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Rayleigh Scattering and the Electromagnetic Susceptibility of Atoms*
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Rayleigh scattering of light by atoms is considered from the point of view of relativistic electron theory.
The relationship between the coherent S-matrix element and the frequency-dependent electric and mag-
netic multipole susceptibilities of the atom is established. Single-particle radial equations are derived for
the perturbed electron orbitals, assuming that the atom is described by a relativisitic Hartree —Fock—Slater
(RHFS) wave function. These equations reduce to the inhomogeneous Schrodinger equations commonly
used to evaluate electric polarizabilities when relativistic (6ne-structure) eBects are neglected Num. erical
solutions to the radial equations are obtained for the noble gases. The electric- and magnetic-dipole suscepti-
bilities are compared with previous nonrelativistic calculations as well as with experimental values. The
magnetic susceptibilities are found to be essentially independent of frequency, and to agree to within 1%with
static experimental values for all of the noble gases except He. The accuracy of the electric polarizability
decreases from about 5% for He and Ne to about 50% for Xe. Relativistic eBects are almost entirely negli-
gible for magnetic susceptibilities; they are noticeable only in the case of Xe. In the electric polarizability
calculations, relativistic sects are completely masked by the crude nature of the RHFS computational
techniques.

I. MULTIPOLE DECOMPOSITION OF THE
RAYLEIGH-SCATTERING MATRIX

ELEMENT

HE cross section for Rayleigh scattering by an
atom can be written'

where'

dO

dQ

&el~'ln)&nl~ lg) &al~ ln)&nl~'lg)
3E=Q + (1 2)

s Eo+os—E„ Eg—o)—E„

In Kq. (1.2), l g) and let) refer to the ground state and
the excited states of an E-electron atom, while E, and
E„are the corresponding energies. %e use A and A'
t,o designate the operators (in electron spin space)
associated with the absorption and emission of a photon
of frequency co. Adopting the point of view of relativistic
electron theory, we write

where r; is the position vector of the jth electron and
0.; is the corresponding Dirac matrix. The wave vectors
ir and ir' refer to the incident and scattered photon,
respectively; e and c' are the photon polarization
vectors.

The individual terms in Eq. (1.3) can be expanded in
a multipole series,

e e'"'= Q Cger"(k)ttzsr"(r)
JM/wt

Here J and M are the multipole angular-momentum
indices and P =0, 1 characterizes the parity of the multi-
pole () =0 refers to a magnetic multipole and ) =1 refers
to an electric multipole, the parity of the multipole is
J+X—1). The multipole components of the vector
potential are'

aJsr (r) =j z(osr) /fJ Jsr(r) =j s(~r)Y~& "&(r),

J+ 1 1/2

aJsr'(r) = j z t(cor) &zz tsr(r)--
2J+1

I/s

jz+t((or) Ygg+tsr(r) . (1.5)
(2J+1

N
A'= e' g n; e '""/- (1.3) It is convenient to introduce the functions

4 nr(r) =j z(ocr) I'z~(r),
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'We use natural units throughout: i't=c=1, e'/4 n,scr '
= 137.0388.' A derivation of Eq. (1.2) for a one-electron system which is
easily generalizable to a multielectron atom is given in A. I.
Akhiezer and V. B. Beresetskii, Quantum E/ectrodynamics (Inter-
science Publishers, Inc., New York, 1965), pp. 484—49I.

and to note that

1 J+1
assr'(r) =— — V4 Jsr(r) .

GO J
The error involved in the approximation (1.7), which

3 We adopt the notation of Ref. 2 (pp. 24-29) for the spherical
vectors YJL~ and Yz~&"), and we usej J(cur) to denote a spherical
Bessel function of order J.

168 22



RAYLEIGH SCATTERING

is of order (tea)' (where a is a characteristic atomic
radius), is seen to be completely negligible at optical
frequencies. The expansion coeKcients Czsr"(k) in Eq.
(1.4) are given by

CgM'(!'s) =4a i~—"(YgM'"&(k) e).

Corresponding to the multipole decomposition of the
individual terms of Eq. (1.3), there is, of course, an
expansion of the emission and absorption operators of
the F-electron system: (a) (b)

[i xel

A= g CJsr"(k)Assr",
JMX

2'a= Q Cgsr"(k')3 gsr",
JMX

(1.9)

FIG. 1. (a) The coordinate system X', F', Z' is attached to the
vector k' (which is in the X, Z plane); the F' axis is parallel to the
I' axis. (b) The angles O~p and 0&1 occurring in the diBerential
cross section are the angles of ~ and k)& ~ measured relative to k'.

with
N

~ JM Z re a Jsr (rj) ~

Eg—co—E„
(1.12)

The operators AJM~ are related simply to the multi-
pole moment operators Qzsr" of the atomic system':

(J(2J+1)) '" (2J'—1)!!
Qz~"= —ill A Jsr"*. (1.13)

l J+1 &

As es ~ 0, one easily shows from (1.13) that

The matrix element M therefore decomposes as

CJM (&)Cj'sr' *(&')M~sr~, z sr v, (1.11)
JMX, J'M'X'

where
(gl~~ ~ '*l~}&~l~~~"lg&

M JMX; J' M'X'

is the 2J-pole electric or magnetic4 susceptibility of the
atom.

