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A new approach to transport theory in classical gases is described for a hard-sphere gas. The approach is
designed to incorporate collective effects (sound waves, mean free path) at an early stage. A pseudopotential
approximation to the N-body Liouville equation is given. By working only with symmetric distribution
functions, a simple analogy to a quantum-mechanical many-body Hamiltonian is possible. The linearized
Boltzmann equation is obtained as the “Hartree” solution to the single-particle states of this Hamiltonian,
Sound waves appear as long-wavelength “single-particle” excitations. Collective excitations include the
excluded volume correction to the velocity of sound. The “single-particle” solutions have the advantage
of introducing the appropriate long-range space-time correlations into the basis functions for higher-order
approximations. Because of the pseudopotential approximation in the present paper, there are short-range
divergences in higher orders of perturbation theory, but no apparent long-wavelength divergences.

I. INTRODUCTION

URING the last few years, considerable effort has
been made to provide a theory of irreversible
processes in classical gases. Basically, two proposals
appeared : the theory of Prigogine and Resibois,! based
on a resolvent solution of the Liouville equation, and
the Bogoliubov method,? based on a time-synchronized
solution of the BBGKY hierarchy. It has been shown
recently® that in the thermodynamic limit and at the
hydrodynamical stage, the latter is an exact conse-
quence of the former theory, so there seems to be only
one kind of theory.

Although one might have expected good results from
both of these formulations, there are also strong argu-
ments raising doubts about their validity. First of all,
the fundamental synchronization assumption? of the
Bogoliubov expansion is set in a concise mathematical
form but has not been fully explained in a physical
sense. Furthermore, all the formulations involve one or
several power-series expansions, the convergence of
which has never been proven. There are instead proofs
that thermodynamic transport properties are not
analytic at zero density.*

Collective modes have not so far been a part of the
above theories and worse, there are some elementary
results of collective effects that these theories will
never yield. Consider a gas in three dimensions. The
mean free path of long-wavelength phonons, which are
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damped by viscosity and thermal conductivity, is
proportional to the square of the wavelength and to the
gas density. The degree of nonadiabaticity is propor-
tional to 22 When the contribution to the thermal con-
ductivity of these modes is summed® up to a wavelength
cutoff at the mean free path, a contribution proportional
to (V/Q)* to the thermal conductivity is obtained. The
usual methods of approach to transport coefficients
never obtain collective behavior—the dynamical prob-
lem solved is essentially the problem of a few atoms in
an infinite box—so cannot yield this contribution. [ Note
added in proof. L. Kadanoff has helpfully pointed out the
distinctions between transport of heat by elastic waves
in gases and in solids. ]

The divergence difficulties in transport-coefficient
calculations ordinarily encountered* involve incorrect
long-range space-time correlations. Physically, there
will exist long-range correlations, but they are in fact
due to collective modes (sound waves and entropy
fluctuations). These collective modes fill in all time
scales longer than the mean free time and prevent a
division into “macroscopic times” and the mean free
time. This is why even before going to such delicate
problems as the three-body collisions and the high-
frequency behavior, there is a need for a point of view
which can properly provide collective behavior and
collective excitations at low frequencies.

Our goal is to begin a theory which avoids the
Bogoliubov synchronization assumption, which escapes
power-series expansions of dynamical properties, which
accounts for low-frequency sound waves, and which
conceptually at least will insert the proper long-
range space-time correlations into the next higher
approximation.

In Sec. II, some useful properties of the linearized
Boltzmann equation are recalled. One cannot, of course,
find useful new results by assuming the validity of the
Boltzmann equation. The structure of the collision
term and of the solutions to this equation turn out,
however, to be basic to the mathematics of our point
of view. In Sec. III the collision pseudopotential and

8 L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon
Press, Inc., New York, 1958).
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the equation of motion of the system are derived.
Section IV sets up a useful formalism which converts the
problem to a typical quantum-mechanical N-body prob-
lem. In Sec. V a well-defined approximation (which
is in fact the exact analogous of the Hartree-Fock
approximation in quantum mechanics) yields some
expected results. The virtues and vices of the point of
view are discussed in the conclusion.

