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A Liu-Okubo-type dispersion relation is derived for the crossing-even pion-nucleon forward elastic
scattering amplitude T~+&. Two subtractions are made, one at the physical scattering threshold and the
other at a previously determined zero of T&+& on the imaginary axis of the complex ca (pion lab energy)
plane. The dispersion relation is mell satis6ed over the whole allowed range of the Liu-Okubo parameter.
Moreover, it is nearly saturated by low-energy scattering for a considerable range of the parameter. lt
should thus serve as an extremely sensitive test of the low-energy scattering data when such data become
more accurately known.

" 'N a recent letter, ' Liu and Okubo used a generaliza-
~ - tion of the method of Gilbert' to derive a new mE
superconvergent relation. They considered the case of
the forward crossing-odd amplitude T& &. In this paper,
we use a generalization of their technique to derive
several interesting results for the mX forward crossing-
even amplitude T(+').

T&+&(&o) has zeros at co=+i&I, where co is the pion
laboratory energy' e and as has the value 0.103 t&2 (tc is
the pion mass). "T&+&(co) has nucleon poles at co= +cop
= +/&2&/2M (M is the nucleon mass) and is assumed to
have a high-energy behavior

T&+& (co)

corresponding to constant in6nite-energy total cross
sections, o +s(co). We normalize T&+&(co) so that the
optical theorem has the form,

Following Liu and Okubo, ' we consider

~LT'+&(~)—T&+&(t )je "
t(~) =

(&os+&&2)(cps ~2)/&

where the function (cos—t&2) e is defined as in Ref. 1. For
large ~,

Imt(o&) o& ~',

so for P) 2, t(co) is superconvergent, s

Imt(co)do&= —IrT&+&(tc)/(t&21 &t2) e.

The right side of (5) comes from the poles of t(co) at
&zc.

Near ~=@,, T&+) has the expansion

T'+'( )—T'+'(t )= (-"( '—&u')+ca(tc)(~' —t ')'" (6)

The value of T&+&(tc) is subject to large errors':

T&+&(tc)=—0.010&0.040 tc '.

(2) where C is a real constant related to the scattering
lengths and effective ranges. Hence t(co) has no pole at
the physical scattering threshold if p(zs. The only 8
function contributions to (5) are from the nucleon poles
at co= &cop. Thus for —,'(p(2,

(/2+a2)'

2o&of' 2 "codco(cos&rP ImT'+ (co)+sin&rP Ret T&+&(co)—T&+&(tc)$) T&+&(tc)

(~ 2+ &t2) (~2 o& )/& 2r (~2+ a2) (~2 ~2) &&

2 "codco ReLT&+&(co) —T(tc)j
(8)*This work was supported by the U. S. Atomic Energy

Commission.' Y. C. Liu and S. Okubo, Phys. Rev. Letters 19, 190 (1967).' W. Gilbert, Phys. Rev. 108, 1078 (195/).' M. Sugawars and A. Tubis, Phys. Rev. UO, 212/ (1963).' M. Sugawara and A. Tubis, Phys. Rev. 138, B242 (1965).' Natural units h=c=1 are used throughout this work.' The uncertainty in a' is estimated to be about 3% mainly be-
cause of the experimental uncertainty in T&+& (t&).' J. Hamilton /Phys. Letters 20, 687 (1966)jgives for the s-wave
scattering length combination u1+2a3= (—0.002+0.008)p ' so
that T&+&

(&tc) =~~4 (1+tc/r») (a&+2as) = (—0.010+0.040)t&-'; o (&t&)= —
&'&&r (a&2+2ass) =3.4%0.2 mb.

(~2+a2) (co2 ~2) I/2

The 6rst two terms of (8) are approximately the same as
the expression for o(~) given by the phase representa-
tions. In the other limit, P=az, t(co) has poles at
co= &tc which give a term proportional to o(tc). Thus we

2 V. de Alfaro et al. , Phys. Letters 21, 576 (1966).
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In the limit, P=zi, we have an extra contribution from +T&+&(tc) 2o&pf'

the contour integration at in6nity which is simply
—o(&&o). Therefore we derive
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obtain, Tsmz I. The comparison of the left- and right-hand sides of Kq.
(7) for various values of the cutoiI A of the integral.

—o(/ ) —T"&(/ ) 2~of'

~2+as (~2+a?)8/2 (&e 2+as)(/is &e s)s/2
Left-hand side

P (mbXa'~
ght-hand side (mbX/i'~e)
h.=5 BeV 15 BeV 30BeV

2 "
&od&o Re(T(&o)—T(/i)]

(9)
(&os+as) (e&s tus) 8/2

g
—i~a p/2 %Trx pe /2

T&+&(~)= —vp— —7 &e
p' (10)

sin(z.ap/2) sin(znp /2)

with the parameter values'

pp= 1.111M, Qp= 1;

%e have performed the numerical evaluation of
(7)—(9) by taking the values of Hohler et al. s and doing
a careful numerical integration which emphasizes the
low-energy region. Above 30 BeV we took a Regge form
for T&+&(o&) containing the P (Pomeranchon) and I"
(f' meson) terms,
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2 "n'v &ed&a Re)T(&e)—T(/i) j=—3.1mb, (14)
(~2+as) (e&2 ~2) I/2

2 " d R fT( )—T(/e)j = —23 mb, (15)
ss s v (&os+ a2) (&os tus) i /2

+pe = 1.82+ O,p =0.39. o (~ ) = 22.8 mb, (16)

The high-energy integration is then

"e&d&o ImLT&+&(o&) —T&+&(/&)je e

(&os+ as) (&os /is)//

sinL(2p —np)~/2j
7p

sin(&rap/2)A'e- P(2P—np)

yp sinL(2P —np )z/2g
. (11)

sin(zap /2)As ~p'(2p —ap.)

Because of the factors A'~ p and A.'~ p' these contri-
butions rapidly become negligible as p increases from —,.

The results from Eq. (7) are shown in Table I, and it
can be seen that the right- and left-hand sides dMer by
at most 1%.The convergence is very rapid, for p) 1, but
for P&1 the high-energy contribution is quite impor-
tant. For p close to its limiting value of s, the integral is
almost saturated by the low-energy region co&5 SeV.

The evaluation of the terms in Eq. (8) yields

compared with the experimental value of 22.1&0.9
mb. "Note that in this case the Pomeranchon term in
(10) does not contribute because it is pure imaginary.

When we evaluate Eq. (9) we find

o(/&) =2.2+0.76 mb (17)

compared with the "experimental" values of 3.8&0.2
rnb r and. 3.4+0.2 mb. ' In (17), only the uncertainty in
T&+&(/i) in the 6rst term of (9) is accounted for.

It can easily be shown that all the sum rules become
identities if ReT&+&(&e) is calculated from the ordinary
dispersion relations so we should not be surprised by the
good results. Therefore our results are most useful when
accurate experimental values of ReT&+&(&o) become
available. Then they will provide a good test of 1ow-

energy values of Re T&+&(e&) because of the rapid con-
vergence of our integrals in the case 1&p&$.

The formalism in this paper is very convenient for de-
riving 6nite-energy sum rules" from which Regge pa-
rameters may be estimated. This application will be
discussed in a separate paper.

T&+&(/)
=0 mb (Ref. 9),

(~2+a2) t/2

2QO
=28.2 mb,

(&e 2+as)(~s o& 2)i/2

(12)
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