In the following section, we will reduce Eq. (1.11) to
a form suitable for the evaluation of the Rayleigh-
scattering cross section for closed subshell atoms in
terms of the susceptibilities Xs~"(co). Equation (1.12)
is brought into a form appropriate to the numerical
evaluation of the susceptibilities of arbitrary multi-
electron atoms in Sec. III. In Sec. IV the formulas
developed in Sec. III are shown to reduce to their
familiar forms in the nonrelativistic limit. Some
numerical results for the electric and magnetic suscepti-
bilities of the noble gases are presented in Sec. V and
compared with previous calculations as well as with
experimental values.

II. RAYLEIGH SCATTERING OF
POLARIZED PHOTONS

Choosing the coordinate system illustrated in Fig.
1(a) and making use of the explicit expressions for
Czz"(k) given in Eq. (1.8) we can write the Rayleigh-
scattering matrix element for an atom with closed
subshells as

M=M. e e, '+M„e„e'„, (2 1)e N

&glQ~s'Ig}= (gl Q r;~PJ(cosgg )lg}, '

(4x)'i'
(1.14)

where

00

M.=-', P (2J+1) IP,— — IX&'
z=t l J'(J+1)3

r Pz r+Pr+r )—+ I
—,'(Pz t+Pz+r)+ — IXz',

i 2J(J+1)

(glQr~'lg&= (gls & Lr &«j~lg}
(4s.) 'is

Averaging M JMq., J ~ q over the angular-momentum
orientations of the atomic ground state we obtain

M.=s 2 (2J+1) I s(PZ-t+P~+r)
J~l

47ra J(2J+1) I (2J 1)llj
P~ t'+P~+r'l (-+ IXg'+I Pg —

!Xmas . (2,2)—
2J(J'+1) l l J(J+1)i'

X~2r (~)4'J'4fM'4x' g (1 13)
where

In Eqs. (2.2) Pz (cos8) is an associated Legendre func-

4 The diamagnetic susceptibility of atoms is determined from
the "A"' term in the interaction Hamiltonian by a 6rst-order
perturbation calculation in nonrelativistic theory. In a relativistic
theory there is no A' term and the corresponding contribution to
xso is contained in the second-order matrix element (1.16).

&glQ-"*I &( IQ.-"lg&-

(g I
Q~~" I ~&(~ I

Q~~"*
I g&

X,~"(co)= —P
Eg+ro E—
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tion (E~ Pg——'), normalized as in Ref. 2. To simplify
the notation somewhat we have used

I
XJ +JNx; JMx ~

4m.
(2.3)

If we square 3f and sum over the polarization states of
the outgoing photon we obtain an expression for the
Rayleigh scattering of polarized photons,

do—=o,'(~M, (' cos'P+ ~M [' sin'P)
dQ

(2.4)

Integrating (2.4) over the outgoing photon directions,
we obtain a general formula for total cross section,

a(co) =2m.n'g (2J+1)~Xg"('. (2.5)

At optical frequencies, by far the most important
contributions to Eqs. (2.4) and (2.5) arise from the
dipole terms J=1. In the dipole approximation

M, =2/cos8 Xi'+Xi ]&

M„=-,')Xi'+costt Xioj, (2.6)

III. RELATIVISTIC THEORY OF ELECTRIC
AND MAGNETIC SUSCEPTIBILITIES

We are interested in obtaining expressions for X~~ (co)
which are amenable to more detailed study. To this
end, we approximate the atomic states ~g) and ~N) by
antisymmetric relativistic Hartree-Fock-Slater (RHFS)
product wave functions. The individual electron orbitals
satisfy single-particle Dirac equations with a self-
consistent potential. This potential is constructed by

6T. V. George, L. Goldstein, L. Slama, and M. Yokoyama,
Phys. Rev. 137, A369 (1965).

and therefore, using expression (1.15) to relate Xii to
the dipole susceptibilities X2i(co), we find

do—= '(sin'0, LX, (+)j
dQ

+2 cos8 X2'(cy)X2'(co)+sin 0'o
t X2'(~)1'} (2.7)

The angles 0+i and 0~0 are illustrated in Fig. 1(b). Since
for the noble gases the magnetic susceptibilities are
about —10 ' of the electric polarizability (at optical
frequencies), Eq. (2.7) reduces to the first term only,
which is the well-known classical formula for Rayleigh
scattering.

It is amusing to note that an interference of the type
expressed by the second term in Eq. (2.7) has been
observed' recently in the Rayleigh scattering of polar-
ized light from a Ruby laser (6943 A) on the noble gases
Ar and Xe. Because of the small size and sign of X20(co)

it is apparent that eRects of the observed magnitude
and sign are not explained on atomic grounds.

H
~
e~nz) = e„„~Nzm),

H=n. p+Pm+ V(r), (3.1)

where V(r) is determined by the self-consistent pro-

'D. Liberman, J. T. Waber, and D. T. Cromer, Phys. Rev.
137, A27 (i965).

