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Multiple Scattering in the Gaussian Approximation: Systematic
Improvement of the Small-Angle Treatment
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In the theory of the elastic multiple scattering of a charged particle in a plane, it is usually assumed that
all angles involved are small. Working in the Gaussian approximation, we use a power-series expansion to
effect a systematic improvement of the results of the small-angle approximation, these being the zero-
order approximation to our expansion. A method of integration in function space is used to determine the
joint probability of lateral and angular displacements of the scattered particle, in principle to any order
in the expansion parameter; this computation is carried out explicitly to first order in the parameter. This
joint probability is employed to obtain Grst-order corrections to previous results concerning, erst, the
lateral displacement y(L/2) midway between two selected points a distance L apart on the track of the
scattered particle, and second, the mean squared curvature (C')„of the track; in the former instance the
result is (y'(L/2) )„=(Ls/48)) {1+(23L/96K)}, where X is the scattering parameter, and in the latter,
(C ), = (4/3XL) {1—(25L/96K) }.For tracks both in two and in three dimensions, fust-order corrections
are determined also to results of the small-angle approximation for the actual path length of particles
passing through a foil, both when the particles emerge normally to the foil and when they emerge in any
direction. The results indicate that the discrepancy reported between theoretical predictions and some
experimental measurements of multiple scattering is not attributable to the use of the small-angle approxima-
tion in the theoretical description.

1. INTRODUCTION

r iHK multiple scattering of charged particles in..passage through matter is of considerable experi-
mental importance and has been treated theoretically
by a number of authors. ' Because of the use of pho-
tographic plates in experimental work, the projection
into two dimensions of the actual path of a particle is
of particular significance. A useful expression relating
to such a path in two dimensions is that for the joint
probability density'

3'I2X 2X ( 3ny 3y2
P(y, n; x) = exp ——

~

ot' +— (1)
%-g2

established by Fermi'; here y and n, each measured in a
plane, are the lateral and angular displacements of a
particle that has traversed a distance x through the
scattering medium and X ' is the mean-squared value
of the angular displacement per unit path length. 4

Three assumptions are involved in obtaining this
joint probability density I Kq. (1)j:(i) The elementary
scattering process obeys a Gaussian probability law;
(ii) the particle suGers no energy loss within the
scattering material; and (iii) all angles involved are
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~ See the recent review article on small-angle multiple scattering
by W. T. Scott, Rev. Mod. Phys. 35, 231 (1963), and other refer-
ences quoted therein.

~ We use a semicolon to separate given quantities on the right
from quantities on the left whose probability distribution is under
d discus sson.' See B.Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (1941).

4 This differs by a factor of 2 from the corresponding scattering
parameter introduced by certain authors, e.g., Ref. 3, in terms of
angles measured in three dimensions.

small. Of these the erst two have been examined in
great detail by other authors. ' Here, our concern is
with the third assumption and by using a power series
in X, or rather in the dimensionless variable x/X, we
present a systematic method of improving the small-
angle approximation on which the derivation of (1) is
based. In terms of our expansion the small-angle
approximation corresponds to the zero-order term
alone.

Our method rests on the replacement of the angle n
by a new variable s which is chosen so as to yield a
Gaussian distribution with x as parameter; the lateral
displacement y may be expressed as a functional of s (x),

and the joint probability of y and of s may then be
calculated by means of a standard procedure requiring
the solution of a certain partial diGerential equation.
In Sec. 3 we carry out this calculation to 6rst order in
our expansion parameter. Although in principle com-
putations may be performed in closed form to as high
an order as is desired, in practice such computations
soon become prohibitively tedious.

