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A quantum-mechanical theory of photon detection is presented which takes fully into account the attenu-
ation of the field due to the detection process. The time evolution of the joint quantum state of the detector
and the field is found, to all orders in perturbation theory. Formulas are derived for the probabilities of
absorbing specified numbers of photons within a given time interval, and for the correlations in the positions
and times at which absorptions take place. The results are free from the inconsistencies which arise in the
conventional theory of photon detection, and remain valid even when the field becomes appreciably attenu-
ated during the experiment. It is found that an initially coherent field state remains coherent during its
interaction with a given detector, and that its amplitude becomes attenuated by an amount which is com-
pletely independent of the number of counts which the detector records. This independence is shown to be
a simple consequence of the Poisson quantum-number distribution of coherent fields. The counting statistics
for arbitrary fields are expressed in a way which shows explicitly the relationship between the attenuation of
the field and the absorption of quanta by the detector. The analysis is performed by first treating the case
in which the Geld is confined within a homogeneous detecting medium throughout the experiment, and then
generalizing to the case in which the Geld spends a limited amount of time in a spatially localized detecting
region. The detector is assumed to consist of harmonic oscillators, which are shown to represent a suitable
formal model for the absorption of radiation by large numbers of conventional detecting atoms.

I. INTRODUCTION

'HE conventional theory of photon detection' 5

is essentially a generalization to many atoms of a
perturbation theory calculation of the excitation proba-
bility for a single atom. As such, it is subject to the

following limitations:

(1) The probability that any particular detecting
atom becomes excited must remain small throughout
,the detection process.

(2) If the initial state of the 6eld contains one photon,
the probability that this photon is absorbed must be
,small. Equivalently, for arbitrary initial field states,
the mean number of photons absorbed during the time
interval under consideration must be a small fraction of
the mean number of photons in the initial state of the
:field.

33oth of these conditions are well satisfied in the
majority of photon counting experiments, which are
therefore accurately described by the conventional
theory of photon detection.

It is important to realize, however, that the Grst
condition, which is a natural one in any photon detec-
tion theory, does not imply the second. This can be
seen simply by letting the number of detecting atoms
a,pproach infinity. Experiments in which the field
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seers an appreciable attenuation during the detection
process are perfectly possible from both a theoretical
and a practical. standpoint. They cannot, however, be
described within the framework of conventional theory,
which does not provide a satisfactory account of the
effect of the detector on the field.

The limitations of even the strictly quantum-
mechanical formulations'4 ' of the conventional photo-
detection theory may be conveniently illustrated by
supposing that the beam passes successively through a
large number X of identical (transparent) detectors. If
exactly one photon is present initially, one finds from

the conventional theory that each detector has an equal

probability p of absorbing the photon, that the proba-

bility that the photon is absorbed at all is Ep, and that
the probability that the photon is not absorbed is

1—ATp. These results are clearly meaningless if Ep) 1,
and in fact they are valid only for Xp«1. An equally

striking illustration of the breakdown of the conven-

tional theory is the case in which the beam initially

consists of a coherent wave packet, with mean photon
number n. In that case one Gnds that the counting
statistics for the individual detectors are independent of

each other, and that the photoabsorption probability
for each detector is given by a Poisson distribution
with mean number pn. The probability p (t) that a
total of m photons are absorbed is given by a Poisson
distribution with mean number Epn. For E sufficiently

large, this mean number becomes much greater than

the initial mean number of photons in the Geld, a result

which violates the law of conservation of energy.

The reason for this behavior, as we have indicated, is

that the conventional theory does not adequately take

into account the attenuation of the Geld due to the

detection process. The transition probabilities for the

e R. J. Glauber, Phys. Rev. 131, 2766 (1963).
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system of detecting atoms are calculated by using, in
effect, the interaction Hamiltonian

where A&+&(r,t) is the positive-frequency (annihilating)
part of the 6eld, and J, & &(t) is the negative-frequency
(raising) part of the current operator for the Jth atom.
This non-Hermitian coupling is adequate as long as
conditions (1) and (2) are both satisfied. When the
second condition is not satis6ed, on the other hand, it
becomes necessary to include the eGect of virtual
transitions in which the atoms return to their ground
states. We include such effects by adopting as our
interaction Hamiltonian the Hermitian expression

a(t)= —g PA&+&(r;i) J &(t)+A& &(r;i) J;&+&(i)g.

(1.2)

This coupling may be obtained from the exact expres-
sion by dropping antiresonant terms, and it therefore
represents a suitable approximation as long as the 6eld
cannot change greatly during a small number of periods
of oscillation.

By adopting a simple model for the detecting atoms,
we are able to obtain solutions for the state of the system
of 6eld and detector which are free from the diKculties
encountered by the conventional theory. The photo-
absorption probabilities p (t) are all positive, and the
mean number of absorbed quanta is never greater than
the mean number of photons in the initial state of the
6eld. The attenuation of the 6eld is exhibited, and is
shown to be simply related to the absorption of photons
by the detector. In the limit in which condition (2) is
satis6ed, our results reduce to those of the conventional
theory.

Our methods also enable us to discuss in some detail
the time-dependent correlations in the distribution of
photocounts. This question is ordinarily treated by
thinking of the detector as registering counts at de6nite
times, and postulating that the photoabsorption proba-
bility p (t) may be identified as the probability that
a total of m counts will be registered between the initial
time and the time t. This procedure is somewhat ad hoc,
inasmuch as the function p (t) is calculated as the
probability that a single measurement of the total
number M of excitations in the detector will yield the
result m at time t. We are able to justify it, however,
by developing a theory of the measurement of the ex-
citation number M of the detector, and finding the time
evolution of the system after a measurement is made.
We then postulate that the detector is monitored, i.e.,
that repeated measurements of M are made throughout
the time interval in question. ~ In this w3.y we are able

' P. L. Kelley and YV. H. Kleiner LRef. (4)) have developed a
similar theory of multiple-time photon detection. These authors
assume that the detector returns to its ground state after each
measurement, and that the Geld evolves independently of the
detector between successive measurements; they are therefore
unable to treat the attenuation of the Geld due to the detection

to speak of definite times at which counts are recorded.
We are able to show that the monitoring process during
some time interval does not aGect the probability that
m excitations are found in the detector at the end of the
interval, and thus we are able to justify the procedure
of identifying the function p (t), which has been
calculated without reference to monitoring, as the
probability that a total of m counts are recorded at
different times throughout the interval.

When this identi6cation is made, the functions p (/)

may be used to obtain part of the information implicit
in the full statistical distribution of photocounts. By
difterentiating them, for example, we may easily evalu-
ate the conditional probability of a count being re-
corded between the times t and t+ht, given that any
fixed number of counts have been recorded previously.
More precise information about the counting statistics
cannot, however, be obtained from the functions p„(t)
alone. It is not possible, for example, to determine from
them in what way the probability of recording a count
between the times i and t+ht depends upon the times

at which counts have previously been recorded.
Information of this kind is usually obtained by postu-

lating that the 6eld correlation functions, which appear
in integrated form in the expressions for the absorption
probabilities, may be identi6ed as the rates for recording
counts at diGerent positions and times. We are able,

by contrast, to solve for the full statistical distribution
of photocounts without making, assumptions of this
kind. ~ In the case in which the initial state of the 6eld
is coherent, 6 we find that the probability of recording
counts at any number of space-time points is indepen-
dent of whether or not counts are recorded at other
points, and may be calculated by thinking of the ex-
citations in the detecting atoms as caused by a pre-
scribed classical 6eld, the intensity of which decays at a
rate simply related to the mean local counting rate.
For more general initial 6elds we 6nd that the proba-
bility of recording counts at any number of space-time
points may be expressed in terms of a field correlation
function which similarly reQects the attenuation of the
6eld due to the detecting process.

The detecting atoms on which our analysis is based
are assumed to have the dynamical behavior of har-
monic oscillators, with closely spaced frequencies
covering a range large compared to the bandwidth of the
radiation field. Although harmonic oscillators are
physically very di6erent from ionizable atoms, the
formal properties of the solutions for the two kinds of
absorbing systems are very similar, if the number
density of atoms is very large. This correspondence may
be seen by noting that a large number of nearby
oscillators with a wide range of frequencies constitutes
a single system which may undergo first-order tran-
sitions to many excited levels, and which therefore has

process. The simplifying assumptions they make, however, enable
them to treat the case in which the Geld is modified by the presence
of sources throughout the experiment.
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all of the formal properties of conventional detecting
atoms. Alternatively, one may understand the corre-
spondence in question by thinking of a conventional
detecting atom as consisting of a large number of two-
level systems, all with the same ground-state energy,
and with upper levels corresponding to the excited
levels of the atom. Harmonic-oscillator modes may then
be constructed from many nearby atoms by making
use of the formal equivalence between a large number
of identical two-level systems and a single harmonic
oscillator. ' "

The advantage of using harmonic oscillators as
detecting atoms is that the time evolution of the state
of the system of field and detector can be solved for to
all orders in perturbation theory, when the resonant

approximation (1.2) is made for the interaction Hamil-
tonian. By introducing the coherent states for the
absorbing oscillators as well as for the 6eld oscillators, we
are able to reduce the quantum-mechanical problem to
a problem of coupled classical harmonic oscillators. " -"

The major part of our discussion is devoted to the
analysis of a simple model in which the detecting atoms
are uniformly distributed throughout a cavity, and
the field consists of a single mode of oscillation. This
situation leads to the complete absorption of the field
in the limit of large times, and thus provides a con-
venient basis for the discussion of fieM attenuation.
Many of the questions which arise are in fact quite
similar to those which arise in the more realistic case,
in which the detecting atoms are confined to a limited
region of space through which the beam passes. The
latter case is treated by a straightforward generali-
zation of the results for our simple model. The only
assumption we are required to make is that the number
density of detecting atoms is relatively constant over
many wavelengths of the 6eld, an assumption which is
not unduly restrictive, inasmuch as it does not prevent
us from considering very small detecting regions.