7 A. Dalgarno, Advan. Phys. 11, 28i (i962).
Y. M. Chan and A. Dalgarno, Proc. Phys. Soc. (London) 85

227 (i96i).
M. Karplus and H. J. Kolker, J. Chem. Phys. 39, 2997 (i963).

«0 C. Cutherbertson and M. Cutherbertson, Proc. Roy. Soc.
(London) A135, 44 (i932).

making the Slater approximation for the exchange term
and by spherically averaging the direct part of the elec-
tron-electron interaction (a procedure which is of
course unnecessary for atoms with completely closed
subshells). A technique for evaluating RHFS wave
functions numerically is described by Liberman, Waber,
and Cromer. '

The advantages of using relativistic orbitals in the
expressions for X2~"(&u) are twofold First, the fine
structure of the atomic levels is included automatically
in the calculation; and second, the individual electron
excitation energies are determined much more ac-
curately for heavy atoms using the relativistic theory.
The advantage of using the Slater variation of the
Hartree-Pock method is mainly its simplicity. It should
be noted, however, that application of simple relativistic
Hartree (RH) wave functions (dropping exchange terms
entirely) leads to complications similar to those pointed
out by Dalgarno7 in connection with the nonrelativistic
theory. These complications are associated with the
fact that the individual terms connecting two occupied
orbitals in Eq. (3.5) do not cancel in a RH calculation,
as they must according to the Pauli principle.

We are of course neglecting all eRects of electron-
electron correlation. The importance of these effects
can be seen by comparing a nonrelativistic calculation
of the electric susceptibility of He including correla-
tion' and a corresponding calculation neglecting corre-
lation with the experimental measurements. " Since
correlation eRects are less important in heavier atoms
we should expect our calculations to agree with experi-
ment more accurately as the atomic number increases.
We 6nd, however, an increasing discrepancy in the
electric susceptibilities with increasing atomic number,
whereas the corresponding magnetic calculations agree
with experiment more or less uniformly for N=2 to
54. The peculiarity is probably explained by the fact
that the magnetic susceptibility (in the dipole approxi-
mation) is sensitive to (r') for the one-electron orbitals
while the electric susceptibilities depend on the higher
moments of the one-electron orbitals as well.

I et us label the one-electron orbitals by a principal
quantum number e, an angular quantum number
~= W (j+-',) for j= l&-,' (where j and l are the total and
"orbital" angular momenta), and an angular-momen-
tum projection quantum number m. Each orbital

~
e~m)

is assumed to satisfy a central 6eld Dirac equation
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(.„„+~ —H) I nKrn+) =b,~"
I
nKjn),

(nKjn —
I (e „—to—H) = (nKjnlbgsj").Q,„(j')=p C(l-,' j; rn —p, p)x„V&,„„(r), (3.2) (3.9)

cedure described in Ref. 6. We use the representation The perturbations InKjn+) satisfyinhomogeneous Dirac
of Ref. 2, for the Dirac matrices and employ the angular- equations"
momentum eigenstates"

where

1 iG„„(r)Q„„(r)~
lnK~) =-

r Z„„(r)n „„(r)i

(d
( ..—m —V)G„„—

I

——Ib.„=o,
dr r

(3.3)

where C(Pts j; rn —P, P) is a Clebsch-Gordan coefficient
and X„ is a two-component Pauli spinor. With this
notation in mind, we may write

I nKjn) in the form

These equations (which are valid only if all of the atomic
electrons interact through a common potential) are the
relativistic generalization of the single-particle Schro-
dinger equations used to describe dispersion sects
nonrelativistically. "

Equations (3.9) can be reduced to a set of inhomoge-
neous radial equations and the corresponding matrix
elements can be written in terms of radial integrals. The
results of these calculations, which are given in Appendix
8, are summarized as follows:

(
IIl—+—G„„+(e„„+jn —V)F„„=O.

dr r
(3.4) to'~ &+1

2 (2j+1)
L(21+1)i!3s j nr

The expression for XJ" in terms of single-electron
matrix elements is XQ (2jt+1)E„„,„,, g"(to), (3.10)

1 (nKmlbgsj"*Iq)(qlbgsj InKjn)
X—

4~ num q en a+os ee

(nKjnl b gsj"
I q)(q I

by~'*
I
nKtn)

X—
6~ @ M 6q

where

&ns, cg, z (&) &jzjiiiizi&Pns, Ly, z (&)+Jna, sg, z ( &)j y

(3 5) f K+Ki
+ma, ay, J (&)=AjJj gII l J'—1 ig I

It is possible to put Eq. (3.5) into a form more suitable
for detailed analysis by introducing the positive and
negative frequency perturbations to

I nKrn);

Iq)(qlb, ~ InKm)
lnKtn+) =P

en~+& ev

(nKmlb, ~&l q)(ql
(nKjn (3.7)

from which it follows that

1
X~"=—p L(«»lbJM"*l»Kjn+)

4~ num

+(nKjn —Ib&sj"e lnKjn) j (3 8)

"M. E. Rose, Jjlewentary Tlzeory of Angular Momentum (John
Wiley R Sons, Inc. , New York, 1957).

where q refers collectively to the quantum numbers of a
one-electron intermediate state (the corresponding
energy e, may be negative as well as positive), and where
bJ~~=a. a+~~. The sum over m is to be interpreted as
an average for subshells wihch are partially filled.