The 6rst-order probability density obtained in this
way is applied in Sec. 4 to determine both the dis-
tribution of the sagitta, the lateral displacement mid-
way between two selected points on the track, and also
the mean-squared curvature of the track. In the follow-
ing section we study a related problem, that of 6nding
the actual path length of particles passing through
foils, again by introducing the variable s; in this way
we obtain erst-order corrections to predictions of the
small-angle approximation for tracks both in two and
294
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in three dimensions, the latter generalizing some results
of Yang. 5

Our results are direct consequences of the Gaussian
assumption, but in order to compare them with experi-
mental results one must take into account corrections
due to deviations from the Gaussian form. These have
been worked out by Moliere and others'6 and are the
dominating corrections when X)&x. When X~x, how-
ever, the small-angle approximation is completely
inadequate and our corrections assume major im-
portance.

2. METHOD

since then

where

Vsr dr,
0

(9)

1'( ) —= +I'-. ( '/l )+"( '/~')+" (1o)

To determine P(r/, s; x), the joint probability density
of g and of s, we use a theorem due to Kac,' which
relates the transform of the probability we seek to a
Wiener integral that in turn is determined by the
solution of a certain partial differential equation; thus
we have

The fundamental assumption we make is that the
direction of the track is a Gaussian process whose dz
parameter is the Path tersgtI2 in the plane of projection.
In terms of an elementary distance hx measured in a
6xed direction in this plane, the x axis, this basic
relation becomes

exp( —ur/) P(r/, s; x) dr/

=E exp —I V/s(r) /dr; s(s(x) (s+ds

/X COSnl'/2 lt(hn) 2 COSn

&22rhxj 25x

=Q(s; x) ds,

where Q(s; x) satisfies

~Q/»= :(~'Q-/~") «—(s) Q,

Q(s; 0) =B(s).
where 0. is the angle between the x axis and the direction
of the track in the plane of projection, and where ) ' is
the mean value of (hn)' per unit path length.

The crux of the present method is the substitution

(12)

a
s(n) = (lt cosn') '"dn',

Here I is an arbitrary parameter and the Wiener
measure is determined by (4); it is assumed that n=0

ds dn= lt cosn)'" 3)
By expanding Q(s; x) ln the form

which converts (2) into

I'(»») =(2~») '"expI —(»)'/2»}. (4)

y(x) = tann(r) dr (5)

is now to be sought.
Since y and 0. are not expressible in simple closed

form as functions of s we expand (3) and (5) to obtain

n = (s/X'/') +—,', (s/lt'/') '+—,
'—s'p (s/V") '+. ~ ~

s(r) 5 s(r) ' 23 s(r)
$1/2 12 yl/2 96 yl/2

Thus s is a Wiener process whose parameter is x.
The joint probability of this variable s and of the

ordinate

Q(s; x) = g lt "Q„(s;x)
«=0

(13)

and equating coeKcients of equal powers of X in (12)
we obtain the set of equations

I-Qp=0,

LQr ———(5/12) us'Qp,

IQs = —(5/12) ussQr —(23/96) ussQp,
~ ~ ~

where I is the linear operator

I.= (ci/») —-'(c/'/Bs') +u—s

and where the boundary condition is

Q.(s, 0) =8.pb(s).

(14)

(15a)

(15b)

(16)

First we solve the zero-order Eq. (14) by taking its
Fourier transform. The solution satisfying the boundary
condition Qp(s; x) =8(s) is found readily to be

Qp(s; x) = (22rx) '/ expI —$(s+22ux')'/2x)+ —'u'xs}
The second expression is simplified by the introduction
of the variable

&
=—~~~2y,

(18)
(g) That this corresponds to the small-angle approximation

5 C. N. Yang, Phys. Rev. 84, 599 (1951).' G. Moliere, Z. Naturforsch. 2a, 133 (1947); 3a, 78 (1948);
10a, 177 (1955).

M. Kac, Probability and Related Topics in Physical Sciences
gnterscience Publishers, Inc. , New York, 1959), pp. 161—182.
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with the solutionmay be seen by inverting the equation

168

exp( —uq)Ep(g, s; x)dg=Qp(s; x,

LQ„=f(s; x), (21)

s x is a known function. To deal with these
in
ion rocedure is used, where y i (,
r

' '
f

'
the homogeneous equationGreen's function satislying e o

and boundary condition

I.6=0, G(s, s'; 0) =ii(s—s'), (22)