II. BOLTZMANN EQUATION

Let us first briefly review some fundamental results
on the Boltzmann equation which will be useful
hereafter.

In the absence of any external field, this equation
reads®

af(1)
ot

V= / dvid2 g1 G (f =17 (1)

with traditional notations, or after a temporal Fourier
transform:

iwf(1)+v.Vf<1,=/dvldﬂgl(g,ﬂ)(f’f’l——ffl). ()

Its equilibrium solution is the Maxwellian distribu-
tion function

fo=nQakT/m)=3? exp(—mv*/2kT) , 3)

where 7 is the density of particles, 7 their mass. For
simplicity we shall use a unit system such that

kT/m=1. 4)

For small departures f from equilibrium fo, one
obtains the linearized Boltzmann equation

of
—vvf- [ a2l @ fo(f+fi— 1), ()

which is an eigenvalue problem. The kernel gI(g,Q)
which appears in the right-hand side of (5) will be
called the Boltzmann collision kernel and will be
denoted by K.

It is well-known®® that there are only five eigen-
functions of the collision operator belonging to the
eigenvalue 0, namely, 1, v,, v, v;, (¥*—3%) times fo. This
is a consequence of the five mechanical conservation
laws during a collison (number of particles, energy,
and three components of the momentum). All other
eigenvalues are strictly negative. For hard spheres,
the first nonzero eigenvalue is finite; there is a gap in
the spectrum. If one considers the streaming term v-V
as small compared to the collision operator (in other
words, in the long-wavelength limit) one obtains sound
waves® by a degenerate perturbation treatment on these

6G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical
Mechanics (American Mathematical Society, Providence, R. I,
1963). : )
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eigenfunctions of zero frequency and gets the linear
dispersion relationship for the velocity of sound:

c= (1" (6)

If the solutions to (5) are computed to one higher order
in powers of (k-v), the damping of sound waves and of
the entropy fluctuations will result. The transport
coefficients can be identified from these damping coeffi-
cients. At this stage, it appears that (5) does not
contain any effect of the finite size of the molecules
because the collisions are local. The spatial structure
of the solutions is not adequately general. While some
collective properties (e.g., sound waves) result from
these equations, the transport coefficients computed
from this equation contain only single-particle prop-
erties. Most important, when higher-order calcula-
tions'? of the transport coefficients have been attempted,
they have not taken advantage of the solutions of
(5) and, in particular, of the collective behavior of these
solutions.

III. KINETIC EQUATION

As a first step, we derive the exact one-particle
equation for a classical hard-sphere gas (the radius of
the sphere will be denoted by 7;). We may hope it will
be a good approximation for an actual monoatomic gas
with a short-range repulsive potential and a cross section
equivalent to that of a sphere. We shall take for granted,
although this point has been considered as subject to
discussion,” that the evolution (in time) of the one-
particle distribution function has two separate causes:
the flow of independent particles which correspond
to the streaming term of traditional equations:
{iw+v-V}f, and the collisions which are described by
the so-called “collision operator” as in the first equation
of the BBGKY hierarchy.4

The collision term can be computed in the case of
hard spheres. A collision can be described in the follow-
ing way: the incoming particles have velocities v; and
vy; the contact point is located at r;+rou, and the
particles at r; and ro=1r;+27ou. The geometry is drawn
in Fig. 1. The velocities after the collision are then
v,* and vo*. The effect of such a collision is to cancel a
particle from the point (ry,vi) of phase space and to
introduce one at (ry,vi*), and similarly to cancel one
at (rs,v2) and to introduce one at (rs,vy*).

Given a particle at (r1,v1), let us count the number
dn of collisions it undergoes during the time interval

Fic. 1. The geometry of
a two-particle hard-sphere
collision.

7 1. Prigogine and J. Philippot, Physica 23, 569 (1957).
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dt. Separating contributions for given orientation of
u (unit vector along the centers) and given value of
vq, defining the angle ¥» as (u,v») and integrating, one
finds

dn=— /dVQdQ . 7’02‘02 COS\bz' f2 (I'],,Vl > l'1+21’0]l,V2)dt , (7)

where dQ is the element of solid angle and f, the
standard two-particle distribution function. So the
cancellation process contributes to the collision term
by the amount

E/dﬂd\'zroz'l)z costhg(rl,vl; l'1+21’ou,V2) .