As shown in Appendix A, the electric matrix element
X~' of Eq. (3.5) can be rewritten in terms of @qsj,
making use of the approximation (1.7). With this in
mind, we may set

f'1+1)'"
br'er'= tK azsj') b~sj'=

l
I gz~ (3.6)

Xl J.„., z'(~)+J...., ,s'( —to)j, (3 11)

&na, jfI,J' dr[Knz, z"~err, ai, s"+~nc,s Twx, zy, z 7 ~

The coefficients AjJ j, defined in Appendix 8, Eq. (811)
are listed in Table I. The factor II&z&, is defined by

11~~i,——1, /+I+it even

=0, i+J+li odd. (3.12)

K1)
(e„„+to—jn —U)S„„,„,g"————IT„„,„,,g"=K„„g",

dr r
'~ Similar equations have been considered in connection with

the coherent scattering of hard photons by E-shell electrons in
heavy atoms by G. E. Brown, R. E. Peierls, and J. B.Woodward,
Proc. Roy. Soc. (London) A227, 51 (1954)."A. Sommerfeld, Atombau und Spek'trallinzen (Friedrich
Vieweg und Sohn, Braunschweig, 1951), Vol. II, Part 2, p. 360.
A comprehensive account of the nonrelativistic equations is given
in the review paper of Dalgarno (Ref. 7l, which contains an exten-
sive bibliography on the general subject of atomic polarizabilities.

The factor AjJj, which vanishes unless
I j—Jl ~ ji

~ j+J guarantees angular-momentum conservation
between the photon multipole, the unexcited electron
orbital InKm), and the perturbed orbital InKjn&); the
factor II~J~& ln a similar way takes account of parity
conservation.

The functions 5 and T which are radial components
of Eqs. (3.9) satisfy
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TABLE I. Angular-momentum coupling parameters A(jJj&) for the jj coupling scheme. Symmetry relation: A(jJj&) =A(j&Jj).

1 6
1./6

1/60
1/10

1/210
1/14

1/504
1/18

1/990

1/10
1/10

1/20
1/70
9/140

4/105
1/210
1/21

5/168
1/462

4/165

1/14
1/14

9/140
1/35
1/84
1/21

4/315
1/42
1/231

3/616
3/154

12/5005

1/18
1/18

1/21
5/252
1/99

1/63
5/462
4/231

9/616
9/2002

9/715

1/22

5/132
1/66

25/693
5/462
4/429

75/8008
3/286

3/715

9/286

25/858
7/858

25/3432
7/858

16/2145

7/286

245/10296
7/1287

784/109395

49/243

49/121

( lf Kr)
[s

+ (e +n(0+mU) ,T—n, , „,, g" Ln„,g", (3.—1—3)

where we have approximated T by

1 d Et)
1— + P' 1

2rN lhr r j (4.2)

with

(It nnJt , (J nn) (+nc J It (Gnn)
and I

'
/=r I

/
(314)

kL„,,g'j kG „] 4L „,J') (F„,j
Solutions to Eqs. (3.13) which are physically admissible
must vanish at both r=o and r= , for frequencies
below the lowest photoelectric threshold.

From Eqs. (3.10) and (1.15) we obtain a general
expression for the susceptibilities

Z (2+1)
2J+1 nz

Xg (2j1+1)Rng nr, g (ol) (3 15)

The degeneracy (2j+1) should of course be replaced

by the actual number of electrons in any incomplete
atomic subshell.

Some numerical studies of Eqs. (3.12) will be given
in Sec. V; first, however, we will present the nonrela-
tivistic limits of the above equations to facilitate com-
parison with other theoretical work.

Since T and I. are small compared to 8 and E, we may
write

1—J77 ff, f(1,J drx-n, a, J ~nz, xl, z (4.3)

Inl, 1+1(re)=Jnl, 1+1,1 (Ol)

Jn, l 1l 21—(—el),—=—Jn, ,—l—1,1+1,1 (le) &

Inl, l—1(el) Jnl, l 1,1 (&)—
Jn, l 1, l, l (Ol) ——Jn, l,—l—1,—1 —(M) . (4 4)

If we make use of the analytic expressions for A;„„

A; i;+g=
4(j+I)'

For the sake of simplicity let us consider only the
dipole term 7=1.Six cases then arise for 6xed e and l,
corresponding to the two values of s(l, —I—1) associated
with j=1&2, and the three values of ~& ———a, I(:+1 al-
lowed by the dipole selection rules for a fixed E. The
differential equation (4.1) depends only on, I and
I&= l&1; therefore in the nonrelativistic limit only two
distinct values of the radial integrals (4.3) occur:

IV. NONRELATIVISTIC LIMITS

A. Electric Equations (0 = 1)

In the nonrelativistic limit, F „(L,,„,g ) is negligible

compared with G„„(E„„,J'), and Eqs. (3.13) reduce to
an inhomogeneous radial Schrodinger equation

1 ( d' si(lri+I))
(e„„+el —2rl —U)+

2m adrs r' )
X&nn, nl, z =&nn, z 1 (4.1)

(4 5)
4(j+1)(2j+1)j

and sum Eq. (3.13) over the six possibilities mentioned
above, we Gnd

x'( )=Z -( ),

~-1(~)=—a~HI+1)(1-1,1+1(~)+I-i.1+1(—~))
+I(1,—( )+I . —(—))j (4 6)

As ol —& 0, Eqs. (4.1)—(4.6) reduce to the equations
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for the static polarizability discussed, for example, in
Ref. 7. One implicit difference between the above results
and the corresponding results of Ref. 7 is our use of
the HFS potential and wave functions which include
exchange effects in a simple and consistent fashion.

B. Magnetic Equations (X=0)
Since the roles of F„„and G„„in the inhomogeneous

terms of (3.13) are now reversed, we must proceed in a
slightly different manner. Let us again consider J=1
and approximate T by

&ne, ei, i I + !&ne,er, i +rGoe (4 7)
2mtdr r I

where he„„=e„„—e„„~is the 6ne structure separation
between the levels n, tt and I, —tt—1. (Both of these
levels belong to the same value of l but have j values
differing by one unit. ) In a completely nonrelativistic
theory Ae „would vanish, but it is instructive to use the
slightly more general expression (4.13). Substituting in

Eq. (4.8), we find

1 1
( '&-+ — (4 14)

2m ms(Ae„„+co)

If hs„„=0, the second term in (4.14) would again cancel
on summing over +co.

Using the easily derived identity

Making use of the nonrelativistic limit of Eqs. (3.4) for
F„„and G„„,we Gnd

Q (2jr+1)-', (tti+tt)'Ati;, ——1, (4.15)

xi(t'ai+ 1))
!(e.„+to—m —V)+

where the summation is over Ky =K, —K&1, one may sum
the 6rst term in each of the expressions (4.11), (4.12),
and (4.14) to give

(1—tt—t'ai)

XSng., 1'— (4 8) Z (2j+1)(r')-
6m e.

(4.16)

Substituting the approximation (4.7) into the expres-
sion for J „,„,,~0, we obtain

0J,,„,,j-
28g 0

drgrsG„s

+(1—tt —tti)S „,„,, isG„„g. (4.9)

Three possibilities arise in Eqs. (4.8) and (4.9) corre-
sponding to the magnetic-dipole selection rules Ky=K,

K+1:
(i) t'ai

——tt. It is trivial to verify that the desired
solution to Eq. (4.8) is

(1—2')0—Sn...,x = ~ng p (4.10)

from which it follows that

1 (1—2')'
&ne, c,i = (r )oe+

2m
(4.11)

where ( ) „represents the expectation value computed
in the one-electron state, tt, tt. The second term in (4.11)
has no effect on the magnetic susceptibility since it
cancels on summing over ~ and —eu.

(ii) t'ai
———tt+1: In this case the differential equation

(4.8) becomes homogeneous and has only the solution
S~„,+~,~'=0, so that

1
,—„~i,i = (r) „.

2m
(4.12)

(4.13)

(iii) t'ai= —tt —1: Equation (4.8) now has as its
solution

This is the well-known Van Vleck equation for the dia-
magnetic susceptibility of an atom. "

There is, of course, a frequency-dependent addition
to (4.16) which arises from the second term of Eq.
(4.14). Making use of the analytic expression for At»+i
given in (4.5) one shows

C
Xso(to) =

6m' ot (5„t)s—tos

(1+1)d„t—ld„, i i

2l+1
(4.17)

where h„i=e„, t i—e„,t represents the (positive) fine
structure separation, and d„,„represents the number of
electrons in the subshell m, ~=I, —t—1. For a closed

(N, l) shell, the numerator of Eq. (4.17) vanishes;
only unfilled shells therefore contribute to the sum. As
co —+0, the expression (4.17) reduces to an already
known result of nonrelativistic quantum mechanics. "

V. EVALUATION OF THE DIPOLE
SUSCEPTIBILITIES FOR THE

NOBLE GASES

To demonstrate the utility of the technique outlined
in Sec. III, we present some numerical results for the
electric- and magnetic-dipole susceptibilities of the noble
gases He, Ne, Ar, Kr, and Xe.

The radial RHFS wave functions G„„and F„„ofthe
various atomic subshells are generated by solving
Eqs. (3.4) numerically, using the methods outlined in
Ref. 6. Some measure of the validity of the RHFS wave
functions for describing atomic properties is provided

'4 J. H. Van Vleck, Electric and Magnetic SusceptiNlities
(Oxford University Press, Oxford, 1932), p. 275."R.Becker, Qaaatam Theory of Atoms aid Radiation (Blaisdell
Pgbljghjns Co., New York, 1965), Vol. II, p. gg4,
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TABLE II. Magnetic susceptibilities X2 of the
noble gases at &v =0 (10 ' cm'/mole).