E . ,21) thatthe solution of the inhomogeneous q.
satisfies the boundary condition Q„(s; 0) =0 is

s x = dx'f ds'a(s, s';x x lf(s ;x')—. ''K )
~

~

0 —OO

(23)

Thus the higher-order Kqs. ,. (15a) (15b), etc. , may
in a Green's function t abe solved in principle by finding

satisfies (22). In fact the Green's function require is

which is the zero-order form of (11), to obtain

I'p()(h s; x)

= (34/P/erg~) exp {—(2/g) ($2—3 (gs/g) +3 (4)&/gP

(20)

der S=X'I'n, thisq—=VI'y and since to zero or er s=
nsit is that of Fermi quoted in Eq. (1).

All the higher-order Eqs. (15aq, , , e
the form

3 FIRST-ORDER JOINT PROBABILITY DENSITY

From (23) and (15a) it follows that
+CO

i a; x, sp) = —(5/12) u dx' da. '(a'+sp)'
0

XG(a a'x —x)Qp(a; x, p .'s. 30
' in turn ields the resultIntegration over cT and x in y

Qi(a. ; x, sp) = —(5/12) Qp(a; x, sp) ux

XP(sp + psp o'+spa +4a' +pspx+4ax)
—u (-'s 'x'+-'s a x'+ (3/40) a'x'+ ( 1/20) x')

u'((1/40) spx'+ (1/80) a x') —(1/1120)u'x'j,

and the first-order approximation toto a" x sp) is

Qi'i(; x, s) =—Q+)( 'Q.

Inverting (31) in accordance with (11) gives

1/2 Z Zo' 0'—6 —+6——2—P('i ()t, a.; x, sp) =,exp

(31)

Qp(a; x, sp) = (2vrx)
—'~'

X exp{—(a'/2x) —-,'aux+ (1/24) u'x' —uspg} (28)

and the Green's function is

G a a' x s()) =(2n-x) '~'exp{ —L(o —a')'/2xj) ) )

—-'ux(a+a'+2sp)+(1/24)u'x'}. (29

J ~G(s, s'; x) = exp( —us'x) Qp(s —s; x)

= (24rx) 'I' exp{—L(s—s')'/2xj where
Z:—g —Sop (33)

X 1+ —Q a„a", (32)
0

—-'(s+s') ux+ (1/24) u'gP I . (24) and

~ ~

din to calculate the first-order ]oint

d d=0 has been dealt with; now it is esire og=

angle. In place of s we therefore work wit a varia 0

such that r:—s—$0) (25)

w 0—,b '
the value of 0. at @=0.Insteadwhere sp s(np), a(——p 4)eing e va

of (10) this gives

V(cr; sp) —= (o+sp)+(5/12))(, '(a.+sp)'

+ (23/96) X '(a+sp) '+ ~ ~; (26)

(/ )L

+210sp'x'Z+336spxZ'+ 180Z'$)

a&=——( 1/56x4) {5x' —196s()xZ—144Z'j,

a,—=—(1/14x') {14spx+5Zj,

(34)a4—= —1/7x'.

From this there follows easily the first-order margina
probability density

)'x)(x; x, ss) = f d's&(x, s; x, ss)ds

ap —=—1/56x') L5x'+ 70spPx'+112spx'Z —280sp'gPZ

48xPZ' —840sp'x'Z' —1008spxZ' —432Z'])

1 28x' 'Ispx'+ 70sp'x'+4x'Z

f Q (a" x sp) takes the formthe zero-order equation ~or &0,0; x, 0

4)Qp/Bx ——'(4t'Qp/Ba') +u(a+sp) Q() ——0,

Qo(a; 0, so) =8(a), (27)

( 3 '~' —3Z'
exp

&2+x'

X 4

1+ —P f„Z

(35)
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where
bo= ——(1/224x) $31x+280so'7,

bi =——( 1/8x') L21spx —10sp'7,

bo= —(1/—224x») L339x—840so'7„

bo= (9—/2) sp/xo,

b»= (27/—14)/x'. (36)

In Fig. 1 are plotted graphs of the zero-order and Qrst-
order terms of this marginal probability density in the
special instance in which the initial angle cg has the
value zero. The Moliere corrections, ' not included here,
would add a tail to the distribution shown in Fig. 1,
especially important where the Gaussian distribution
Eo is smaller than about 0.1.