In the same fashion, the contribution for the creation
process is

— / dQdvarevs cosyefa(r1, V¥ ; 11+ 270u,v5¥) .

By adding these up, the one-particle equation now can
be written

(to+v-V) f1= / dwdvarg?ve cosypel fa(ry, Vi, 1+ 270u,vs)

— fa(ry,vi*; 1i—2rqu,v2¥) ], (8)
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[Note added in proof. This equation has also been de-
rived by a rigorous coarsegraining of the Liouville
equation in S. A. Rice and P. Gray, Statistical Mechanics
of Simple Liguids (Interscience Publishers, Inc., New
York, 1965)].

An important difference from (2) comes from the
spatial dependence of the f.. If we neglect the variation
of f5 over the distance 27ou, and approximate it by a
product of one-particle distribution functions (Kirk-
wood’s principle), identifying 4a7¢® with the total cross
section we find exactly the Boltzmann equation.
Equation (8), while exact, is, of course, insufficient to
specify a solution for f; without a knowledge of f.

The next step is to write the N-particle kinetic
equation which contains (8) as a particular case, i.e.,
the equation of motion which leads to (8) exactly as the
Liouville equation leads to for the first BBGKY equa-
tion. Since the hard spheres interact only for
infinitesimal times, the N-body Liouville equation can
be integrated over the duration of a collision and the
forces eliminated. One obtains

N N N
wfn+2 v Vifn=3 2 2 Kiifn, ©

g=1 i=l7%j=1
where fx is the N-particle distribution function, V.fx

its gradient with respect to the ith position and K; is
defined as follows:

Kifn(- - xa,Vie e 15,95 - ')=2-I';7’02d9[‘vj cosy;d(tj—xit2rqu) fr (- - x5, Vir - 15 v50 - -)

—; cos:ﬁj&(rj—-r;— Zrou)fzv(' . 'l'-,;V,'*' . ’erj*‘ . ')+'D,' COS\&,‘&(Ij-—I;-l-Zrou)fN(' (RS CALLERS vA R )

where V is the volume of the system, u the unit vector
along the line of the centers (r;—r;), oriented from 7 to
7, Y= (u,v;), ;= (u,v;). An intergration of the kinetic
equation (10) over N-1 variables results in (8).

In the case of short-range but non-hard-sphere inter-
actions, this time integration cannot be rigorously done.
An additional parameter having to do with the duration
of the collision will then enter the problem. A first
approximation of the form of (9) to this case still seems
physically reasonable (particularly so for studies of the
origin of a “large time’” divergence).

IV. QUANTUM FORMALISM

When the kinetic equation is expressed as in (9),
K ; is symmetrical with respect to the indices ¢ and j.
Thus (9) has exactly the same structure as an N-body
Schrodinger equation, K;; standing for the interaction
between particles ¢ and j, fx standing for the wave
function, and the v-V term being a single-particle
“potential.” The “coordinates” of the sth particle are

—v; cosy b (tj—1;—2rqu) f (- - -xgy v - -1v) ], (10)

the vectors v;,r;. All the formalisms connected with the
mathematical structure of this N-body Schrédinger
(but not with its interpretation) can be readily applied.
First of all, provided we choose a complete basis in
the Hilbert space of distribution functions, (9) can
be usefully written in a second quantization formalism,
namely,

win=Hfy, (11)
with
H=3 ka2 ks 2t 2215
Xa"mlafakﬁ'la@alal A V! kals>
+3 2 P Zk'y 2ok 2 Zla Zl, PN
X a"u’aTakﬂlﬂTakvlvaksla
Xlkadas kls| Kl by dy; ko). (12)

a1’ is the creation (“boson”) operator correspond-
ing to the one-particle state

Jea=1/~/V)¢u(v) exp(ik-r). (13)
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When there is no ambiguity this state will be denoted
in short by a.