TABLE III. Electric susceptibilities of the noble gases
at co =0. (HF =Hartree-Fock. )

Nonrelativistic
Theory Semirel. theory Experiment'

Theory

Nonrelativistic theory
Uncoupled Coupled

H-Fa H-F Experiment~
He
Ne
Ar
Kr
Xe

1.88
7.02

19.12
28.82
45.28

1.88
7.10

19.17
28.83
45.05

1.95
'7.09

19.17
29.06
43.93

2.02+0.08
6.96~0.14

19.32
29.00~0.40
45.5 +0.7

He
Ne
Ar
Kr
Xe

1.486
2.801

15.09
23.43
40.45

1.485
2.760

15.66

1.323b
2.3660

1.383
2.667

11.08
16.73
27.25

a Computed using the nonrelativistic formula (4.16) of the text with
(r2)~K evaluated using the RHFS wave functions.

b K. M. S. Saxena and P. T. Narasimhan, J. Chem. Phys. 42, 4304
(1965). Calculated using the Van Vleck formula with (r2) taken from F.
Herman and S. Skillman, Atomic Structure Calculations (Prentice-Hall,
Inc. , Englewood Cliffs, N. J., 1963).

o C. Barter, R. G. Meisenheimer, and D. P. Stevenson, J. Phys. Chem.
64, 1312 (1960).

by the close comparison of the calculated one-electron
binding energies with their experimental values.
Inspection of the tables of Ref. 6 shows that the outer
subshells, which contribute most importantly to the
present calculation, have the least accurately deter-
mined energy values. This fact, of course, has a reQection
in the evaluation of atomic susceptibilities.

For the special case of He, a RH, rather than a RHFS,
ground state is used since the Slater average exchange
term seriously underestimates the He binding energy.

The numerical methods used to solve the inhomoge-
neous equation (3.13) are similar to those used in Ref.
16, to which the reader is referred for greater detail.

One theoretical difficulty should be mentioned before
passing on to the results of the calculations. In the
special case K=K] which is allowed for example by the
magnetic-dipole selection rules, the desired solutions
to Eqs. (3.13) are singular in the co= 0 limit. To remedy
this difficulty we set

+Pl, K, KJ,J ~e, z,c'I, J +ns, J Ger/& &

T„„,„,, g" T„,„,, g" C„„——, g"F„„/a), —(5.1)
where

The functions S and 1satisfy Eqs. (3.13) with

+nK, J ~ +nK, J ~nK, J GnK )

LnK, J ~ LnK, J CnK, J ~nK p (5.2)

and one easily verihes that S and T are regular as
&o —&0. Since the added terms behave as 1/&o, they
cancel identically on summing over &~: it is therefore
sufhcient to replace 5 and T by S and T in the radial
integrals of (3.11).

We present the results of our evaluation of the static
magnetic-dipole susceptibilities of the various noble
gases in Table II. It can be seen that the numerical
results of the present calculation agree well with experi-

"F.C. Smith and W. R. Johnson, Phys. Rev. 160, 136 (1967).

' M. Yoshimine and R. P. Hurst, Phys. Rev. 135, A612 (1964).
bA. Dalgarno and J. M. McNamee, Proc. Roy. Soc. (London) V7, 673

(1961).
H. D. Cohen, J. Chem. Phys. 45, 10 (1966).

d These values were determined from the zero-frequency limits of the
dispersion formulas for the index of refraction given in Ref. 10.

mental values for all of the noble gases He to Xe. In
the second column of Table II, we list the results of a
corresponding calculation of the susceptibilities using
the Van Vleck equations. The required values of (r')„„
are computed, using the RHFS wave functions. The
close agreement between the two determinations serves
as a measure of the smallness of relativistic effects in the
outer atomic subshells.

The extent to which inner shells are important in
magnetic susceptibility calculations is illustrated by the
Kr results, where we have the following partial con-
tributions:

)ts'/as'= —0.38X10 ',
= —0.23X10 ',
=—0.~5X10 ',
=—2.64X10 4,

= —3.22X10

E shell

I.shell

M shell

E shell

Kr atom.

(5.3)

It can be seen that 82% of the susceptibility is con-
tributed by the outer E shell, while a completely
negligible fraction (0.012%) is due to the innermost E
shell. Similar results are, of course, obtained for
Ar and Xe.

In Table III static electric susceptibilities for the
noble gases are given. These results are compared with
calculations carried out using the nonrelativistic un-

coupled Hartree-Fock approximation. For He and Ne
the present results agree well with nonrelativistic
calculations; our value for Ar is somewhat smaller than
the corresponding nonrelativistic result.

The tendency of Hartree-Fock calculations to over-
estimate seriously the electric susceptibilities of heavy
atoms is seen to persist even in a relativistic theory. In
view of the known sensitivity of the electric calculations
to the choice of atomic wave functions, the numerical
results could perhaps be improved by employing the
more general coupled RHF equations' in the calcula-
tion, rather than the RHI'S equations used here.