In the next six sections of this paper, we treat the case
in which the harmonic oscillators which constitute the
detector are uniformly distributed throughout a
cavity, and the field is represented by a single excited
mode. The harmonic-oscillator model of absorption is
presented in Sec. II, and the photoabsorption proba-
bilities p (t) are evaluated for arbitrary initial states of
the 6eld mode in Sec. III. In Sec. IV we discuss the

attenuation of the 6eld, as represented by its reduced
density operator. Section V is devoted to a discussion of
the way the statistical description of the field is altered,
in the general case, by the information obtained by
measuring the excitation number 3f of the detector. It
is shown, however, that a coherent field, or indeed any
field with a Poisson quantum-number distribution, is
unaltered by a measurement of M, and thus is attenu-
ated by an amount which is independent of the number
of quanta actually absorbed from it. In Sec. VI it is
shown how the state of the system of field and detector
evolves in time after a measurement of M has been
made. The complete statistical description of the de-
tection process for the one-mode case is presented in
Sec. VII. We undertake then in Sec. VIII to generalize
our results to include cases in which many modes of the
field are excited, and in which the detecting oscillators
occupy a limited region of space. Section IX is devoted
to a proof of the equivalence of absorption by harmonic
oscillators and by two-level atoms, and to a discussion
of the conditions under which either type of absorbing
system may be used to represent absorption by ioni-
zable atoms.

H pri(1) = A P ' co b (t)b, (t),

where the lowering operators b, (t) are defined as

(2.1)

b;(1)=—(m, pp, /2A)'"q;(t)+i(2m, A(o,) '"P,(t), (2.2)

and satisfy the canonical commutation relations

(2.3)

II. HARMONIC-OSCILLATOR MODEL
OF ABSORPTION

I et us consider a detector consisting of a large number
of systems which have the dynamical behavior of (one-
dimensional) harmonic oscillators. The jth oscillator
is assumed to consist of a particle of mass m, and charge
—e, which oscillates at the frequency co; about the mean
position r, , in the direction specified by the unit vector
n;. The system is assumed to be electrically neutral
when the oscillator is unexcited. If we denote by q;(t)
and p, (t) the canonical coordinate and momentum,
respectively, for the jth oscillator, then the free
Hamiltonian for the detector may be written in the form

F. Schwabl and W. Thirring, Ergeb. Exakt. Naturw. 36, 219
(1964).

A. E. Glassgold and D. Holliday, Phys. Rev. 139, A1717
(1965).

'0 This formal similarity is the basis of a discussion of photo-
detection theory presented by R. J. Glauber at the Summer
School on Quantum Optics of the Italian Physical Society,
Varenna, Italy, 1967 (to be published). Professor Glauber's
treatment is also devoted to correcting the nonunitary character
of conventional theory, and his analysis is based on a coupled
harmonic-oscillator approach similar to the one used in this paper.

R. J. Glauber, Phys. Letters 21, 650 (1966).
'2 C. L. Mehta and E. C. G. Sudarshan, Phys. Letters 22, 574

(1966).'' B.R. Mallow, Phys. Rev. 162, 1256 (1967).

The case in which the field and detecting oscillators
are confined within a cavity is a particularly instructive
one for the purposes of our analysis, since it corresponds
to continuous absorption of the field. If we use periodic
boundary conditions, we may express the vector po-
tential for the field as

&& fag(t) e'~'+ai, t(t) e '~'g (2 4)
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where V is the volume of the cavity. The index k

specifies the discrete mode with wave vector k, fre-
quency oui=

~ k~ c, and unit polarization vector ei„
there are two polarization vectors associated with a
given wave vector k. The operators ai(t) and their
adjoints satisfy the canonical commutation relations

The equations of motion which follow from the
Hamiltonian (2.9) are

(2.11a)

I:a (t),a"(t)J=b
Lap(t), ag. (t)J=0,

(2.5)
—b, (t) = —i(o,b;(t)+g;*a(t) . (2.11b)

and the free Hamiltonian for the 6eld is

Hop(t) = ti Pi. o)iai,'(t) ag(t) (2.6)

I.et us assume that the root-mean-square displace-
ments (3A/2m, a&,)'" of the first excited levels of the
detecting oscillators are small compared to the wave-
lengths co;/c of radiation oscillating at the frequencies &o;:

—Lat(t) a(t)+M(t) $=0,
dt

(2.12)

Before discussing the solutions to these equations, it
it is useful to note the existence of a conserved quantity.
It is a consequence of the resonant form we have as-
sumed in the interaction Hamiltonian (2.9c) that the
total number of quanta in the system of field and ab-
sorbing oscillators is conserved, i.e., we have

(Ace,/m, c') '"«1. (2.7) where we have defined M(t) as the operator for the
total number of quanta in the absorbing oscillators,

(2.13)

a=—a(0),

Then if the oscillators are never excited to energies much
greater than those of their first excited states, we shall M(t)=P; b,t(t)b;(t).
be justified in making the dipole approximation in
evaluating the coupling between the osci]lators and the In the Schrodinger Picture, if we introduce the oPerators

field. The interaction Hamiltonian may then be approxi- j2.14aj
mated by the expression

e p (t)
Hi(t) =- P u, A(r, ,t)

c ~ m;
(2 g)

b, =b,(0),

M=—M(0) =Q; b;tb, ,

(2.14b)

(2.15)

where
H(t) =H, (t)+H, (t), (2.9a)

H, (t) = t't a'(t) a(t)+k P;;b,'(t) b;(t), (2.9b)

H, (t) = t7ifat (t)P,. g h,.(t) a(t)P,. g,*b,t(t) g (2 9c)

and the coupling parameter g, is defined as

By using Eq. (2.4) for A(r, t) and making use of Eq.
(2.2) to express p, (t) in terms of b, (t) and b;t(t), we see
that the interacting system of field and detector may be
described in this approximation as a set of coupled
harmonic oscillators.

It is convenient to begin our analysis by assuming
that only one mode of the field is excited throughout the
absorption process. We shall justify this assumption
and discuss the more general case in Sec. VIII. Suppres-
sing the index k for the variables which describe the
excited mode, we find by making the resonant approxi-
mation (1.2) that the system of field oscillator and de-
tecting oscillators is governed by the Hamiltonian

then we may easily deduce from the operator conser-
vation law (2.12) that if the state of the system initially
contains a speci6ed total number n of quanta

(ata+M)
~

)=N~ ),
then the time-dependent state vector

(2.16)

( t) e ~Inst lk
) ) (2.17)

must preserve the eigenvalue e for the quantum-
number sum at all times,

(a'a+M)
i t)=xi t). (2.18)

a(t) =ti(t)a++, f', (t)b;,

b, (t) =)„(t)ay+& v, ,(t)b, .

(2.19a)

(2.19b)

This relation is a particularly favorable one for our
photon detection theory, since it states, in effect, that
the quanta which are absorbed from the field must be
found in the detector.

The solutions to the linear equations of motion (2.11)
take the form

—1 /2

(e u, )e '"'i (2 10) In the Appendix it is shown that the c-number functions
p, (t), f;(t), ),;(t), and v;u(t) may be evaluated by means of
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.=~N(~) lg, l'(„,=„)

e' 1V(ce) 1 )
=7r

12 V m, / „,. „,
and a frequency shift

(2.20a)

(2.20b)

a straightforward Laplace transform technique. "Ke
assume that there are N(ce&)dce; absorbing oscillators
with frequencies between e&; and ce;+dce;, and that the
oscillator-direction vectors u; are randomly oriented.
The solution for tc(t) is characterized by a decay rate

one mode is excited throughout the absorption process
requires us to impose somewhat stronger conditions
than those expressed by the inequalities (2.24) and
(2.26): The function N(co), which is the number of ab-
sorbing oscillators per unit frequency range throughout
the cavity, must be replaced by the number of oscillators
per unit frequency range located within a spatial
volume equal to the cube of the wavelength c/c0. It is
also necessary to assume that the absorbing oscillators
are uniformly distributed throughout the cavity, so
that the number of oscillators per unit frequency range
per unit volume is

,N(~') lg I'(;=-)
SQ) =P dM

(2.27)

where I' means principal value. 7Ve must require that
both of these quantities be small compared to the
frequency of the excited mode

('2.28)

N(cd, r) =N((g)/V.
2.21

The condition (2.26) must then be replaced by the
stronger condition

K& SQ)(+6) (2.22) and the conditions (2.24) by

&c, bce )) 1/N(ce) . (2.24)

It is necessary, finally, to evaluate our solutions at
times large compared to the period of oscillation 1/ce,

and large compared to the reciprocal of the frequency
bandwidth Aco of the function N(e&),

and to the frequency bandwidth of the function N(cd),

N(cd+K&bcd) 1V(c») &
(2.23)

but that there be many oscillators throughout the
cavity with frequencies lying within a range equal to f~:

ol Sco:

1V(ce,r)&cc'/e&')) 1, (2.29a)

N(ce, r)R&c'/c0'))1 . (2.29b)

These conditions are automatically satisfied in the limit

1V(ce) —+ c&c&,

lg I'~o,
N (ce) l g; l

' —& const.