This algebra will yield only symmetric distribution
functions, but this is really no limitation. The choice of
the spatial dependence of the basis functions offers no
difficulty provided we enforce periodic boundary con-
ditions in a system of volume V. For the ¢, (v) it will
be convenient to take orthonormal [with weighting
function (2/)14 exp(v?)] eigenfunctions of the collision
kernel Kp which appears in the right-hand side of (5).
This choice for a weighting function makes the collision
matrix symmetric. The corresponding eigenvalue will
be denoted by w.. As we recalled previously, we know
that the first five are proportional to fo, v fo, vy fo, ¥z fo,
(12—%) fo, with eigenvalue 0. Moreover, although the
spectrum of (5) is not explicitly known, it has been
proven that all other eigenvalues are negative, from a
dense spectrum for repulsive potentials decreasing
faster than =% and that there is a gap between the
dense spectrum and zero.®

As far as the “matrix elements’ are concerned, they
display some selection rules. Those related to the
velocity indices /4, /g - -+ cannot be explicitly written
down since most of the ¢’s are unknown. It is obvious
that all matrix elements which violate wave-vector
conservation are zero.

Written this way, our equation is no more soluble
than the first one, so some kind of an approximation is
needed. Instead of a systematic expansion procedure in
powers of a suitable expansion parameter such as those
which have been exclusively used recently,* we prefer
a direct approximation on K. Thus, one escapes the
problems concerning the convergence of the expansions
and the physical meaning of the various terms, which
are still subject to discussion.

We proceed as follows:

The two-particle part of H reads

Hy=32% ‘Zﬁ) 2z g adagla,0ieB|K|v8).  (14)

The matrix element exists in our basis only in a
pseudopotential sense, and this limitation will be im-
portant in higher order. If we denote by ¢ (r,v) and
¥(r,v) the “field operators” defined by

Y(rv)=2 Zl ardt fre®,
k
‘//(r,v)=§ Zl @k, 1 k1,

(15)

we get
Hy,=3 / drdvdr'dviyt (r, v (v ,v) K19 (r,v )¢ (r,V') .

Since Kj» gives a nonzero contribution only where
|r—1'| =27, we may replace, in every term of H,,
8 H. Grad, in Proceedings of the Third International Symposium

on Rarified Gas Dynamics (Academic Press Inc., New York, 1963,
Vol. I, pp. 26 fi).
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Y (') by [¥f (r)+2rqu- Wt (r)7], and so on. Our approxi-
mation consists in keeping only the leading term (which
does not contain any gradient) and the terms which are
linear in gradients. The validity of this scheme will be
discussed in the last section.

As we noticed previously, replacing r’ by r merely
cancels the structure due to the size of the spheres.
So, the leading term of our approximation is exactly
that which would result from matrix elements of the
Boltzmann collision kernel Kg. We write it

HyO=333.2. % adlag'ayas(a,8| K5|v,0).
a B vy @

Keeping only this lowest-order term and using Kirk-
wood’s principle would yield the ordinary Boltzman
equation.

We next consider the first-order terms, which will be
denoted by H,W. Since the latter will be relevant be-
cause of its spatial (or wave-vector) structure and not
because of its velocity dependence, for simplicity we
shall assume we can replace in it v* by v/ and v'* by v
(exchange of velocities). This is equivalent to a collision
in the center-of-mass system. This procedure has been
carried only in order to get reasonable computations but
in principle it was not strictly needed. Once this has
been done, expanding all the y’s and y''s, collecting
terms, and replacing the field operators by their expres-
sion (15), one obtains

HyV=333 3 % adaga,0:G(B,7,0), (16)
here « B v B
Glkalakglg:kyly - kals)
2Nred
= - (k—k,g)&(k,,—i—k,g—k,—k,;)fdudvdv’
X (v cosp—1’ cosy)pa(v)ps(v)ey () (v') . (17)

We now will treat the N-body equation resulting,
iwfy={Hi+H;O+H,"V} fn, (18)
Hi=3% % adagla| —v-V|B),
a B
H2(0)=% Z Z Z Z aa*ag"aya;(a,m KB!7>5> y (19)
a B v b
HyW=33 23 2 aa'ag'a,asG(a,8,7,9).

a B v &

The higher-order gradient terms dropped in writing
(18) are multiplied by higher powers of the parameter
(particle size/particle separation).