The other first-order marginal probability density is
readily obtainable as

P&'&(o; x, sp) = P"'(g o.i x, sp)dg

= (2~x) -'Io exp I
—o'/2xI, (37)

as indeed it must be.
To obtain higher-order approximations by this

method is perfectly straightforward. However, even in
second order, an unduly large number of terms appear,
and so, having displayed the procedure, we rest content
with the computation of the first-order approximation.

ment (y'(L/2) ), at the midpoint. The latter quantity
has direct experimental significance, since measurements
of it are used to yield the value of the scattering param-
eter ) and this in turn is related to dynamical properties
of the scattered particle.

We consider first a track in two dimensions that
starts at the origin with a fixed value of eo and that
passes through a narrow gate with coordinates (2x, 0).
What is 'sought is the conditional probability density
P(g x s,

~
g(2x) =0), and, since we are here dealingg) S) Sp

with a Markov process, an unnormahzed measure for
this probability density is

doP(g, o; x, so) P(—g; x, o+sp), (38)

this being obtained by the device of considering an
intermediate gate with abscissa x and arbitrary ordinate
y. Because the angle of emergence at the final 'gate is
not of interest, the marginal probability density
P( xo+so) —obtainable from (35) is used to

anddescribe the passage between the intermediate an

Integration over 0 and subsequent normalization
yields the conditional probability density we seek,
correct to first order in x/X, as

t' 48 'lt/2
P&'& (g; x, s, [ g(2x) =0)=

i

4. SAGITTA PROBLEM AND THE CURVATURE exp
48 vP 36 gso

7 x' 7 x'
27$ s27 so

28
The first problem dealt with in this section is that of

finding the probability for the lateral displacement y at
the midpoint of a chord of length I drawn to the pro-
jection of the actual path into a plane; hence may be
derived in particular the mean-squared lateral displace-

1 19 , 1865 , 5031

x 5488 76832 67228

(39)

x ~~
P~ (q; x,o) 1 87 5169f =

~ 2401
"* 16807-

1 9759 37686
x' 4802 16807

97074 1

16807 x'

152496 1

16807 x'

3 q
x-'~~

FIG. 1. The solid curves show zero- and first-order contrj Uu-
t t the probability for lateral displacement of a particle when
the initial angle is zero. In the same way the dotted curv
ion s o r

d e shows
the probabtbty correct to f'irst order, P"& =Pp+(g/W) Ply at a=P,

This probability density has been derived for a fixed
value so at the origin. To remove this restriction we must
average over all initial values of so and to do this we
require the distribution of so. It is not the a Priori dis-
tribution of so that is needed here but the distribution
subject to the restriction q(2x) =0; thus it is the condi-
tional probability density P(sp

~
g(2x) =0) that we

seek. It is possible to derive this from the tt priori
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probability density E(so) by the use of Bayes's rule. o

In zero order sp becomes the initial angle ep and in this
instance we should assign a uniform a priori probability
to O,p on the grounds that the physical circumstances do
not predetermine the initial angle in any way. In higher
order, however, although the same reasoning may
indicate that the initial angle remains uniformly dis-
tributed, the form (4) of the scattering law suggests
that it is sp rather than O.p that is to be regarded as
having uniform a priori probability. Since we do not
regard this as being a convincing argument, nor indeed
any argument at all, we prefer to derive the conditional
probability density I'(so

~
rt(2x) =0) by a different

approach. It may be noted, however, that this alterna-
tive approach is consistent with the supposition that so is
distributed uniformly, since it yields the same first-
order expression for I'(sp

~
~)(2x) =0) as does Bayes's

rule supplemented by the assumption that E(so) is
constant.

