ddt.

The integrations can be taken from —oo to +oo, since
the passage starts and ends at held values where W is
negligibly small. Since 8' is an even function of 6, the
last integral vanishes, and we get

+Co
= —I 6 ' Fdic

+OO

= —I.—
2A

Using the normalization equation (7), we obtain

8I.= I.(~(oP/6)—

The magnetization loss after a single passage must
be very small for the theory to apply, and it is then
very dificult to measure it with any precision. The
magnetization loss is appreciable only after many
passages. If the resonance line is swept e times per
second and if the rf field is applied during a time I,, the
magnetization decreases from its initial value Io to the
value

I,=I0 exp/ NsYH—Pt/(dH/dt) g.

The measurement of the time constant of this decay,
together with the knowledge of I and (dH/Ch) yields an
unambiguous value for the rf 6eld amplitude H» since
there are no adjustable parameters. It is of course
necessary that this time constant be far shorter than
the spin-lattice relaxation time X'». If this is not the
case, we can choose the sweep frequency so that many
passages occur during the time Tj (eT»&1), and we
get the following equation:

dH dt

which, by a study of the decay rate and of the equilib-
rium magnetization as a function of n and (dH/dt), can
yield the values of B» and T».

The experimental study of Eq. (15) was performed
on the P' spin system in CaF2, with the magnetic field
parallel to the L100j direction. The magnetic Geld was
about 27 kG, and the fluorine resonance frequency
about 107 Mc/sec. The temperature was 1'K. The
sample was a sphere of I-mm diameter and the satu-
rating coil was a single turn of wire, of diameter be-
tween 4 and 5 mm, so as to produce a reasonably
homogeneous rf held over the volume of the sample.
The nuclear polarization was 6rst increased to an
absolute value of about 10%by the solid effect, ' so as to
increase the signal-to-noise ratio. The paramagnetic
impurities used for the solid effect were U'+ ions in
tetragonal sites~ at the concentration of 1 U'+ per
10' I' . The nuclear spin-lattice relaxation time T» was
in these conditions approximately equal to 60 min.

The linear sweep was performed by a triangular
modulation of the 6eld with a peak-to-peak amplitude
far larger than the resonance linewidth. I et B~ be this
amplitude; we then have dH/dt =rhH~, and the satura-
tion rate becomes equal to

I,~yHP/(d H/dt) —. (14) W.,g
=xyHP/H„. (16)

The variation of I, does not depend on the value of the
inverse temperature P, nor on the exact shape of the
absorption curve. The result (14) could have been ob-
tained with the standard formula for the transition
probability under the effect of a harmonic perturbation.
The only advantage of using Provotorov's equations is
to make sure that no trouble arises from the existence
of the spin-spin heat reservoir.

It is independent of the modulation frequency. The
experimental sequence was the following: After the
initial polarization of the nuclei, two absorption
signals were recorded with a very low H» level on a

6 A. Abragam and M. Borghini, in Progress Irl, Lozv Temperature
Physics, edited by C. J. Gorter (North-Holland Publishing Co.,
Amsterdam, 1964) Vol. 4, p. 384.

'I B.Bleaney, P. M. Llewellyn, and D. A. Jones, Proc. Roy. Soc.
(London) B69, 858 (1956).
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chart paper after lock-in detection, the field modulation
and the rf field to be measured were applied during a
given time, after which two absorption signals were
again recorded. The use of two signals before and after
saturation made it possible to correct for the extra
decrease in magnetization due to the eGect of spin-
lattice relaxation.

We have verified that the magnetization did actually
decrease exponentially as a function of the time of
irradiation. We have also checked the following points:

(1) independence of the saturation rate as a function
of the modulation frequency, between 50 cps and
250 cps;

(2) dependence on the modulation amplitude,

Q ace„—j,

with B~ ranging from 40 to 70 G;
(3) dependence on the rf field amplitude,

gC II'
when the voltage across the tank circuit was varied
by a factor of 3. Care was taken that the magnetization
loss during a single passage never exceeded 5%. All

measurements were consistent to within a few percent.

No comparison could be made with other methods
of calibration of the rf field which were all quite un-

practical in the present experimental situation. The
theoretical derivation of Eq. (15) seems however to be
safe enough that no fundamental error should be sus-

pected.