(2.30a)

(2.30b)

(2.30c)

When the conditions (2.22), (2.23), (2.25), and (2.27)-
(2.29) are all satished, the function tc(t) may be ap-
proximated for times t&0 by the exponential function

(2.25a)
where

tc(t) =e-*',

s =K+'c(M+ bc») .

(2.31)

(2.32)

(2.25b)

but small compared to the reciprocal of the mean
interval between the discrete oscillator frequencies,

(2.26)

In the work which follows, we shall assume that all

times and time intervals satisfy these conditions, even

when we speak of infinitesimal time intervals or take
the limit t —+~.

The conditions (2.22)—(2.26) are the only ones we

need impose in order to justify our approximate solution
to the coupled equations of motion (2.11). It is shown

in Sec. VIII, however, that our assumption that only

"The author is indebted to Professor Glauber (private com-
munication) for these solutions to the coupled oscillator Eqs.
(2.11).Similar results are presented in a slightly di6erent context
in Ref. (8), and by J.P. Gordon, L. R. Walker, and %.H. Louisell,
Phys. Rev. 130, 806 (1963). The basic method of solution was
first used in atomic radiation theory, by V. F. Weisskopf and
E. P. Wigner, Z, Physik 63, 54 (1930); 65, 18 (1930).

Let us substitute Eq. (2.31) for tc(t) into Eqs. (2.19),
and then substitute the resulting expressions for a(t)
and b;(t) into the relation

at(t)a(t)+Q; br (t)b, (t) =a1a+g b tb; (2.33)

which follows from the conservation law (2.12). In
this way we find four relations, of which the only one
we shall need is

p, lx;(t) l'=1—e-"c. (2.34)

%e may obtain additional useful conditions on the
c-number functions in Eqs. (2.19) by Q.rst writing, in

matrix notation,
a(t)=e "a+/(t)b (2.35a)

b(t) =X(t)a+v(t)b. (2.35b)

Here we are thinking of b(t), f'(t), and X(t) as column
vectors with components b, (t), f,(t), and X;(t)& respec-

tively, and of v(t) as a matrix with elements v;&(t). The
quantity f (t) is the transpose of i'(t), and hence is a row
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vector with components f,(t). The invariance of the
system of field and detector under translations in time
implies that the Eqs. (2.35) must remain valid if we
replace a and b by a(t') and b(t'), respectively, and a(t)
and b(t) by a(t'+t) and b(t'+t). Sy making use of this
invariance property we find four relations, of which the
only two we shall need are

and
j(t)x(t') =p; f;(t)l~;(t') =o (2.36)

and is given by
G 0! @=CD 0! g~ (2.38)

ln)»=exp(atu —a*a) lo) p, (2.39)

where lo)tt is the vacuum state. Similarly, a coherent
state IP;); for the jth harmonic oscillator satisfies the
relation

(2.40)
and is given by

(2«)
where I 0); is the ground state for the jth oscillator. We
delne a simultaneously coherent state for the system of
absorbing oscillators as

(2.42)

where
I 0&H is the ground state for the absorbing system,

f (t)»(t') =f (t+t') —e 'f(t') (2 37)

which are valid for all positive times t and t'.
The time evolution of the Schrodinger state vector

for systems of harmonic oscillators governed by
Hamiltonians of the form (2.9)—quadratic expressions
involving products of one creation operator and one
annihilation operator —may be expressed in a par-
ticularly simple way in terms of the coherent states' of
the oscillator modes. A coherent state In&» for the
6eld mode is an eigenstate of the annihilation operator

If the initial state of the system of absorbing oscil-
lators in Eq. (2.44) is the ground state lo)e, then the
state of the system at time t is

I
t&= e-'Ht» I«&, lo&H= I

e-*t~,&, la(t)«&H. (246

The complex amplitude of the 6eld thus decays ex-

ponentially with the decay rate ~, and su6ers a fre-

quency shift bee.

It is interesting to observe that the state of the 6eld
in Eq. (2.46) continues to evolve during a time interval
beginning with some time t'&0 in the same way that
it would if the state of the absorbing oscillators at time
t' were the ground state IO)H rather than the state
IX(t')«&it. Indeed, it follows from Eqs. (2.44) and
(2.45) that if the state of the system at the beginning
of some time interval of length t is In&»IX(t')«&a,
where n and no are any two complex numbers and t'

is any positive time, then the state of the system at the
end of the interval is

e 'H""
I et)» I

x(t')«)'H
= le *' +f'(t)X(t')«)&lli(t)tt'+»(t)~«')no)H
=

I
e—"n)»

I X(t)n+»(t)X(t')no&H, (2.47)

where the last step follows from Eq. (2.36). It is clear
from Eq. (2.47) that the detector state IX(t')np)tt,
which was excited by the coherent field state lucio)»,

behaves exactly like the ground sta, te
I 0)z in its influence

on any coherent state of the 6eld. This property of the
detector states which are excited by coherent field
states will play an important role in the analysis of
Secs. VI and VII, which provide a theory of multiple-
time counting statistics.

III. PHOTON DETECTION PROBABILITIES

Let us assume that the initial state of the system of
6eld mode and detector is the product of an arbitrary
(mixed) state for the field and. the ground state for the
detector. The initial density operator for the system is
then

lo&H=II Io) . (2.43) p= p&.i(0) Io)..(ol, (3.1)

The state which evolves during time t from the initial
product of a coherent state

I «)» for the field mode and
a coherent state IPp;); for each of the absorbing oscil-
lators retains this simultaneously coherent character
at all times, ""

e ' '"l~o&»IPo&H= la(t)&»IP(t)&H (244)

and the time-dependent complex amplitudes n(t) and
P, (t) obey the same linear equations of motion as do
the Heisenberg operators a(t) and b, (t). They are there-
fore given in terms of no and Pp; by the relations

(2.45a)

(2.45b)

p(t) e iH t ItpeiH tt»
—e iHt top(»)(0)

I 0) —(0 I

eiHtlo (3.2)

We may evaluate the probability p (t) that a total
of m quanta will be found in the detector at time t by
first introducing a complete set of states I»»», y)tI for
the detector, where m is the eigenvalue of the number
operator M defined by Eq. (2.15),

M I tto,y)e ——ml tto,y)e, (3.3)

and p represents the additional variables necessary to
specify the state. If we then introduce the projection

where p&»'(0) is the initial density operator for the field.
The system at time t may then be described by means
of the Schrodinger density operator
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operator
P =P—, Itis, y)ii it(m, pl (3.4)

large times (tie&)1), however, we have

e,(~) ~ Idol', (3.13)
onto the subspace of detector states containing ns

quanta, we may express the probability of finding m
quanta in the detector at time t as

p„(t)=trl p(t)P ] (3.5)

=Q p(1 sl t(tttsy
I p(t) I

tts, 'y)it
I
ts) t. , (3.6)

(3.7)

where (P (t) is an operator in the state-space of the field
mode, which may be written forma, lly as

where Its)i is the state of the field mode containing
exactly e photons. If the detector is initially in its
ground state, we 6nd from Kqs. (3.2) and (3.5) that the
probability p (t) may be expressed as a linear functional
of the initial density operator for the fieM as

must, by virtue of the conservation law (2.12), obey the
identity

n(t)+m(t) =n(0) (3.15)
at all times.

If the initial density operator for the 6eld has a I'
representation, "i.e., if it can be written" as a statisti-
cal mixture of pure coherent states,

and the probability of hnding m absorbed quanta is
thus the same as the probability of 6nding m quanta in

the initial state of the 6eld. We shall presently show that
result is valid for arbitrary initial states of the 6eld,
when the held is conhned to a homogeneous detecting
medium. We may note that the mean quantum numbers

m(t) and
n(t) = trLp(t) utu]

(p (tt) tr ( I 0) (0 I

siHt lop e iHt Is)—(3 g) p' '(0) = P(no, 0)Intro)t t

(harold

pro (3.16)

In these expressions tr~ and tr~ mean trace with respect
to the initial states of the 6eld and the detector,
respectively.

As an example of some interest, let us consider erst
the case in which the Geld is initially in the pure coherent
state lets)s, so that the state of the system at time f is
given by Kq. (2.46). The detector is then described by
the simultaneously coherent state P-(&) =

Lm(n„~))"
e
—m(tto, t) P(tr 0)tttstr (3 17)

where bistro=d(Retro)d(imno), then the photoabsorption
probability p (t) may be obtained by averaging the
result for the coherent state lno)t; with respect to the
weight function P(eto,0). We have, then,

I &(&)pro)it —=II' I);(t)no);. (3.9)

&
—m(S)

) (3.10)

It is not di@.cult to show that the quantum-number
distribution for such a state is the same as that for a
single harmonic oscillator described by a coherent state
with the same mean number of quanta. The photo-
absorption probability p (t) is therefore given by the
Poisson distribution

where m(no, t) is given by Eq. (3.11). If the weight
function P(ttto, 0) which appears in Eq. (3.16) is non-

negative, we may think of the photoabsorption proba-
bility p (t) as generated by an ensemble of classical
fields, ' 4 each of which becomes attenuated during the
detection process.