The alternative method whereby we determine
I'(sp

~
it(2x) =0) is based on the spatial reversibility of

the model we are using. Since energy loss is disregarded,
there is nothing to distinguish in which direction the
particle traverses the track. Consequently, for any
track passing between two gates we require that the
angle n have the same distribution at each gate.

We consider therefore a track that passes through
two gates, one at (0, 0) the other at (x, 0), and we
demand that I'(sp

~
it(x) =0) be the same function of

sp as I'(s
~
rt(x) =0) is of s. The latter probability

density may be obtained from the equation

I'(s
[ g) =f dsep(o s so, &, s0 [ g) P[sz [ g)=——

by choosing the particular value rt(x) =0. Here,
P(it= s sp' x sp

~
vj(x) =0) is derived from (32)—(34)

by putting Z=—p —Spx= Spx; however, what results
from substituting this fixed value for g must erst be
normalized to unity with respect to r in order to yield
I'(o =s sp' x sp

~
i)(x—) =0). In this way to first order in

x/)[, may be found the expression

I'"&(s sp,.x, s[[
~
it(x) =—0)= (2/~x)'t'

&& expj( —-', sos —2sos —2s')/x}L1+(x/X) g g,s"j„

The problem now is to solve the integral equation

I'(s
I v(x) =0)

soI' s—so&g&so g g =0 I'sp g s =0

s—= t(-', x) '", sp =—to(-', x) '" (42)

and then symmetrize by the substitution

I'(s
~
rt(x) =0) exp(3s'/4x) =—t[(t).

The integral equation (41) becomes

(43)

p(t) = dt,z(t, t,) p(t,),

where

lt. (t, tp) =—(2/3')'"

&& exP [—(5/12) (t'+ tpo) o tto }$1+(—x/)[) P (t, to) )
(45)

and

2016P(t, t[[) =—99—60t' —32t'+48ttp —16totp

+33t '+32t2to' 16tto —16tp . —(46)

To solve this equation we make use of the expansion'

y'+so —2yse *
(2') '"(1—e ") '" exp -'(y'+s')—

2(1—e '*)

= Z&-(y)&-(s)e "*, (47)
n=o

in which $„(x) is the rtortrtalised Weber function of the
Nth order. By virtue of (4'7) with e *=—iothe kernel
(45) may be written as

(41)

which is a Fredholm equation of the second kind,
homogeneous and of eigenvalue unity. It is convenient
to symmetrize the exponential factor in the kernel
(40), this being the entire kernel in the zero-order
approximation to the integral equation. To this end we
first put

where

«=0

(40)
&(t to) = Z (—2) "&-(t)&-(t ) L1+ (x/)~) P(t, to) j.

n=o

gp= (1/224x') (11x'+11so'x—16so'),

gi= (1/14x') (spx —so'),

gp—=—(1/56x') (Sx—8sp')

go =——(1/14x') sp,

g4—=—1/7x'.

'See, for instance, W. Feller, An Introd0ction to Probability
Theory and its Apphcations (John Wiley 8z Sons, Inc. , ¹wYork,
j.957), 2nd ed. , p. lj.4.

By repeated use of the recurrence formula"

m„(t) = (rt+1) 'ton„+i(t) +n't'n„ i(t) (49)

the first-order part may also be expressed in terms of
the orthonormal set of functions X)„(t).

9 G. K. Uhlenbeck and L. S.Ornstein, Phys. Rev. 36, 823 (1930).
D„(x) =K)„(x)(n!)"' (2m) "4 is the conventional Weber function
of nth order.