III. QUASIADIABATIC FAST PASSAGE

The adiabatic fast passage consists of a sweep of the
magnetic field through the resonance value in a time
much longer than the mixing time 8' between the
Zeeman and the spin-spin terms. This condition is
exactly opposite to the condition for a slightly satu-
rating passage, and can be written

dH/dt«yHiP.

During such a slow passage, the system is at any time
nearly at equilibrium, which, after Eqs. (4), corre-
sponds to equal inverse temperatures (a P) and its
entropy is approximately constant.

The entropy is equal to

S=—k Tr(cr 1na).

The evolution of the inverse spin temperature during
an adiabatic passage is then given by

P g (AP+gy) —i/P (2o)

A. Sudden-Adiabatic Transition

where A is a constant.
If we start, for instance, the passage at h=dp, with

Ap) 0 Ap))D the initial magnetization is Ip ——ApI3(dp) =
ApAhp

—' ——A. At the end of the passage, at 3 =A~, with
Ai(0,

~
t4

~

))D the magnetization is I,=d, iA
~
t4

~

'=
—Ip. The magnetization is reversed with no change of
its magnitude.

Turning now to the realistic case when the time of
passage through the line is finite, we consider three
factors of increase of the entropy:

(1) At a large distance from the center of the line,
the absorption function g, and therefore the mixing
rate 8', are very small. However small the sweep rate,
the passage cannot be adiabatic when 6 is large; it can
only be sudden, that is take place without change of the
density matrix. It is only at a given distance from
resonance that, t/V being large enough, equilibrium can
be reached in a short time and the passage can become
adiabatic. The transition between the sudden part and
the adiabatic part of the passage gives rise to an in-
crease of the entropy.

(2) In the adiabatic part of the passage, the system
is nearly at equilibrium, but not rigorously. The entropy
is not rigorously constant, but it increases slightly by an
amount which can be calculated.

(3) Another cause of saturation, that is of increase
of the entropy, is the spin-lattice relaxation, which we
disregarded so far. We consider only the case when the
spin-lattice relaxation rate TD of the spin-spin inter-
actions is finite whereas the Zeeman spin-lattice relaxa-
tion rate T~, is negligible. This is the case for nuclear
spin systems at low temperature relaxed by paramag-
netic impurities whose relaxation time T~, is long.

The saturation of the line due to relaxation then
occurs only during the passage through the line. It is
larger the slower the passage, whereas the saturation
due to the nonadiabaticity of the passage decreases as
the sweep rate is decreased. There is thus an optimum
sweep rate for which the entropy increase, and therefore
the magnetization loss, are minimum.

We now analyze in turn these three factors in condi-
tions where the passage is however reasonably adiabatic
and any of the three losses is small.

Using the density matrix,

o = exp( —PÃp)/TrI exp( —PXp) I,

we get, to the lowest order in P,

S=——',kP'(5'+ D') +Cte. (19)

The function g, and the mixing rate 8', decrease very
sharply as a function of 6 on the edges of the resonance
line, approximately as a Gaussian function. As a conse-
quence, the transition between the situation when the
mixing between the Zeeman and spin-spin terms is fast
and the passage is adiabatic, and the situation when the
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mixing is negligible and the passage is sudden takes
place in a very small field interval around a distance 60
from resonance. The evolution of the system due to this
transition is then to a good approximation the same as if
the system was suddenly brought to the distance 6&,
and time allowed for equilibrium to be reached at this
distance before proceeding toward the center of the
line. The same approximation was already used to
account for the establishment of a spin temperature in
low fields. ' Starting with a system whose magnetization
is Ip and whose spin-spin inverse temperature p is zero,
the equilibrium at the distance d«corresponds to the
magnetization:

7.

h.
5

M
M

Ul

8

c 30
O
N

c 2-
espI

I a s I ~ ~ ~ l

1Q 10 10

H; dH/dt (Gauss sec)-

I,=IpLt) ps/(Ap'+D') j. (21)

If, as we suppose, the distance 60, where equilibrium is
reached, is far larger than D, the magnetization loss
due to the transition is small. It is then possible to
analyze more fully the occurrence of the transition in
the following way: We integrate the equation (12) of
evolution of p, taking I, to be a constant. We write

p =et), and du/dt = —W(A'/D') N. With the initial
condition that p(0) =0, we get the following result:

P(t) =I, W(d /D') exp — W(/)9/D') dt" dt'.