The relative contributions of the inner shells to the
static electric susceptibility of Kr are given in the
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TABLE IV. Dispersion (in units of ao ) of the electric susceptibilities of the noble gases.

a)(eV)

0
I
2
3

5
6
7
8

10

He
Theor. Expt.'

1.49 1.38
1.49 1.39
1.50 1.39
1.51 1.40
1.52 1.42
1.55 1.44
1.57 1.46
1.61 1.50
1.65 1.53
1.70 1.58
1.76 1.63

Ne
Theor. Expt.'

2.80 2.67
2.81 2.67
2.82 2.68
2.84 2.70
2.87 2.73
2.92 2.77
2.97 2.82
3.05 2.88
3.14 2.95
3.26 3.03
3.41 3.14

Ar
Theor. Expt. '
15.09 11.08
15.15 11.12
15.35 11.24

Kr
Theor. Expt.'
23.43 16.73
23.56 16.81
23.96 17.04

Xe
Theor. Expt.~

40.45 27.25
40.78 27.43
41.81 27.98

Computed from the dispersion formulas for the index of refraction given in Ref. 10.

following list:

Xs'/ass=+0. 50X10 ',
=+0.13X10 '
=+0.26,
=+23.70,

23.96,

K shell

L shell

3f shell

X shell

Kr atom.

(5.4)

TABLE V. Dispersion of the index of refraction H.

) (A)

9000
6000
4000
3000
2500
2000
1750
1500
1250
1240
1220
1210
1260
1180
1140
1100
1080
1060
1040

Present
calculation
104(n' —1)

2.2514
2.2861
2.3311
2.4399
2.6125
2.8158
3.3006
3.8910
5.4946

28.4601
38.7761

182.923—176.858—56.9915—22.6194—8.5757—3.7661—1.9962
0.0946
4.9555

Nonrelativistic
calculation'

2.2515
2.2862
2.3312
2.4400
2.6127
2.8161
3.3009
3.8914
5.4953

28.4741
38.8054

183.564—176.244—56.9245—22.6059—8.5721—3.7645—1.9913
0.0976
4.9600

' M. Karplus and H. J. Kolker, J. Chem. Phys. 39, 1493 (1963).

Here, it is clear that all of the inner subshells are
unimportant; 98.9% of the susceptibility is due to the
E shell alone.

Table IV compares values of the frequency-dependent
electric susceptibilities with values derived from the
experimentally determined dispersion formulas of
Cutherbertson and Cutherbertson. ' For He and Ne,
one sees that the relative error stays approximately
constant in the range au=0 —10 eV. It follows that the
"oscillator frequency" in a two-parameter dispersion
formula is considerably more accurately determined
than the corresponding "oscillator strength. " For Ar,
Kr, and Xe only the values of Xs'(ce) at co=0, 1, and
2 eV are given.

Z4X '(0)=44997as', for Z=1
= 2.9722ao', for Z= 80,

whereas nonrelativistically

Z4X, '(0) = —;as', for all Z,

(5.5)

Z being the nuclear charge. The deviations from the
nonrelativistic values are seen to be of O(nZ)', typical
of relativistic 6ne structure effects.

From the numerical results of this section, we may
draw the following conclusions:

(a) The calculation of magnetic susceptibilities using
the present techniques give reliable values even for the
heavier elements. For the lighter elements, there is
little reason to choose between the three calculations
presented in Table II. The relativistic and semirelativ-
istic calculations for Xe both agree with experiment
somewhat better than the nonrelativistic values of
Saxena and Narasirnhan. It is therefore suKcient to
use the semirelativistic formulation (Van Vied formula
with (r ) „evaluated relativistically) to obtain reliable
magnetic susceptibilities for the entire range of elements
considered.

(b) Electric susceptibilities calculated using the
present relativistic techniques agree with the available
nonrelativistic uncoupled Hartree-Pock calculations
and both seriously overestimate X2' for heavier ele-

Table V lists values of (e'—1)X10' determined for
hydrogen, using the present techniques modiied to the
extent that V(r) is chosen as a Coulomb potential and
G „, F„„are taken to be K-shell Coulomb wave func-
tions. The agreement with a previous nonrelativistic
calculation is apparent for large wavelengths. Near the
resonant frequency, the present results lie below the
nonrelativistic values, a reQection of the fact that the
actual resonant frequency is higher than that given in
a nonrelativistic calculation.

It is interesting to compare the static electric sus-
ceptibility for hydrogenlike ions determined from the
present calculation with the corresponding nonrelativ-
istic values which can be determined analytically. 7 We
find, for example,
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ments. While the tendency to overestimate the sus-

ceptibilities is removed in the nonrelativistic coupled
Hartree-Fock calculations, the relative agreement with

experiment is only slightly improved for He and some-

what worsened for Ne. As mentioned in the text,
precision values of the electric susceptibility for He
have been obtained using nonrelativistic wave functions
including correlation. It is clear that substantial
improvement of the electric-susceptibility calculations
can be accomplished by modifying the existing non-

relativistic theory rather than including relativistic
sects.