"This relation may be obtained from the formula (Ref. 9)
tD„(t) =D~g(t)+ID i(t).
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Since the $„(tp) form a complete set of functions, we

may put

v(tp) = Q a„n„(1p), (50)

where

a„=a„&p&+(x/X) a &'&+ ~ ~ (51)

On substituting (48) and (50) into the integral equation
(44) we find as an immediate consequence of the
orthogonality relations

~m =&o ~mo&
(p) — (o)

p&$= 1g 3p 5) 6) 7

The zero-order term here is the same as that known
previously. "

A further result that follows directly from the
probability density (54) is the first-order correction to
Bethe's" expression for the mean-squared curvature of
a track in two dimensions. Here, the curvature C is not
the usual local property but is defined as the reciprocal
of the radius of that circle which, for any chord of
length L drawn to the track, passes through the same
three points (0, 0), (L/2, y), and (I., O) as does the
track itself. From the properties of a circle it follows
that C=8

~ y ~
(L'+4y') ' and hence that

(C'), =64L '(y'), —512L,—'(y4), + ~ ~ ~ .

as&'& = —31''/672,

a4&'& = —tp'/126, (52) (C') =~l&L '(1—(25/96) (L/X) ). (56)

From (54) there is obtained the mean-squared curva-
ture to first order in x/X as

S. ACTUAL PATH LENGTH OF PARTICLES
IN FOILS3 )1/2

P&'&(sp
i »(2x) =0)=

4~x] The problem here is to determine the distribution of
the actual path length of particles that suffer multiple
scattering during their passage through a foil. Here the
usual experimental situation is that the particles are
incident normally on the foil, and so throughout this
section we shall deal only with up=0.

For a foil of thickness 1 the actual path length is
expressed by

3sps& x 47 31 sp' 1 sp'
)& exl&

~

—
~

1+—
4xl l& 336 224 x 28 x'

(53)

Having thus determined the probability density
P ' (»; x, sp

~
»(2x) =0) as in (39) for a fixed

value of sp and the conditional probability density
P&'&(sp

~
q(2x) =0) as in (53) for the distribution

of sp we now derive the probability density
P&'&(»; x

~
»(2x) =0) that we seek by evaluating to

first order in x/X the integral

l

L= dx seen(x),
0

(57)

where n is the angle between the direction of the track
and the incident direction of the particle, this latter
direction being taken as the x axis. At this stage the
path of interest may be either a track in three dimen-
sions or its projection into a plane as was considered in
preceding sections; in the former instance the angle o.
is not, of course, identical with that appearing in pre-
ceding sections. The excess path length is given by

On retrieving y, the lateral displacement, by the sub-
stitution g

—=)Pf'y and on setting 2x=L, we find the
probability density for the lateral displacement at the
midpoint of a chord of length L to be X '6=—L—l= dxI ,'n'+ (5/24-) n4+ ~ ~ ~

I . (58)

with the coefEcients ao" and ao» determined by the the zero-order term here is Bethe~s result.
normalization requirement. Replacing x by 2x we obtain
the following solution of the integral equation (41):

(24M '~s
P&'& (y(L/2) ) y(0) =0, y(L) =0)=

(
First we deal with two-dimensional problems. In

terms of the variable s, defined in Eq. (3), the excess

24K ' ' L 55 271K 1728K y4

2X 672 14 L' 7 L'

(54)
where

ULs(x) 7dx, (59)

correct to first order in x/X. The mean-squared lateral
dis lacement at the mid oint of the chord is then in
0

U (s) —= -', s'+ (7/24) X 's'+ ~ ~ ~ . (60)
' B. Rossi, High-Energy Particles (Prentice —Hall, Inc. , Engle-

wood Cliffs, N.J., 1952), p. 72, Eq. (13);Rossi's 0, is such that
OP=2/X.

(ys(L/2) ), = (1/48) (LP/A) (1+(23/96) (L/X) ). (55) "H. A. Bethe, Phys. Rev. VO, 821 (1946l.
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This functional integral may be handled in the way
described in Sec. 2; by this method we have obtained
the transform with respect to 6 of the joint probability
density E&'1 (A, s; x, ss=0) . Although its form makes it
impracticable to invert this transform, we have never-
theless determined moments of 6 with respect to this
probability density. We do not give any details, since
the quantity of foremost experimental interest, the
mean path length, may be determined much more
simply by the following procedure.