V. HARTREE-FOCK TREATMENT

An approximate solution of (18) will be derived by a
Hartree-Fock procedure. The ground state of the system
is (ao)¥|¢), where |¢) is the vacuum and the aof
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creates a particle in the one-particle ground state,
namely a Maxwellian distribution function of velocity
at some specified temperature and uniform in space.
This is obviously an exact solution of (18) for w=0
(H; and H,® contains spatial gradients, so they give
zero when acting on the state and H,® has the Max-
wellian distribution as a zero eigenfunction).
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We now look for the excitations of the system by
examining the equation of motion of a creation operator
ax,i'. Since

aak,ﬁ/at= [a;,,ﬁH] , (20)

and H has already been expressed in (18) in boson
operators a., some elementary algebra (and taking the
wave-vector conservation into account) yields

Lar, it H]= 2 10kt Rola| V-V R D) = 52 ka2 ka2 by 102 152 10k e B Uy Qi kgt Ly
X{{B| Kz | (katkp—k) by; k1)+{0,8| K| k)l ; (kRat-kg—E),Ly)

+G[a: ﬁ) (ka+kﬁ_k)l‘77 k)l:H"Gl:a’ ﬁ: kyla (ka_l_kﬂ_k)l‘r:]} .

(21)

The Hartree-Fock approximation® consists in replacing the products a'a occurring in the bilinear term by their
expectation value in the ground state. We are then left with the following equation:

[ak,ﬁ,H:]= ; ak,mf<k,m| v-V | k,l)——w;ak,ﬁ .

(22)

This is exactly the equation which would have been obtained from the linearized Boltzmann equation by expanding
the distribution function in terms of the eigenfunctions of the collision operator. So the Uhlenbeck theory of sound®

is obtained as a lowest-order result.

The gradient terms of AV, although they have been introduced in the theory, do not affect this one-particle
picture. The point is that to improve the classical sound-wave theory, one should take into account the fact that

sound is a collective mode of the system.

Collective Excitations

A typical excitation of wave vector ¢ will be described by a linear combination of operators of the form ax.q,1'ax,m,

so the equation of motion:

(9/91) [ak+¢1.lTak.m:]= [@ktqi'ar,mH ]

(23)

is next investigated. Exactly as in the preceding treatment, H given by (19) is inserted into the commutation
relation, wave-vector conservation is used. Quadrilinear terms are eliminated by taking expectation values in the
ground state of all the products a'e occurring in a quadrilinear term. The final result is:

Lora'sar,mH 1= 2 1001 0,01 k. 108k | V-V | kyla) — 3 1,00+ ¢y @0 m (k) la| V- V| (k+0),1)+3 (0m— 1) Gt 0,110 m

F3 2 kel el 10kt 0,15 Va1 {0 D) (k- 0) (Rat-9) 255 Ry | K| kasla; 0)

—3(m)d(k){(katq)le; 0| K5 | (k+9),0; kala)} —% T 1.0kt 0,10 0k, mGL(k+q) Ja; 05 (k+q) 15 0]

+i 2 1a00+0,0"08,1.G (05 ks 5 05 Bla) 5 2o koo a2 150k Oka—a,16{0 (D3 (k+ ) [ Gk asla; kym; (ka—E) 155 0)

+G(kmla; k,m, 0) (ka+k>:lﬂ)]—6(m)a(k)[G(ka:la7 0; q’ly (ka_Q):lﬂ)_l_G(O: ka,la; q:la (ka_Q)ylﬂ)]} . (24)

A feature of this equation is that it displays a coupling between excitations of different wave-vector indices.
Also, the gradient terms appear in the “diagonal terms,” that is to say between excitations of same wave-vector
indices. This structure is exactly that which one gets when dealing with plasmons in an electron gas® and, as a
matter of fact, our treatment of (24) is much like the standard theory of plasmons.