ACKNOWLEDGMENT

The authors wish to acknowledge the advice of Dr.
F. C. Smith on the numerical aspects of the present
problem.

APPENDIX A

We will show that it is possible to replace e.aJ~' by
b»'=

I (7+1)/Jj'" )QI)»in the one-electron matrix
elements of Eq. (3.5). Using the approximation (1.7) it
follows that

&q &ng

(q la a»'I num) =z ((1+1)/J)'~

X(qly»Inxm), (A1)

where we have used the commutation relation

states q to give

(-«mls», b» jlnKm)

1
+—(num I [(H)by~'*5, b»']

I num) . (A5)
CO

The first commutator vanishes trivially, while the
second commutator can be shown to vanish by using
Eq. (A2) to evaluate I H, b»'~].

1~zS„,„,(r)Q„,„,(r) ~
EKE

~,m& r(q„, ,(r)Q „, ,(r)i

and expand

1 zz„,„,(r)Q„,„,(r')~b»" lnxm) = 2—
a))))) r g )))))(r)Q g)))))(r) i

(B1)

(B2)

The inhomogeneous Dirac equations (3.9) then reduce
to radial di6erential equations

t) d
(6))g m+z)) V) @gz))))

I I
q g))n) = x)))N)) )

&dr ri
d Ky)
+ ISC ))))+)(6 ))+))m+N V) KL))))) 2 ) ) . (B3)

dr ri

APPENDIX B

We wish to give further details on the reduction of
the matrix element Xz" of Eq. (3.8). To this end let
us write

CH)e»j= ~ &y»)

which is valid for a one-electron central field Dirac
Hamiltonian II.

Substituting (Al) into the expression (3.5) for X~'
we find

fXn~) & (F„„(r))I

((v+1)J)ilm
' ' '

&a.„(r)i'
ZK Ky

(A2) In defining g, q", X, and 2 we have suppressed the
obvious dependence on J, M, X, m, ~, and m.

By inverting Eq. (B2) we find

1 (n~m I
b»'*I q)(ql b»'I num)

Xg' ———P
4g nam q

(num Ib»'I q)(q lb»'*l num)-
+Z„„,g ) (A3)

Gnat

CO

where bJ~' is defined above and where

R))))))),j—Q L(~„„—~,—~) (n~m I
p»*

I q)(q I 4J'i)r In)im)

~X„,„,' )G„„(r)~=P+1P) I'..., ,,z.j,(«) I I. (B4)
E 2'K))))) F„„(r)i

In writing Eqs. (B4) we have made use of the following
angular integrals:

d~~a1my I JM~atn

= Ig1m1, gm, JM

+ (e „—e,+co) (n)m I &&i)r I q) (q l)b»*
I num) g. (A4)

We can now show that E. „,J=0. This follows directly

by using the completeness of the set of intermediate

t)(25+1)(2j+1)) '~2

4)r(2ji+1)
XC(jJj,;', 0)C(j Jj,; mimi)n, z„, (B5)—
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where II~J ~, is de6ned in Eq. (3.12), and with

dQQ —mm& O' ' YJM Qqm

Kl+ K

~ng, gy, J drL+nn. J ~nn, nx.J
+L xT )

g (810)

(J(J+1))'"
(K+Kg)

Iagmz, —cm, JM ~ (86)
(J(J+1))'"

We can factor the m-dependent constants from each
side of the differential equations (83) by setting

( ~mimi ) Kl+K f ~an, ~l, J )
(J(J+1))'" kT „,„,, g'l

tt' g„m, 'l t'J+11 ' (&nKKQJ, ,

KImI, gm, JM ~

&azmg & J T x, any, z

If we define

(
&n. ,z') J" .(r))

, 1= j~(~r)
L„„g'1 G„,(r))
K

= jJo)r, 38
t

the functions 8 and T will satisfy Eqs. (3.13), with E
and L replaced by K and L.

With the aid of the integrals (BS) and (86) we End

(Kg+K)'
(nKmlbJM'*lnKm+)= g

m i J(J+1)
X (I-army, nm, ZM) Jnn, st, J'

J+1
(nKm l

bgM'*
l nKm+) = Q

gltnl J
X ( zyIgmggmM) &,nsnyZy (8, 9, )

We may now sum over nz and m~ using

tn, m j

(2j+1)(2j&+1)
(Igwgmg, nm, J'M)

where

Xh&g&&IIi~z+y g, ~& &
(B11)

C'(jJ'jg, —',0)

2j&+1
(812)

~I7.„,&"~

4 L„„,g"I (2J+1)!!L .,z"&
(813)

o)'J
y 'A

~ ne, aI.,J ~ na, aI, ,J
L(2J+1)I!]2

and obtain, the relations (3.10)—(3.14) of the text.
It should be mentioned that the analysis of the

second term in Eq. (3.8) goes through in a parallel way.
The entire e6ect of the second term is to give an additive
contribution to the first term with o) —+ —o) in the radial
di6erential equations.

It is possible to replace jz(&or) by (cur)~j(2J+1)!!
with the neglect of terms of order (&ur)'. With this in

mind we set