Ke are very far in the wings at the time 0 and we reach
the value 0 =Dg at the time t. Since the largest con-
tribution to the integral comes from: times t,

' close to t,
we have

P(t)~(I,/Ap) W(L9/D')

or else, with t—t'=r,

)& exp s'(6'/D') li"
}

ch'

The function S' is approximately a steep decreasing
Gaussian function at the distance 60. In the vicinity of
hp, the function lnLW(dP/D')) is roughly parabolic
and can be locally approximated by a straight line. This
corresponds to writing

WdP/D' A exp( —M). (23)

A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958).'B. Sapoval and D. Lepine, J. Chem, Phys. Solids 2V, 115
(1966),

t 'r

p = (I,/Ap) W(A'/D') exp — W(lP/D') dr' dr.
0 0

(22)
The sweep rate being equal to 6, we have

FIG. 1. Theoretical magnetization loss due to the sudden-adiabatic
transition in CaFp with Ha ) ( $100), as a function of K /tH/dt

Equation (22) then becomes

p=(I./As)/) 'f Aexpi —Ail)

0

X exp —/) ' A exp( —Xii')dil'} d5 (24)
0

We get, after integration, the following result:

p = (I,//), ) [1—exp{—(A/)). ) 3,L1—exp( —)) At) j I ].
(25)

The factor exp( —Xrh) is the ratio of the rate Wh'/D'
at the beginning of the mixing to the same rate at the
end of the mixing. It is far smaller than unity and can be
neglected. The 6nal result is

P = (Ip/Ao) L1—exp( —A/Xh) j. (26)

In this approximation, P varies from 0 to I,/tt Tphe

transition can be considered as completed when

p 0.9I,//) p, which corresponds to A/(Xh) =2, or else,
using Eq. (23),

~)'/4~= —E(~p'/D') g(~)j '

Using an experimental shape of the function g(A), one
can calculate the distance do of the transition and the
loss of magnetization LEq. (21)j as a function of Ht s

dH/dt. On Fig. 1 are reported the calculated mag-
netization losses in the sudden-adiabatic transition as a
function of Hr 'dH/dt for the case of CaFs with
Hp ~~ $100$. The absorption shape g(A) was taken
from Bruce."

The transition begins when P 0.1I,/Dp which, from
Eq. (26), corresponds to A/(Xh)~0. 1. The beginning
of the transition then takes place at a distance A~ such
that g (hr) g (d p) /20. In the case of CaFs with

&P C, g, Bruce, Phys. Rev. 10'jl'& 45 (19$7),
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Hp (~ { 100j, the Geld interval where the transition takes
place varies from 1 to 1.5 G when the 6eld of transition
(hp/y) is varied from 10 to 8 G. This Geld interval is
not entirely negligible and there is some arbitrariness in
the choice of the value D0 to be made to calculate the
loss. The error involved in the 6nal magnetization is
not very large and does not amount to more than 1%,
which is amply sufBcient for all practical purposes. It
should be noted that the loss varies very little as a
function of Hi 'dH/dt, going from 5 to 8% when

Hi PdH//dh is varied by a factor of the order of 100.

B. Entropy Increase in the Quasiadiabatic Part of
the Passage

When the inverse spin temperatures n and p are not
equal, i.e., when the density matrix is of the form

o.= exp( —nAI, —PXD')/Tr exp( nAI, P—XD'), —

that P and U vary very little during the time interval
U '. We choose, in Eq. (30), a value t))U '. Then

(1) The term

t

exp — U (t') dt'

is negligibly small.

(2) The term

t

eep — ET(e") de I"
ti

is non-negligible only for such values of t' that we have
t—t' &U-i.

As a consequence, we can replace, in Eq. (30), P(t')
by p(t) and U(t") by U(t) and we get

the entropy of the system is, after Eq. (18) and to
lowest order in n and p, equal to x= —Ap/U

exp{ U(t —t') fdh',—

S= ——,'k (n'6'+P'D') +Cte

', k (Ip+p'D—') —+Cte.