The solution for p (t) corresponding to arbitrary
initial states of the 6eld can be obtained by noting that
Eqs. (3.10) and (3.11) may be expressed in the form

(3.11)

The probability p (t) given by Eqs. (3.10) and (3.11)
is the same as that which one would write down in a
semiclassical theory, if one postulated that the exci-
tations in the detector were produced by the attenuated
classical 6eld

n(t)=e "tr (3.12)

For t(( 1/tt, the mean absorbed quantum number m(t)
is just 2tt

I rrol 't, and the expression (3.10) reduces to the
one given by conventional photodetection theory. For

in which the mean number of absorbed quanta m(t) is,
by virtue of Eq. (2.34),

p(pro
I
at: expL ata(1 e—'"')]:u—lao)t;, (3.18)

where the colons indicate normal ordering. I et us
compare this expression to the form Eq. (3.7) takes for
p'~'(0) =

Intro)s

F(carol. If we then make use of the theorem
that any operator for a single harmonic oscillator is

"E.C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963)."J.R. Klander LPhys. Rev. Letters 16, 534 41966)7 has shown
that a representation of the form (3,j.6) exists for arbitrary density
operators, provided that one is willing to allow weight functions
even more singular than the tempered distributions. The useful-
ness of the representation in such singular cases is rather limited,
however, in that many simple manipulations must he performed
with great care, or are prohibited altogether.
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0&P (1)&1 (3.25)

uniquely determined" by its diagonal matrix elements We may note that the probability p„(t) given by Eq.
in the coherent-state representation, we see that the (3.24) satisfies the relations
operator 6' (t) is given by

(1—e
—s«)~

(P (1)= al~: expL —ala(1 —e '"')7: a~ (3.19)
m!

and

(3.26)

(I e
—2~&)m

gftlhg —2 Kf QtCgfS

m 0

(3 20) for arbitrary initial states of the field.
For times 1« 1/Ic, Eq. (3.24b) reduces to

where the operator identity"

:exp(wata):= expl ata ln(1+w)7 (3.21)

(ss)
P-(&)-(2«)- Z c-' '(0)l I(1—2«)"-", (3.27)

n=m E,srs)

was used to reach the latter expression. Equations (3.7)
and (3.19) or (3.20) specify the photoabsorption
probabilities for arbitrary initial states of the field.

If the field initially contains exactly e photons, then
it follows from Eqs. (3.7) and (3.20) that the probability
of 6nding m quanta absorbed at time 3 is given by the
binomial distribution

(ss
p i"&(g) =

l
l(1 e2"'—)~(e '"')" for m&ss (3.22a)

km&

=0 for m)ss. (3.22b)

%e cannot find more than m quanta in the detector at
any time, since we have begun at I,=O with exactly n
quanta in the system of detector and field. We may note
that the probability given by Eq. (3.22) is just what one
would write down if one pictured the initial state of the
field as containing n distinguishable quanta, and postu-
lated that each of these has the probability 1—e '"'
of being absorbed between the initial time and time t.

If the initial state of the field is described by an
arbitrary density matrix

~"'(0)= Z ll) u- "'(o) (~'I, (3 23)
n, n'

then the photoabsorption probability p (t) is, according
to Eqs. (3.7), (3.20), and (3.22),

= Q p & &(0)p ~"&(t)
n=p

(3.24a)

(' ss
=(1—e '"')~ Q p„„i»(0)l l(e

—2«)&-~ (3 24b)

'7 This theorem follows simply from the "over-completeness"
of the coherent states. See for example R. J. Glauber (Ref. 6);
C. I. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, 3274
(1965);K. Cahill, Phys. Rev. 138, B1566 (1965)."See for example W. H. Louisell, Radiation and Noise in QNan-
issm E/ectrossscs (McGraw-Hill Book Co., N. Y., 1964), Eq. (3.68).

which is the result given by conventional photo-
detection theory. In the limit of large times (~t&)1),
on the other hand, Eq. (3.24b) reduces to

P (I) p ' &(0) (3.2S)

which is the probability of finding m quanta in the
initial state of the field.

The photoabsorption probabilities P (1) given by
Eqs. (3.24) depend only upon the diagonal I-quantum-
state matrix elements of pi~'(0), i.e., only upon the
intensity of the initial field, and not upon the phase.
It is interesting to observe that this fact can be deduced,
within the context of our model, directly from the con-
servation law (2.12). Let us expand the density oper-
ator p(t) for the system in terms of the complete set of
states lss)sly, p)z, so that a typical element in the
expansion will be proportional to

ln) plass, y)r s(tm', y'l p(ss'l. (3.29)

or
(1) ss+m= ss'+sN'

(2) ~+mwN'+~'

It is clear from the discussion leading to Eq. (2.18)
that this classification is invariant in time, i.e., that a
term in either of these two classes at a given time can
contribute only terms in the same class to the density
operator at any other time. Since m=m'=0 in the
initial state of the detector, it follows that a term in the
initial density operator for the Geld for which age' can
contribute only to those terms in the density operator
for the system at time t for which I+mWN'+sss' It is.
clear from Eq. (3.6), however, that terms of this kind
cannot contribute to the photoabsorption probabilities
P-(1).

The probabilities p (t) may be expressed in terms of
a generating function4

(3.30)

Terms of this kind may be conveniently classified ac-
cording to whether
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by means of the relation

p„(t)= (»»»!)
—

'l ——
l Q(g, t) l t ~.

ag)
(3.31)

(3.33)

If we substitute Eq. (3.19) for [P (t) into this relation
and carry out the indicated surrunation, we find

Q(&,t) =:expI
—$(1—e '")ata):, (3.34)

and if we make use of the operator identity (3.21), we
find

Q(f, t) =exp{ata lnL1 —f(1—e "'))) (3.35a)

$(1 e-2st))«ta (3.35b)

The generating function for an initial e-quantum state
of the Geld is thus

Q(P) = l:1—$(1—e '"'))", (3 36)

and the generating function for an initial coherent state
0!p y ls

Q(U)=e t"[" (3.37)

where the mean number of absorbed quanta m, (t) is
given by Eq. (3.11).

IV. ATTENUATION OF FIELD

Before proceeding further with our analysis of the
photodetection statistics, it is convenient to discuss the
attenuation of the field caused by its interaction with
the detector. The state of the field at any time t may
be described by means of the reduced density operator

p[»(t) —= trop(t) (4 1)

= tre{e ' ' "p » (0) l 0)e e(0l e'~' ") (4 2)

since the detector is initially in its ground state. This
relation expresses the time-dependent density operator
for the Geld as a linear functional of its initial value. It
will facilitate further discussion if we express this
relationship formally as

where 'lL is a super-operator, " i.e., a linear operator
functional of the operators in the state-space of the
Geld mode. It may be defined for an arbitrary operator

'9 The concept of a super-operator has been used in a somewhat
di6ereat agnate jq Ref, 5,

The function Q(),t) may be written, by virtue of Eq.
(3.7), as a linear expression in the initial density operator
for the field,

Q(&,t) = tr Lp[r'(0)Q(Q)), (3.32)

where the generatir»g operator Q(),t) is defined as
(45)

If the initial state of the field is described by a P
representation, then we find by substituting Eq. (3.16)
for p[r&(0) into Eq. (4.3) and changing the variables of
integration from ep to 0,=e "O,p that a P representation
exists at all times:

p[»(t) = P(a,t) la)r r(al, (4.6)

and that the time-dependent weight function is related
to its initial value by means of the complex scale
transformation

P(a, t) =e'"'P(e*'n 0) . (4 7)

Thus the P function behaves exactly like the probability
density for finding the field oscillator with complex
amplitude e, in a classical system in which the complex
oscillator amplitude seers an exponential decay with
decay constant a, and a frequency shift bra. By making
use of the formula6

tr&[&&«'&[&)«&"«&j=f«a&»(a&)d&« (4.8)

for the expectation values of normally ordered products,
we find from Eq. (4.7) the identity

«»Lp"'(t)a™a')= «»G '»(0)(e '"a')"(e-"a)') (4 9)

Thus the time dependence of the mean values of
normally ordered products may be found by replacing
the annihilation operator e by the operator e "u in
the expression for the same quantity at t=o.

It is worth noting that the identity (4.9) may be
derived from Eq. (4.5) without assuming that the initial
density operator for the field possesses a P represen-
tation. The expectation value in Eq. (4.9) is given by

tr »[p'» (t)a™a')= tr[p(t) at "a')
= tr{pra'(t)1"La(t))'& (4 1o)

where a(t) is the Heisenberg annihilation operator for
the field mode. By substituting Eq. (3.1) for p into this
rel&ion, we find

tr»Lp '(t)a "a')= trrl p' (0)T„~(t)), (4.11)
where

2'-~(t) —=t»{lo)»(OlLat(t))-l a(t))&}. (4.12)

U we use the result (4.5) to evaluate the left-hand side

argument Ii as

'ttLF; t)=—tre{e-' ""Fl0)g s(0l e'~'~s). (4.4)

We have shown that when the initial state of the
field is the coherent state lao)r, the state of the field
at time t is the coherent state le-"ao)r, so that the
reduced density operator for the field is



gUANTUM THEORY OP F IELD ATTENUATION

(4.15)

where the c-number functions %,„,tt. (t) are defined as

'tt-. «(f)=—F&nlqtl:Il&»«'I; Gln'&~ (4 16)

The functions 8, „,tt (t) may be generated from the
solution (4.5) by introducing the states' "

lln&s =—e"I'l ~ ~~'I tr&s (4.17)

=2 (i~) '"~'lt&
l=p

(4.18)

in terms of which the relation (4.5) may be expressed as

'ttLII~&»&~ll 6= lie *'~&»(e *'~II

&« I I:I I'(1—e '"')3 (4 19)

If we use Kq. (4.18) to express both sides of this relation
in terms of n-quantum states, then by equating coe5-
cients of a'0.*' and substituting the resulting expression
for ttL I l)s i &l' I; 1) into Eq. (4.16), we 6nd

of Kq. (4.11) for an initially coherent state of the field,
we find

s'&trolls' t(f) ltro&i =(s *"cro*)"(e "pro)'

=
& l(e '*'a')"(e "a)'I o&, (4»)

and if we make use of the theorem'~ that an operator
is determined by its diagonal matrix elements in the
coherent-state representation, we see from Eqs. (4.13)
and (4.11)that the identity (4.9) must hold for arbitrary
initial states of the field.