From (58), (59), and (60) there follows for the
mean path length the expression

(L&:= dx(1+-',X-'(s'), + (7/24) X
—'(s'&. ). (61)

Using the probability density (3/) for s, we obtain the
mean path length as

(L&..= dx(1+-'X 'x+-s'P 'x')

=~+-'(P/~)+(7/24) (~'/l'). (62)

In the problem just considered the particles are
allowed to emerge from the foil at any position and in
any direction. A second situation of experimental
interest is one in which the particles emerge again at
any position but only those leaving normally to the
foil are counted. The mean path length (L). is again
given by (61) but the probability density for s is now
altered. The latter may be obtained in virtue of the
Markov nature of the random process s(x) as

P(s x, ss ——0
i s(l) =0)=(2s.x(l—x)l-'I'i'

)& exp[ —ss/2xI exp f
—s'/2(l —x) I, (63)

and this yields the mean values

This is now to be averaged over all paths in three
dimensions and to do this we must decide upon our
basic probability assumption, since the form (2) of the
elementary scattering law pertains specifically to two
dimensions. The alternatives that present themselves
immediately are to assume a Gaussian form either for
the angle between neighboring elements of the track or
for each of the angles e„and n, that specify the direc-
tions of the projections of the track relative to the
x axis. Within the small-angle approximation these
alternatives coalesce. Our choice of the second assump-
tion is expedient in that it allows us to employ results
used previously. It may be rationalized by noting that
the parameter X that appears in the Gaussian form is
determined experimentally from measurements made on
tracks in photographic plates, that is, electively from
projections of tracks. In any event, however, the
Gaussian assumption is itself only an approximation to
the scattering law that is derived from quantum
electrodynamics, ' ' and so too great store should not be
set upon insisting on one or other of these choices.

From symmetry considerations we have

(~'). = (a')-, (~')-= (a')-.
Furthermore we may replace (a„sa,s), by its approxi-
rnate value (a„'), (a.s), , since to evaluate (a„sa,'),
correct to second order we need the probability dis-
tribution of n„o., correct only to zero order and to this
order, that of the small-angle approximation, the
approximation made here is valid. Thus from (65)
follows the result

2

d*I1+(~),+(5/12)(~),—:(&, I,
0

(66)

(s'),=x(l—x)l ' (s'),~=3x'(l—x)'l ' and on using (6), with a„ in place of a, and the dis-
tributions (37) and (63) in turn we find

It follows that the mean path length is given by

(L), =3+—,'s (P/X) + (7/240) (P/X') . (64)

Both these results (62) and (64) refer to two-
dimensional problems. Unhke the sagitta problem and
related problems, however, the determination of path
lengths is of greatest practical interest for tracks in
three dimensions rather than for projections of these
tracks. Accordingly we now derive results appropriate
to three dimensions, again extending the small-angle
approximation by one further order in the expansion
parameter. On introducing the angles n„and a, as the
angles between the x axis, the incident direction of the
particle, and the projections of the path into xy and xz
planes respectively, we may expand (57) to the order
required as

2 2

I.= dx(1+ tan'a„+ tan'a, ) 'Is = dx(1+-,'a„'
0 0

+q ass+ (5/24) a„'+(5/24) a,'—-'as'a '). (65)

(I)-=~+l(&'/l )+l(P/Xs) (67)

when particles emerging in any direction are counted
and

(I-&-=~+l(~'/&)+(1/2o) (P/~') (6g)

when only particles emerging normally to the foil are
counted. Both these formulas agree with Vang's
results' as regards the terms belonging to the small-
angle approximation. It may be noted that the small-
angle approximation consistently underestimates the
actual path length.

0. COMMENT

Some measurements of multiple scattering" have
indicated that the scattering is considerably less than
that predicted theoretically; our results show that this
discrepancy is not attributable to the use of the small-

'3 E. Hisdal, PhB. Mag. 43, 790 (1952); F. F. Heym@nn gnd
W, F, Wtlltams, Phd. Mag. 1, 212 (19/6),
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angle approximation, since increased scattering is pre-
dicted when this approximation is improved.