The evolution of the quantity

s LI 2+p2D2j

is given, after Eqs. (12), by

ds/dt =I,(dI,/dh) +D'P (dP/dt),

ds/dh = W(I.—Ap) '—. (28)

=-~p/L~(1+t '/D') j (31)

That this result indeed corresponds to a quasiadiabatic
passage is veriied by inserting this value of x in the
Provotorov equations:

dp/dt=W(8/D') x

=—phd/(lV+D2),

whence p=A(h'+D') "',

dI, /dt = —Wx

I et us study the variation of the quantity x
(x=I, AP), when —the passage is quasiadiabatic.
We have

= ip(1+a'/D') -i

=ADD'(6'+D') PI'

dx/dt = (dI,/dt) 6(dP/dt) ——hP

= —Ux —&P,

where, from Eqs. (12),

(29)

whence I,= AA(h +D') '~'. We have, as we should,

I,=hp to first order, but we also know their Grst-order
di6erence x.

Reporting the value of x in Eq. (28) yields

U= W(1+6'/D') .

We solve Eq. (29) by taking

x=ev and dl/dh= —Uu.

ds/dt = —Wx'

=-~'p'/LW(1+&'/D')'j.

Since I, DP, the quantity s is, to Grst order,

(32)

The result is

t t

x(t) =x(0) exp — U(t') dt' —6 P(t')
0 0

and we get

dP(a'+ D') 'i'j/dt

s~ip'(6'+ D')

P(+2+D2) i/2j j2/{ D2W( 1++2/D2) Pj
t or

X exp — U(t")dt" dt'. (30)
d InG9(h'+D')' j/dh= 6/LD'W(1+LB/D')'j (33)

That the passage is adiabatic means that U is so great Upon integration of this equation, from 60»D, the
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distance at which the passage begins to be adiabatic, to
—40, the distance at which the passage ceases to be
adiabatic and I, ceases to vary, we Gnd

in' &p( —~s)/~sp(~s) 3

—~p

LD2W(1+ 62/D2) 2) 'dA,
Lip

.4

MH

C
~H

C
3 e

= —(2D/o1 12D2)

—Ap

b, p

2

100 200 300

This is again a function of o11 26o- Hi 2dH/dt which
depends on the exact shape of the absorption curve
g(A). The function under the integral diverges for
large values of 6, because of the decrease of g(h). This
happens, however, for values of 6 far larger than A0. In
fact, for 6 dg this function is even far smaller than for
6=0, so that the integral has a value independent, to
within a percent, of the exact value of 60 in the range
where h0 can vary.

This integral was graphically integrated for the case
of CaF2 with H&

I I I
100j.The result is

inLI I.(—Lks) I/I I.(212) Ij= —&.ixip 'Hi 2dH/d&.

The variation of P due to relaxation is

that is,

dP/dt = pT~ 'D2//(62+—D2),

dp/dA = ph 'TD 'D—2/(lV+D2) . (37)

Integrating this equation from 62 to —kp yields

Sweep rote dH/dt (Gauss/sec)

FIG. 2. Ratio of initial to 6nal magnetizations for a fast passage
in CaF2 with H2 ~) $100) as a function of dH/dt The rf fie. ld is
H1 =0.32 G. The full curve is the theoretical expression (39) using
the best-6t value TD =0.36 sec.

Numerical example Let us .choose Hi ——0.315 G, that
is Hi' ——0.1 G' and dH/dk= 125 G/sec The F." gyro-
magnetic ratio is

= —(2D/TD6) tan '(12o/D) . (38)

We then have

y~2.5)&104 rad sec ' G '.

yH12 =20dH/dt,

The quantity tan '(As/D) varies very little within
the limits of variation of 60. Its value is slightly less
than —,'m. Summing all contributions to the magnetiza-
tion loss, the ratio of the magnetization amplitudes
before and after the fast passage is given by

so that condition (17) is amply satisfied. The mag-
netization loss due to the sudden-adiabatic transition is,
after Fig. 1, equal to 7%, and the loss due to the
quasiadiabatic part of the passage is, after Eq. (35),
equal to 9%%uo. The total decrease of magnetization
amplitude due to the lack of adiaticity of this passage
then amounts to 16%, which is quite a significant loss.