Most of the axi4'ax are coupled only to operators of same wave-vector indices. Only excitations of the type

aq'a0 and ao'a_, exhibit coupling with all others. So the eigenvalue problem is not changed by restricting considera-
tion to these last two classes of operators and forgetting the others (RPA). We obtain:

[eq,'a0,H]=Y 1,800 00(qba| —V-V|g ) —wi8g,' 00—} X 1,80,1,'00G (g, ; 0; g,)}; 0)
— 1 21.00'0-4,,G(0;0; ¢,0; —q)la)[a0'0—g,m, H =2 1,80"0—0,1,(qm | ¥+ V| g,la)F 0mo'a—g,m

+3 2 180'0-4,1.G (05 —g,m; 05 —g,la)+12"1,80,1,70G (g,; —g,m; 0; 0).

In the long-wavelength limit, this system could be
solved to any order of perturbation theory (provided
the perturbation expansion converges—we shall come
back to this particular point in the next section).

8 D. Pines and P. Nozieres, The Theory of Quantum Liquids
(W. A. Benjamin, Inc., New York, 1966).

(25)

Unfortunately the w’s and the ¢’s are now known,
except for the first five of eigenvalue zero. The only
thing which can be explicitly computed is the first-
order result for the tenfold zero degeneracy (since there
is a gap between 0 and the dense spectrum, a degenerate
perturbation treatment is valid).



198 J. J.

I fo, vzfo, vyfo, vefo, (1—%)fo, are chosen respec-
tively as ¢1, ¢2, @3, ¢, ¢5, the matrix of the above
system reads (after the matrix elements have been
computed, and assuming q is parallel to the x axis):

s

(0 4 0 0 O 0O —C 0 0 0
4 0 0 0 B—-C 0O 0 0O
0O 0 000 O O O0OO
0O 0 000 O O O0O0O
0800000000(26)
0O C 000 O 4 000
c 0 000 4 0 O00©O0C
0O 0 000 O O O0©O00UO0
0O 0 000 O O O0O0OO
o 0 000 O B 00 0
where
47I'N703
Axiq(l— ),
3V
2\1/2 47 N7y
oo (52,
3 3V
7I'N7'03
C=%iq
3V

The eigenmodes of the system are now some com-
binations of a.a and a¢fa_, For the eigenvalues
(eigenfrequencies) one finds:

0 (sixfold)

5 4w Nrd\ /2
:i:il:—(l— >} (each twofold). (27)
3 3V

Reintroducing the dimension factor m/kT and
denoting by ¥V, the volume of the particles (or covolume)

Vb= %TN?’OS,

(28) is obtained for the dispersion relation of sound

waves
12 SkT Va\ 7?2
SOl
q 3 m Vv

This is exactly what one would find by thermo-
dynamic arguments, starting from an equation of state

P(V—Vy)=NkT

(28)

with a specific heat ¢,=4N; and the classical formula
for the velocity of sound ¢= (Xp)~1/2 (X being the isen-
tropic compressibility and p the density).

The usual solutions corresponding to zero eigenvalue
are also obtained. They are the entropy fluctuations at
constant pressure. As for the single-particle excitations,
these collective excitations will be damped when calcu-
lations are made to one higher power of g.

HOPFIELD AND A. ]J.

F. BASTIN 168

VI. CONCLUSION

Let us briefly summarize what has been done. We
have started from an N-particle equation of motion
(9) and (10) which differs slightly from the Liouville
equation for short-range potentials, but is equivalent
to it for hard spheres. Taking matrix elements, we have
replaced the exact interaction operator by a pseudo-
potential ; the collision operator was then expanded in
powers of spatial gradients times the particle size.

An approximate solution for the motion of “particles”
and for some collective modes (sound waves) was found
by applying well-known quantum methods (Hartree-
Fock procedure). In particular, the classical thermo-
dynamical results on sound waves were obtained, in-
cluding the effect of the excluded volume. Already at
this stage, this is an improvement with respect to former
approaches insofar as a more precise result is here
obtained in the long-wavelength limit, and as collective
modes were included in the first approximation to
many-body equations.