The solution (4.5) for the density operator which
evolves from an initially coherent state will enable us
to obtain the solutions for arbitrary initial states of the
6eM. It follows from the linear character of the super-
operator 'll. that the n-quantum-state matrix elements

p- (f)=—.&nl "'(f) ln'). (4 «)
of the time-dependent density operator for the field
may be expressed in terms of their initial values by
means of the relation

on the left by exp( —iHt/A) and on the right by
exp(iBf/A), then it is clear from Eq. (2.12) that in the
expansion of the resulting expression in terms of the
complete set (3.29), only those terms can appear for
which n+ns=l and n'+ns'=l'. The restrictions on the
indices n, n', l, and l' in Eqs. (4.20) follow from these
relations and from the observation that the trace of
(3.29) with respect to the detector variables is non-
vanishing only if m'=m.

By substituting Eq. (4.20) for 'll, «(t) into Eq.
(4.15) and differentiating the resulting expression with
respect to time, we 6nd that the matrix elements of
pt~'(t) satisfy the differential equation"

where
+2I(+1)( '+1)3'"p .. '"'(f), (4.22)

, i(E)(])=e~((o+S(a) (s s') tp— , (E) (f) (4.23)

The probabilities of 6nding speci6ed numbers of quanta
in the field thus obey the differential equations"

d—p„ t &(t)
dt

= 2xL(n'+1)p„.+i „+,t~l(f) —n.'p„,„,t+l(f)j. (4.24)

These equations for the quantum-number probabilities
p„ t~'(t) are the same as those one would write down
in a time-independent classical Markov process, " in
which an e-quantum state is postulated to have the
probability 2xndt of becoming an (n —1)-quantum state
between the times t and t+dt. In the following sections
we shall show that this resemblance to a Markov process
is not merely a formal one, but actually rejects the
way the quantum numbers change when repeated
measurements are made on the system.

By evaluating Eqs. (4.15) and (4.20) for n =n', we see
that the probabilities p„„t~&(t) are given in terms of
their initial values by the relation

p„ t l(f)

(l l')
X

I I
fo. n«(4. 20a)

=0 for n) t. (4.20b)

Thus the matrix elements p„„'~'(f) depend only upon
those initial matrix elements pit t~i(0) for which t—i'
=I—n', and l&e. These relations may be deduced
directly from the conservation law (2.12).If we multiply
the expression

l~&~ l0&~ ~&0I ~«'I (4.21)
so V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961);

Proc. Natl. Acad. Sci. U. S. 48, 199 (1962).

"M. Scully, W. E. Lamb, Jr., and M. J. Stephen (Physics oj
Quantum E/ectronics, edited by P. L. Kelley, B. Lax, and P. E.
Tannenwald (McGraw-Hill Book Co., New York, 1966)g
have constructed a model of laser action in which the eftect of
damping leads to a term identical to the right-hand side of Kq.
(4.22) in the equation of motion for the density matrix. Professor
Scully has also shown LM. Scully, thesis, Yale University, 1965
(unpublished) j that Eq. (4.22) leads to the attenuation relation
(4.5) for coherent states."R. J. Glauber LSummer School on Quantum Optics of the
Italian Physical Society, Varenna, Italy, 1967 (to be published) j
presented a quantum-mechanical theory of the damped harmonic
oscillator characterized by equations which reduce to Eqs. (4.24)
when the temperature of the heat bath is set equal to zero.

"The MarkofFian behavior of the density matrix in a broad
class of physical contexts has been discussed by M. Lax /Phys.
Rev. 145, 110 (1966)g and by M. Lax and W. H. Louisell LJ.
Quant. Electron. QE-3, 47 (1967)g.
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If the Geld initially contains exactly n photons, the
probability of finding e photons remaining in the field

at time 3 is thus

p„,„,(&&(t)=
l

l(1,g—"')" "'(e "')"' (4.26)
n'I

field immediately after the measurement is thus

p(m, F&(r)=tr p(m&(r)

1—tri&LP p(r) j,
p-(r)

(5.2a)

(5.2b)

(4.27)

where p„("&(t), as given by Eq. (3.22), is the probability
of Gnding m quanta in the detector at time I, for an
initial n-quantum state of the field.

The relation (4.27) follows from the conservation
law (2.12), which requires that the total number of
quanta in the system of field and detector be equal to e
at all times, if it is equal to e initially. Thus the analysis
of this section leading to Eq. (4.26) provides an alterna-
tive derivation of the photoabsorption probability

p ("&(t). If we recall that the relation (3.24a), which

expresses the fact that only the diugonut n-quantum
state matrix elements of p( '(0) can contribute to p (t),
is a consequence of the conservation law (2.12), we see

that the analysis of this section may be used to obtain
the photoabsorption probabilities for arbitrary initial
field states. The advantage of the present derivation is

that it does not depend in a detailed way upon the
assumption that the detecting atoms are harmonic
oscillators. The results of this section have all been
derived from the single relation (4.5) for the time-

dependent density operator which evolves from an

initially coherent state of the field. The probabilities

p (t) given in Sec. III are therefore valid for any
system of detecting atoms which attenuates a coherent
6eld state in the manner expressed by Eq. (4.5), and

which is characterized by an excitation number M(t)
satisfying Eq. (2.12).

since P =P . The probability of finding n quanta in
the field at time 7, given that we have found m quanta in
the detector, is then

p(n, r lm r) = &(nl p'm'~'(r) ln)&; (5 3)

trL
l
n)F 2(nlP„p(r)]

p-(r)

p(n, m, r),
p-(r)

(5.4)

in which P(n, m, r) is the joint probability of finding n
quanta in the field and m quanta in the detector at time

p(n, m, r) =trLln)& p(nlP p(r) j (5.5)

p(n, m, r) =p„+,„+ (~&(0)p„("+"&(r)

trn+m)

km I

(5.6)

This probability is easily evaluated when the de-
tector is initially in its ground state. In that case it is
clear from the discussion following (3.29) that no con-
tribution can come from the off-diagonal e-quantum-
state matrix elements of the initial density operator for
the field. It follows from the conservation law (2.12)
that the only diagonal matrix element of p(~'(0) that
can contribute is the one corresponding to n+m
quanta. We have, therefore,

V. EFFECT OF MEASURING M

It is useful at this point to ask what additional
information about the state of the system we obtain by
making a measurement of the total number of quanta
absorbed by the detector. It is clear that if the system

of detector and field is described immediately before
the measurement by the density operator p(r), and if
the measurement of M at time v. yields the result m,
then the system must be described immediately after
the measurement by the density operator

(5.1)

in which P is the projection operator defined by Eq.
(3.4), and the factor 1/p (r) is necessary to ensure that
trLp( &(r)j=1. The reduced density operator for the

)((1 (, 2~r)m(g 2rr)—n (5 7—)

where the latter relation follows from the formula (3.22)
for p ("&(t). Substituting Eq. (5.7) for p(n, m, r) into
Eq. (5.4), we have

(n+m)
p(n, .lm, r)= p„,.~.( &(0)l

p (r) E m )
X(1 ~ 2rr)m(g 2rr)n —

(5 8)—

In the general case, the conditional probability
p(n, r

l m, r) depends upon the number m of quanta which
have been found in the detector. It is interesting to
observe, however, that there is an exception to this
rule. We have seen that when the initial state of the
system is the product of a coherent state for the Geld
and the ground state for the detector, then the state
of the system at any time remains the product of a
state for the field and a state for the detector; the
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(n(o))"
p (» (0) e n(0)— (5 9)

give rise, according to Kq. (5.7), to the joint quantum-
number distribution

statistical properties of the field in this case are there-
fore unaltered by a measurement of the detector. We
may note that all initial density operators for the field
whose diagonal matrix elements are given by a Poisson
distribution,

ment has revealed that the state of the detector has
not changed. Since the probability of exciting the de-
tector during a given time interval is an increasing
function of the initial field intensity, it follows that if
no excitations occur, we should be led to reduce our
estimate of the number of quanta in the 6eld. The
unique exception to this rule occurs when the initial
state of the 6eld is the occupation-number eigenstate
~n'));. In that case, if no quanta are found in the
detector at time r, then the field must still be in the
state ~n'));, and indeed it follows from Eq. (5.13) that

p(n, m, )=
(m(r))" (n(r))",-m(.)

nt
(5.10)

p(n, r im=0, r) = S„„,

if p„„~»(o)=s„„,.
(5.16)

where
n(r) =n(0) —m(r) =n(ge '"'. (5.11) VI. NONRADIANT STATES OF DETECTOR

Thus the joint probability distribution for quantum
numbers in detector and 6eld continues to factor into
Poisson distributions at all times, if the initial distri-
bution of the field is Poisson. The probability distri-
bution for the field after a measurement has found m
quanta in the detector is

(n(r))"
p(n, r tm, r) = e—"&'), (5.12)

which is independent of the result of the measurement.
It is interesting to observe that Eq. (5.12) remains

valid even for m=0, i.e., even when the detector is
found to be unexcited at time r. The mean quantum
number of the field given by Eq. (5.11) is smaller than
its initial value, and. thus the field is attenuated even
when a measurement reveals that no quanta have been
absorbed by the detector. This is in fact a general
feature of the attenuation process we are considering.
By evaluating Kqs. (5.8) and (3.24b) for m=o we find,
for arbitrary initial 6elds,

p(n, r ~m=0, r) =
iE) (0)(e 2mr) m—

(5.13)

p ,„,(z)(0)(e-2.r)n
n'=p

Thus the quantum-number distribution of the field at
time r, immediately after a measurement has found the
detector to be unexcited, is in general di6erent from the
initial quantum-number distribution p„„&~)(0).The new
distribution has a mean quantum number

no(r)—= P np(n, r)m=o, r),
n=p

(5.14)

which may be shown to satisfy the, inequality

no(r) &n(0)=—P„np„„'")(0) .