As regards the assumption made throughout this
paper that the particle suGers no energy loss in the
scattering medium, this too may be improved upon by
treating the scattering parameter ) as a function of the
distance x."The substitutions

dn'(cosn'I'"

when made in the elementary scattering formula (2),
yield formula (4) with t and p replacing x and s, respec-
tively; thus the formulas in Secs. 2 and 3 may be
adapted directly to the new variables. It should be
noted, however, that only the zero-order terms in these
formulas are valid, since to suppose that the scattering
parameter X is a function of x rather than of actual
path length is to employ the small-angle approximation.
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We study both theoretically and experimentally the magnetization loss of a nuclear spin system irradiated
with a rf Geld under a linear Geld sweep through the resonance. Two limiting cases are considered. The
Grst is that of a slightly saturating passage, in which the loss is simply related to the rf Geld amplitude, a
fact which aHows an easy calibration of the latter. The second case is that of a quasiadiabatic passage
which reverses the magnetization. Three factors contribute to the magnetization loss: (1) The passage
is sudden far in the wings of the line, and it becomes rather abruptly adiabatic at a given distance from
resonance. An entropy increase accompanies this transition. (2) The passage through the central part is
not quite adiabatic because of the Gnite sweep rate of the Geld through the line. (3) The Gnite spin-lattice
relaxation time of the spin-spin term causes a loss of magnetization at the passage on the line. The losses
are numerically computed for the Guorine spin systero in CaFs with Ho

~ ~ $100j, and they are found to
agree with the experimental values.

I. INTRODUCTION
" N this article we study the behavior of a nuclear spin„.system in a solid, irradiated with a rf field during a
single-shot passage, which we deGne as a linear sweep of
the applied dc field through the resonance value. This
encompasses the well-known fast, or adiabatic, passage,
extensively used in nuclear magnetic resonance: When
a suitably large rf Geld is applied, and when the sweep
rate is low enough, this passage results in a reversal of
the magnetization orientation with only a small loss in
magnitude. The theory of the fast passage in solids is
based on the spin-temperature concept. ' ' It is well
veriGed by experiment, ' which is a check of the validity
of this concept. This theory, however, is developed for
the case of a strictly adiabatic passage and would be
rigorously valid only if the sweep rate was inGnitely
low. In practice, the slowness of the sweep is limited by

s A. G. Redfield, Phys. Rev. 98, 1787 (1955).
s A. Abragam, The Premcjples of NNclear Magletisrl (Clarendon

Press, Oxford, England, 1961), Chap. XII; C. P. Slichter, Prin-
ciples of Magnetic Resonance (Harper 8z Brothers, New York,
1963);L. C. Hebel, in Sol@ State Physics, edited by F. Seitz and
U. Turnbull (Academic Press Inc. , New York, 1963), Vol. 15.' C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 (1961).

the condition that the entire passage must take place
in a time much shorter than the spin-lattice relaxation
time T2, whence its name of fast passage. The passage is
then never completely adiabatic, and it is the main
concern of this work to analyze the lack of adiabaticity
of a quasiadiabatic passage, and the resulting loss in
magnetization amplitude. A second limiting case is also
studied, the case of a slightly saturating single-shot
passage: When the rf Geld is small and the passage
through the line is fast, this passage results in a small
decrease of the nuclear magnetization with no change of
its orientation. The measurement of this magnetization
loss provides a simple, fast, and accurate way of
calibrating the rf Geld amplitude.

The theory of these single-shot passages is developed
in the frame of the Provotorov theory of saturation. ' '
Its validity is then restricted to the following cases:

(1) The temperature is high, that is, the nuclear
polarization is so low that it is permissible to develop
the density matrix to first order as a function of the

4 B.N, Provotorov, Zh. Kksperim. i Teor. Fiz. 41, 1582 (1961).
t English transl. : Soviet Phys. —JETP 14, 1126 (1962)g.

e M. Goldman, J. Phys. (Paris) 25, 843 (1964).