Some questions arise as to what the second approxi-
mation would be and about the convergence of the
perturbation treatment. The first point is fairly clear.
By going to second order of perturbation theory in the
solution of (25), one would obtain the attenuation of
sound and, assuming all summations over velocity
indices converge, separate a term proportional to g,
and another proportional to ¢%. By identification with
the hydrodynamics equations, the viscosity, and the
thermal conductivity of the fluid can be defined. All
the computations would be straightforward, except that
the dense spectrum of Kg and the corresponding eigen-
functions are not known. Moreover, merely by looking
at the structure of the matrix elements involved, one
could tell which kind of interaction is responsible for
which transport property. The second term in the
Taylor expansion of ¥ (r+2ru) could be taken into
account but this would have given a contribution
quadratic in wave vector and in density. This repre-
sents a small dispersion to the velocity of sound of
little interest here. The Hartree-Fock solutions to (18)
involve no fundamental problems.

The more fuudamental problem is the convergence of
higher order than Hartree solutions to the many-body
theory of Eq. (18). In fact, the first many-body pertur-
bation correction to the eigenfrequencies of the Hartree
solution diverges. This divergence arises from the lack
of convergence of the perturbation sum for large wave
vectors of “intermediate states.” This divergence is
completely expected. Our approximation consists in
replacing spheres by geometrical points and adding
corrections due to their size. The procedure is an
excellent description of the effects on smooth functions
(long-wavelength disturbances) but the method is
drastically wrong in describing effects on the scale of
the particle size. This problem is exactly the same as
that which appears when, in quantum mechanics, a



168 TRANSPORT THEORY
hard-core scattering problem is replaced by a é-func-
tion potential and Born approximation is used. First
Born approximation is “correct;” second Born approxi-
mation diverges. [For considering multiple scattering
due to several scattering centers, a cutoff higher-order
Born approximation can still be useful; it is the (short-
range) iteration on a single scattering center which
causes difficulties].

If this divergence is for the moment removed by a
physical cutoff at some k., there is no divergence in the
first-order many-body correction to viscosity and
thermal conductivity. There are no problems arising
from the long-range correlations. A contribution to the
damping of sound waves by sound waves can (and
should) be seen as part of the perturbation-series
structure.

The next step in this problem should be to investigate
the effect of “three-body collisions,” i.e., to treat the
many-body equations in terms of an approximation
better than the cutoff pseudopotential approximation.
This is the point at which the virtue of the single-
particle solutions to the Hartree equations will manifest
itself. If three-body collisions of these Hartree “par-
ticles” are treated rather than three-body collisions
of physical particles, all the correct long-range behavior
will be built into the problem, and the nonphysical
divergences of three real particles in an infinite box
should not occur. The solution to this three Hartree-
Fock particle scattering problem will not be trivial.

Note added in proof. Our approximate solution to
Eq. (9) could have been presented in another fashion,
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which perhaps would have seemed more rigorous at
first sight, but which is in fact entirely equivalent.

In the framework of a linearized theory, fy stands
for the difference between the actual and the equilibrium
distribution functions, and has to be normalized (for
obvious physical reasons) by / fy=0. So it would be
natural to take a basis { fx,:} of eigenfunctions such that
S fra=0. As a matter of fact, the functions defined
by (13) satisfy this condition (but for the trivial max-
wellian fo). The average of A is then S Afy={4). It
is possible to define a whole algebra and second quan-
tization operators consistent with the above normaliza-
tion and averages.

But there is no objection to normalizing the same
functions fx,; by a Hermitian scalar product (even if
there is no physical reason for doing so). The standard
second quantization algebra which has been used in
this paper is precisely that one which is consistent with
the Hermitian normalization. Provided (fy|4]|fx) is
equal to (4), both algebras are equivalent and both
yield Eq. (25). The only difference lies in the choice of
the basis of our functional vector space.

The only thing to be checked is whether (4) equals
(fw|A4|fn) or not. If fx is the equilibrium distribution
function (may we recall that we used only averages in
the ground state), it is true.

If one intends to use average values in other states
than the equilibrium state, (4)#(fx|4| fx) and only
one algebra yields exact results. But since we did not
have to do so, we preferred the more usual boson second
quantization algebra and the standard notations of the
Hartree-Fock theory.