T —1 T -1D2/(g2+D2)

I. Solomon and J. Ezratty, Phys. Rev. 127, 78 (1962).

(36)

C. Magnetization Loss Due to Spin-Lattice Relaxation

Let TD be the spin-lattice relaxation time of the
spin-spin interactions and let the Zeeman spin-lattice
relaxation time be infinite. The spin-lattice relaxation
time T& in the rotating frame is then given by"

+rfH1 2dH/Cl+i'T12 '(dH/df) ', (3—9)

where the three terms correspond, respectively, to the
sudden-adiabatic transition, to the quasiadiabatic part
of the passage, and to the eGect of spin-lattice relaxa-
tion.

D. Experimental Results

The same crystal was used as for the calibration of
the rf field, in the same experimental conditions. The
dc field orientation was within 2' of the L100j direc-
tion, as derived from the electronic resonance Geld. of
the U'+ ions, whose g factor is anisotropic. The mag-
netization loss was determined by measuring the
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~ I I I I I of Eq. (39) . It was not possible to use rf field amplitudes
smaller than 0.2 G, because the losses then became
excessive and the theory, developed for the case of
nearly adiabatic fast passages, ceased to be valid.
Neither was it possible to use rf field amplitudes much
larger than 0.5 G, since they would then be no longer
small compared with the local 6eld, equal to 2.08 G.
and the Provotorov equations would cease to be valid,

Using large rf field amplitudes evidently decreases the
loss, which can be of interest for practical purposes.
Such situations cannot be treated with the present
theory.

IV. CONCLUSION

H& dH/dt (Gauss sec)-'

Fzo. 3. Ratio of initial to 6nal magnetizations for a fast passage
in CaF2 with Ho ,

'~ [100$, corrected for the e6'ect of spin-lattice
relaxation, as a function of III 'dH/dt. The open circles correspond
to dH/dt= 100 G/sec and Bi variable; the black triangles corre-
spond to HI=0.326 and dH/dt variable. The full curve corre-
sponds to the computed theoretical loss.

decrease of the nuclear lock-in signal after several fast
passages. Two series of experiments were performed.
In the 6rst series, the same rf field amplitude H~ =0.32 G
was used and the sweep rate dH/dt was varied from
one experiment to the other. On Fig. 2 are reported the
experimental results for ln(It/Ih) as a function of
dH/dh.

The solid curve is the computed theoretical expression
(39). The only adjusted parameter was the relaxation
time T&, taken, for a best fit, equal to 0.36 sec, whereas
a direct measurement of this relaxation time yielded a
value of the order of 0.3 sec. At the optimum sweep rate
of 120 G/sec, the magnetization after a fast passage is
decreased to 75% of its initial value. This is a high loss
quite unexpected on the simple grounds of condition
(17). In a second series of experiments, the sweep rate
was kept constantly equal to 100 G/sec, and the rf
6eld amplitude was varied from one experiment to the
other, in the range between 0.21 to 0.51 G. On Fig. 3
are reported, as a function of Hi 'dH/dh, the experi-
mental values of ln(I;/Ir) corrected for the effect of
spin-lattice relaxation. The open circles correspond to
the experiments with variable Hi and constant dH/dh,
and the black triangles correspond to the experiments
with constant Hi and variable dH/dt. The solid curve is
the theoretical loss due to the lack of adiabaticity of
the passage. It corresponds to the terms $+rtHi 'dH/dt

We have developed an analysis of the magnetization
loss in a nuclear spin system under the effect of a single-
shot passage in two limiting cases: that of a passage
whose only effect is a slight saturation of the system,
and that of a nearly adiabatic passage, which results in a
reversal of the magnetization at a small cost in its
amplitude.

The 6rst type of passage presents little theoretical
problem and provides a simple practical method for
calibrating the rf field amplitude in a nuclear-magnetic-
resonance coil, where the sample itself to be studied is
used as a testing probe.

The second type, the fast passage, is a fundamental
tool in magnetic resonance, very commonly used to
reverse the magnetization or to measure its amplitude
by observing the dispersion signal on the run, whose
main advantage lies in the possibility of restoring in
principle the system to its unperturbed initial state by
reversing back the magnetization with a second fast
passage. As is apparent from the present work the
magnetization loss is de6nitely higher than might be
expected at 6rst sight and very often it is far from
negligible. The theory offers a quantitative way of
determining this loss in practical applications. The
calculation of the losses is based on the use of Provotorov
equations. It is an illustration of their usefulness for
practical purposes, and the experimental verification
provides a quantitative conhrmation of their validity.
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