It should not surprise us to learn that the statistical
description of the field can change even when a measure-

In order to develop our theory of photon detection
further, it is necessary to be able to discuss the time
evolution of the system of 6eld and detector after a
measurement has been made of the total number of
quanta in the detector. The conventional way'4 of
dealing with this question is to assume that the further
absorption of quanta by the detector proceeds as if the
detector had returned to its ground state after the
measurement. One may, indeed, de6ne an ideal detector
as one for which this assumption is valid. It is necessary,
therefore, to justify it in the context of a particular
model of the detection process. This is especially im-
portant for the model we are investigating, which de-
scribes significant attenuation of the field, and strong
excitations of the detector.

We shall gain some insight into the nature of the
excitations which are induced in the detector by examin-
ing in greater detail the solutions which were found in
Sec. IV for the time evolution of the reduced density
operator for the 6eld. Those solutions were based on the
assumption that the detector is in its ground state at
1=0, and it is therefore interesting to observe that the
equations obtained for p'~)(/) are invariant under time
translation: It follows from the fact that the coe%cients
in the differential equations (4.22) are independent of
time that if p'~)(r) is the reduced density operator for
the field at time r&0, then the field at any later time
r+t is described by the density operator

~"'(+~)=~[~")( ); ~j, (6.1)
where the super-operator tt is delned by Eq. (4.4). Thus
the density operator for the field at time r+f is just
what it would have been if the density operator for the
system at time r had been

~'"(r) IO)»(0) = [trep(r)]
~
0)e e(0~, (6.2)

rather than the operator p(r) given by Eq. (3.2). Of
course the actual state of the system at time r contains
excited states of the detector, and in general speci6es

'4 See, for example, Ref. (5}.
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correlations between the variables which describe the
field and, those which describe the detector. Evidently
the states of the detector which are excited by the field
behave just hkc thc ground state ln thcii lnQucncc on
the further evolution of the reduced density operator
for the Geld.

%c have discussed in Sec. II an example of such a
state of the detector. According to Kq. (2.47), any
state of the form

I
X(t')&e, where t' is any positive time,

behaves just like the ground state in its inhuence on
any coherent state of the field. Since the formulas of
Sec. IV for the time evolution of p(~)(/) were all derived
from the single relation (4.5) for an initially coherent
state, it follows that the state IX(t'))e is like the state
IO&e in its influence on arbitrary initial states of the
field: If the initial state of the system is

p= p& )(0) lh(i')) (h(&') I

then the density operator for the field at time t is given

by Eq. (4.3).
It follows that if the state p(~)(0) in Eq. (6.3)

represents the vacuum state of the field, then the field
remains in the vacuum state at all times. The state
IX(t'))e therefore does not radiate quanta into the
vacuum. Of course this result depends strongly upon the
approximations made in Sec. II; we may note in par-
ticular that according to Eq. (2.28) we are justified only
in treating times small compared to the reciprocal of
the mean interval between the discrete frequency levels
of the detecting oscillators located within the volume
c'/aF. The lifetime of a state such as IX(t'))e is not
infinite, but it is evidently much greater than that of
a detector state consisting of incoherent excitations of
the oscillators, with the same mean quantum number. "
The lifetime of the state

I X(t )&e approaches infinity in
the limit in which the conditions (2.22), (2.23), (2.25),
and (2.2'7)-(2.29) are perfectly satisfied, and can clearly
be much larger than any of the time intervals we need
consider.

Let us define a nonradhunt state p( ) of the detector as
any state which affects the field, in the approximation
we are making, in the same way as the ground state
does, i.e., as any state for which the relation

tre(e—i&i/sp(&)(0)P()))ei&«s} =ZLP(»(0& &] (6.4)

holds for arbitrary initial field states p(~)(0). If p(~)(0)
corresponds to the pure coherent state ln)s, we have,
for arbitrary 0.,

{e—iHt/AI~) ((sl p(B)ei/rt/s}

=le *'~&~ ~(e *'~l, (6.5)

a relation which has been shown to imply the more

'~The existence of anomalously long-lived states of systems
consisting of many coherently excited atoms has been noted by
R. H. Dicke /Phys. Rev. 93, 99 (1954)j, who also shows that
there exist anomalously short-lived, or "super-radiant, " states of
such systems.

we find
g(() eiHt/s(/e i//t/s—

) (6 8)

8
I 1)= e i//i/s(8 *~g+f($)$g I ) I )

=e *'&I'&+e '""V«)bl~&
I ) (69)

If the state
I &s is nonradiant, i.e., if the density

operator
p"'=

I )»( I (6.10)

satisfies Kq. (6.6) for all ~, then the state
I t& must be

equal to the product

It)= e '"""l~&~l—&e= le *'~&~l~ ~)e (6 11)

where
I t; n&e is some state of the detector, and we have,

therefore,
alt&=e-"ult&. (6.12)

If we compare this relation with Eq. (6.9) we see that
any pure nonradiant state

I &e must satisfy the relation

f(~)bl &~=0 (6.13)

for all 3)0. It is equally true that any state
I )i) which

satisfies this relation must be nonradiant, since if we
substitute it into Eq. (6.9) we obtain Eq. (6.12), and
thus Eq. (6.11). The equation (6.13) may therefore
be used as a definition of nonradiant pure states of the
detector. By the obvious generalization of the steps
leading to Eq. (6.13) we find that any nonradiant mixed
state p&~) must satisfy the relations

Lf(&')Hp("= p( )Q.(),")Ht=0 (6.14)

for aB ('&0, and that any state which satisfies these
relations must be nonradiant.

We may note that if the initial density operator p for
the system satisfies the relation

I.t (&')Hp =PH(/'&Ht= 0 (6.15)

general relation (6.4). It is not difficult to show that
whenever the reduced density operator for the Geld
represents a pure coherent state, then the density
operator for the system must be the product of a co-
herent state for the field and a state for the detector, so
that we must have

e '+ /" In)); )p((sl p( )e'~""
=

I e *'o()/ /:(e "col p(e)(t; no), (6 6)

where p(~)(t; ns) is some state for the detector. The
equations (6.4), (6.5), and (6.6) are all equivalent, and
any of them may be used to define nonradiant states.

In order to ascertain the general class of nonradiant
states, let us consider the state which evolves during
time t from the product of an arbitrary coherent state
Io(&/ for the field and some pure state

I )e for the
detector,

Ii&=e *&«"-In&,
I ), (6.7)

and then let us evaluate the quantity al t). If we make
use of Eq. (2.35a) and the relation
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for all t'&0, then the time-dependent density operator

(t) e iH-t/i&~i JI i lii (6.16)

must possess a reduced density operator p&~&(t) for the
field which is given in terms of its initial value by Eq.
(4.3). To prove this, let us express p by means of the
expansion

There are many nonradiant states of the detector
besides the ground state and the states of the form
~X(t'))e. Indeed, as we shall now show, states of the
detector which are excited by arbitrary initial fields
are nonradiant. Let us consider the density operator
p(r) which evolves from the initial state (3.1), and
evaluate the quantity D (t')bjp(r). If we make use of
Eq. (2.35b) and the relation

p= P ~n)r r(n'~p„„&~&, (6.17)

we 6nd
b(r) —eiH r lkbe iH rl—k (6.22)

where the quantities p „( ) are operators in the state-
space of the detector, which, by virtue of the Hermi-
ticity of p, satisfy the relation

p „,(&)t—p, (&) (6.1S)

%e wish to show that if the initial density operator
(6.17) for the system satisfies the relations (6.15), then
the reduced density operator for the field at time t is
the same as it would be if the state of the system at the
beginning of the interval were just

p&'&(0)
I 0)»(01
= Z ln)»(n'IL«~p- "'jl0)»(0) (6.2o)

n n'

%e are able in fact to prove a stronger theorem: Each
term in the expansion (6.17), corresponding to a par-
ticular value of e and n', propagates in time in such a
way that its contribution to the reduced density oper-
ator for the 6eld at time t is the same as the one which
arises from the corresponding term in the expansion
(6.20). To prove this, let us note that by virtue of
Eqs. (6.15) and (6.17), the operator p„„.&i», for any
values of n and n', must satisfy Eq. (6.14), and hence
may be constructed from nonradiant states of the de-
tector. It should be noted that the equivalence between
Eqs. (6.14) and (6.4) was derived under the assumption
that p~+) is a Hermitian operator with unit trace. It
is not difBcult to show that if p&~) does not have unit
trace, then an additional factor of tr~p&~& must be
introduced into the right-hand side of Eq. (6.4). The
contribution of a particular term in Eq. (6.17) to p&r&(t)

is then

(~,lii&g(n) (n ) p, (B&eiBtlh)

=Lt»p„„,& &)&L~n)»(n'~; tg, (6.21)

which is the same as the contribution from the corre-
sponding term in the expansion (6.20). By summing
over n and n' in Eq. (6.21) and making use of Eq.
(6.19) we find that p&~&(t) is given in terms of its initial
value p&~&(0) by Eq. (4.3).

The reduced density operator for the field at the begin-
ning of the interval is, according to Eq. (6.17),

p&r&(0) = g ~n)r r(n'~ tr»(p„„&~&). (6.19)
n, n'

L7(t')b3'(r)

=e ' '"f(t')fX(r)a+v(r)bj
&&p"'(0) I0) (0I ' '" (6.23)

=e ' '"f'(t')X(r)ap' '(0) )0)e»(0)e'~'", (6.24)

since bt 0)e=0. If we then make use of Eq. (2.36), we
find

ti(t')bjp( ) =0=p( )Li(t')b7,

the second part of which is the Hermitian conjugate of
the first. Equation (6.25) is not surprising, since we
know that the reduced density operator for the 6eld
at any time r+t is given in terms of its value at time
r by Eq. (6.1). It is worth noting, however, that Eq.
(6.25) is valid not only when the initial state of the
detector is the ground state, but also whenever the
initial state of the detector is nonradiant. Indeed, if
the density operator for the system satisfies Eq. (6.15)
initially, then it must do so at all times. To prove this
we need only substitute p for

H(t')bllr) =0 (6.26)

for all t'&0, then so must the state P„&r), where P
is the projection operator defined by Eq. (3.4). To prove
this, let us expand the state

~
r) in terms of eigenstates

of%,
lr)=Z-&-lr), (6.27)

so that we have

+ Lf «')b/„lr)=0. (62S)
Since the state P~~r) contains exactly yg quanta, and
since the operators b; are lowering operators, the state

p&r&(0)l 0) ,(Ol

in Eq. (6.23), and make use of Eqs. (2.37) and (2.36).
We have shown, then, that the set of nonradiant states
is invariant ender the action of the Barniltonian, within
the approximations we are making.

These results enable us to show that the absorption
of quanta by the detector during a time interval follow-
ing a measurement of M proceeds exactly as if the de-
tector were in its ground state immediately after the
measurement. Let us begin by noting that if the system
at some time r is described by a pure state

~
r) which

contains only nonradiant states of the detector, i.e.,
if the state

~ r) satisfies the relation
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Lf (t')b)P
I r) must contain exactly m —1 quanta. Thus

the individual terms in the sum (6.28), corresponding
to different values of m, are orthogonal to each other,
and since the sum vanishes, then so must each term,

the system at time r is given by Eq. (6.33) as it would
be if the state of the system were Iri)i I0)&.

It follows directly that if the state of the system
immediately after the measurement takes the form

p'"'(r) =p'" "(r) lm)»(mI, (6.36)

By similar reasoning we may show that if the state
of the system immediately before a measurement is
mixed, and if the density operator p(r) which describes
it satisfies Eq. (6.25), then so must the operator p' &(r),
which is defined by Eq. (5.1) as the density operator
which must be used to describe the system immediately
after the measurement if m quanta are found. By steps
similar to those leading to Eq. (6.29) we find

where
I rt) i is an 0-quantum state of the field, and

I
m, )a

is a state of the detector containing m quanta, which

we assume to be nonradiant,

(6.34)

The reduced density operator for the field at time r+ t is

therefore just what it would be if the state of the de-
tector at time r were

I 0)a, and the probability of finding
ri' quanta, in the field at time r+t is therefore given by
the right, -hand side of Eq. (4.26). Since the state of the
system contains exactly m+5 quanta, the probability
pf 6nding n' quanta in the field at any time must be
equal to the probability of finding m+e —e' quanta in

in the detector. The probability of finding m+m' quanta
in the detector at time r+t is then, by virtue of the
equivalence of the right-hand sides of Eqs. (4.26) and
(4.27),

p + (r+t) = p '"'(t), . (6.35)

where the functions p ~"'(t) are given by Eqs. (3.22).
Thus the probability of ni' quanta being absorbed
between times r and r+t is the same when the state of

It follows from this relation that the reduced density
operator for the field evolves in time after the measure-
ment exactly as if the density operator for the system
immediately after the measurement were

p'" "( ) I o) (6.31)

where p&m ~'(r) is defined by Eq. (5.2a). The reduced
density operator for the field at time r+t is then

(6.32)

if m quanta were found in the detector at time r.
This relation is easily seen to imply that the detector

states following a measurement of M behave like the
ground state in their absorption of quanta from the
6e]d. Let us 6rst consider the case in which the state of
the system at time

I r) is the product

(6.33)

where p~ ~&(r) represents a statistical mixture of ~-
quantum states for the field, then the probability of
finding m' quanta absorbed by the detector between
times r and r+t is the same as it would be if the density
operator for the system immediately after the measure-
ment were given by (6.31). It is not dificult to show
that off-diagonal matrix elements of p&~ ~~(r) cannot
contribute to the absorption of quanta by the detector
between the times r and r+t; this can be proved by
steps analogous to those used in Sec. III to establish
the same result for the case in which the detector is in
its ground state at the beginning of the time interval in
question. Thus a nonradiant state of the detector con-
taining a fixed number of quanta is like the ground state
in its absorption of quanta from an arbitrary mixed
state of the field.

We have shown that if the state p~ '(r) is the product
of a state for the field and a state for the detector, then
the absorption of quanta by the detector following the
measurement proceeds as if the detector were in its
ground state. To generalize this result to the case in
which the states of the field and detector are corre-
lated after the measurement, we need only express the
density operator p&~'(r) by means of the expansion

'(r) = 2 I ~~)F F(ii'I p..'"~'(r), (6.37)

and note that by virtue of Eq. (6.30) each of the
operators pn. a'(r) may be constructed entirely from
nonradiant states.

VII. MULTIPLE-TIME COUNTING
STATISTICS

The formulas derived in Sec. III for the probabilities
p (t) of finding m quanta absorbed by the detector
between the initial time and time 3 are all based on the
assumption that the system of field and detector is
isolated throughout the time interval in question; the
probability p (t) refers to a single measurement per-
formed at the end of the interval. In actual photon-
counting experiments, on the other hand, the short
resolving times of the detectors make it possible to
specify quite closely the times at which individual
counts are recorded, rather than merely to measure the
total number recorded in some interval. It is natural to
attempt to describe such an experiment mathematically
by supposing that repeated measurements of the total
excitation number M of the detector are made, at
closely spaced times 7,. We shall call such a procedure
"monitoring the detector. "
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It is by no means clear a priori that the probability
of finding m quanta in the detector at time t is the same
when the detector has been monitored between the
initial time and time t as it is when the detector has
not been monitored. We are able, however, to dernon-
strate this equivalence, within the context of our model
of photon detection, by making use of the results of the
preceding section.

Let us assume that the detector is in its ground state
at time t =0, so that the density operator for the system
at time ri is given by Eq. (3.2), with t —+ ri Th. e
probability p (ri) of finding m quanta in the detector
at time ri is then given by Eq. (3.5), and if m quanta are
found, the density operator which describes the system
immediately after the measurement is given by Eq.
(5.1).Let us now consider the ensemble of systems which
result from a measurement of M, corresponding to all
possible values of m. The density operator which de-
scribes such an ensemble is

t '(ri) =Z- p-(ri)t '"'(ri)
=Z- &-t (ri)&-.

(7.1)

(7 2)

The density operator for the system after the measure-
ment is thus, in general, different from the density
operator before the measurement, even when the result
of the measurement is not taken into account. The
reduced density operator for the retd, on the other
hand, cannot be changed by a measurement of the
detector when the result of the measurement is not
taken into account, and indeed it follows from Eq. (7.2)
that the density operator for the field immediately
after the measurement is unchanged:

p'& &(r,)=tr»p'(ri) =p~ &(ri) . (7.3)

We have shown in the preceding section that the
act of measuring M does not affect the nonradiant
character of the states of the detector. It follows that
the reduced density operator for the field evolves
between the times v& and v& in the same way that it
would if no measurement had been made at time v~.

Since we have shown that the dynamical development of
the isolated system of 6eld and detector does not alter
the nonradiant character of the states of the detector,
we know that the state of the system immediately
before the second measurement involves only non-
radiant states. By repeating these arguments at each
time 7; we 6nd that the reduced density operator for
the 6eld at any time t is the same whether or not meas-
urements of M have been made prior to time t. Of
course this result is valid only when we are considering
the ensemble of systems which result from a measure-
ment. We have seen in Sec. V that the statistical de-
scription of the 6eld can be greatly altered even by a
single measurement of M, when the result of the
measurement is taken into account.

The fact that the reduced density operator for the
Geld is not altered by the monitoring of the detector

enables us to prove the same result for the photo-
absorption probabilities p (t). If the initial state of the
field is the ii-quantum state le)r, then whether or not
measurements of M have been made between the initial
time and time t, the total number of quanta in the field
and detector must be equal to m at all times. The relation
(4.27) must therefore hold at all times, and since, as
we have shown, p'~&(t) is not affected by the monitoring
of the detector, then neither is p ~"&(t). It follows im-
mediately that the photoabsorption probabilities p (t)
are unaffected by the monitoring process in all cases in
which the 6eld is initially described by a statistical
mixture of e-quantum states. The failure of the off-
diagonal m-quantum-state matrix elements of p~~&(0)
to contribute to p (t) when the detector is monitored
can be established by much the same reasoning as that
which was used in Sec. III to establish this result for
the case in which the detector is not monitored; we have
only to note that according to Eq. (7.2), the measuring
process selects those terms for which m'=m from the
expansion of the density operator for the system in
terms of the complete set (3.29). It follows then that
the monitoring process does not affect the photo-
absorption probabilities for arbitrary initial states of
the 6eld.

Let us now evaluate the joint probability p(fm;))
that m, quanta are found in the detector at each of the
times 7,. If the system is described initially by the pure
state

l ), then the probability of finding mi quanta
absorbed at time r~ is

p(m ) —.( le~Hrilkp e iHril&&l )—(7.4)

and if m& quanta are found, the state which describes
the system immediately after the measurement is

lm, r,)—fp(m, )g
—&2+ e—~H~i&al ) (7.5)

where the factor
l p(mi)$ '" is necessary to insure that

the state be properly normalized. The probability of
Gnding m2 quanta in the detector at time v 2, given that
m& quanta have been found at time r&, is thus

p(m2lmi) =(mi, ril e'H'~ "&'"P„,
)(e 'H&'~ 'i&'"l m

—r ) (7 6)

and if m~ quanta are found, the state which describes
the system immediately after the second measurement is

lmi m~' r2) =Cp(m2lmi)3 '"&
~

&&e 'H '~"& "lm . ri) (7 7)

p(mi, m2) =p(mal mi) p(mi) . (7 8)

The joint probability P(mi, m2) for finding mi quanta
at time vI and m2 quanta at time v& may be found by
substituting Eq. (7.5) for lmi, ri) into Eq. (7.6), and
then substituting the resulting expression for p(m2l mi)
into the relation
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We have, then,

p(m m ) (~eaHrg/SP eiH(rg rg—)/AP

&&e 'sr(~~~»/"P e-ca~~/" ~). (7.9)

The general formula for the probabilities p({rn;}) of
finding m; quanta at each of the times v.;may be derived
by repeating the steps which led to this relation. Let us
introduce the operator

&({m;})=Lg; e ' "'"+,]~[@(;.e 'n~""P,J, (7. .10)

where
~&~=—&~+~

—
&~

and the operator products are understood to be written
in chronological order, i.e., with later times to the left
of earlier times. Then the probability p({m,})may be
expressed as

p({m })=(l&({m})I)
= trpb. ({m;})J,

(7.12a)

(7.12b)

in which the latter relation is the obvious generalization
to mixed initial states of the system.

By substituting Eq. (3.1) for p into Eq. (7.12b) we
see that the probability p({m,})may be expressed as
a linear functional of the initial density operator for the
field in the form

p({m })=tr Lp"'(0)(p'({m;})j, (7.13)

where (P'({m,;})is an operator in the state-space of the
6eld mode, which may be written formally as

(P'({m })= «oL 10)»(01&({m'})g (7 14)

Let us now assume that the time intervals between
successive measurements are small enough to satisfy the
inequalities

(7.15)t),r; « (n)/. ,

p„'(t, t„,; t) = tr, {p(»(0)(P '(t, . t„; t)}, (7.16)

where (n) is the initial mean quantum number of the
field. For a broad class of initial 6elds, these inequalities
can be well satis6ed by time intervals large enough to
satisfy the conditions (2.25). When they are satisfied,
we may assume that at most one quantum can be ab-
sorbed by the detector during the interval. 5g;, i.e.,
that m;+i is at most m,+1, and that the probability of
this happening is very small. We may then think of the
detector as registering counts, i.e., absorbing quanta,
during deGnite small time intervals. Let us de6ne the
function p '(ti ~ t; t) as the joint probability of
recording counts during the time intervals 5t; im-
mediately following the times t;, and of not recording
cogwts dlrieg any other time intervals between the initial
time and some time t&t . It is clear from Eq. (7.13)
that this probability may be expressed as a linear
functional of the initial field state,

p&= )n(t) ~'2.at,

the probability of no quanta being absorbed is

(7.18a)

p, =i—)n(t) )'2~at, (7.1gb)

and all other possibilities may be neglected.
Since in this case the probability of a count being

recorded at any time is independent of what happens at
other times, it follows that the probability of counts
being recorded within the intervals ht~- At following
the times t~ t, irrespective of what happens at

where (P '(ti t; t) may be evaluated by letting the
numbers ns; in Eq. (7.14) be the total number of counts
recorded by the times v;.

It is also useful to introduce the probability
p (ti ~ t ) of counts being recorded during the time
intervals ht, immediately following the times t, ,
irrespective of whether or not colnts are recorded at any
other times. It is clear that the set of probabilities p
is linearly related to the set of probabilities p ', and that
therefore the probabilities p may also be expressed as
a linear functional of the initial density operator for the
Geld,

p (ti ~ t )=trr{p(~)(0)(p (t, t„)}. (7.17)

The solutions for p
' and p when the initial state of

the Geld is the coherent state
~
no)r are particularly easy

to obtain, with the aid of the results of Sec. VI. We
have shown that if the state of the system at the begin-
ning of some interval ht is the product of a coherent
state In)r for the field and a nonradiant state of the
detector, then the state of the system at the end of the
interval is the product of the coherent state

~

e '~'a)r
for the 6eld and another nonradiant state of the detector.
Since the process of measuring M does not aGect the
nonradiant character of the states of the detector, it is
clear that after any number of measurements, the state
of the system at time t remains the product of the
coherent state ~n(t))r for the fieid and some state for
the detector, regardless of the outcome of the measure-
ments. The complex amplitude n(t) of the field state is
given by Eq. (3.12), and although the detector state
will depend upon the outcome of the measurements,
i.e., on the number of counts that have been recorded
previous to time t and on when these counts have been
recorded, it will nevertheless be a nonradiant state with
a speciGed number of quanta. As such, it will absorb
quanta from the 6eld during some time interval ht fol-
lowing the time t in the same way that the ground state
would. The probability of any number of quanta being
absorbed between t and t+t).t is thus independent of
what has happened previously, and may be found by
evaluating Eqs. (3.10) and (3.11) with o/0 replaced by
n(t), and t by At. If we evaluate these expressions for
t),t«

~
ao

~
'//(, we find that the probability of one quantum

being absorbed is
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other times, is given by the product

p-(t ~ t-)=II Clz-*''n. l'2'&Q
ittzo1

=II Clnol'e 'ztt2ttthtt;j, (7.19b)
it=pl

since Re(z)=tt. This expression is exactly what one
would write down in a semiclassical theory, if one
postulated that the intensity of the classical 6eld which
induces the excitations in the detector decays exponenti-
ally. The decay rate for the 6eld intensity —the factor
multiplying -t; in the exponential function in Eq.
(7.19b)—is equal to the absorption rate per unit fieM

strength, i.e., the factor multiplying ht;.
If the initial density operator for the 6eld possesses

a I' representation as expressed by Eq. (3.16), then the
probability p (ti ~ t ) may be expressed in terms of
a statistical distribution of attenuated classical 6elds, as

p (ti" t )= {IIClnol'z '""2tttItttl}
j=1

XP(not0)d'no (7 20)

A general expression for p (ti t ) may be found by
noting that Eqs. ('7.19) may be expressed as

p (ti . t„) t;(nol(z-*"—a)t (e *t a)t-

Xe z™tt' 'e * ttlnp)tzII 2&tktt ('7.21a)

=expC —P

2ttt;gt;(nolan'"tt

Ino)tz
i~1

(7.2 lb)
i~1

By comparing these relations to the form Kq. (7.17)
takes for p'~&(0) =

I no) tz t;(no I, and recalling that
any operator (P is determined'~ by the function
tz(nol(P~lnp)tz, we see that the general formula for the
probability p„(ti ~ t), for arbit.rary initial fields, may
be expressed in the form

The formula (7.23) for the correlation function G& ' is
similar to the one given by Glauber. ' The important
difference is that the attenuation of the field implies
that the operator

g
—

gled g
—'L(40+5M) 5—

otter (7.25)

must be used in place of the interaction-picture operator
~trig tg

The probability p (t) of recording a total of tN counts
between the initial time t=0 and time t may be evalu-
ated by noting that since the probabilities p (ti t )
are given by Kq. (7.22), the generating function de-
fined by Eq. (3.30) is given byo

( 2'~)na
Q(ht) = Ze-1

G&"&(ti t t ti) . (7.26)

If we substitute Eq. (7.24) for Gt"&(ti t; t ~ .ti)
into this relation and perform the indicated integrations,
we find the result given by Eqs. (3.32) and. (3.34). We
have thus exhibited by an explicit calculation the result
proved earlier in this section, that the probabilities

p (t) are not affected by repeated measurements of the
detector between the initial time and time t.

The joint probability p '(ti ~ t; t) of counts being
recorded in the intervals following the times tl t„
and of no counts being recorded in any of the other time
intervals between the initial time and some time t& t

is easily evaluated. for an initially coherent state of the
field. If we make use of Eqs. (7.18), we find

in which the second product is taken over all time
intervals ht~ during which no counts take place. In
the limit At; ~ 0, these intervals comprise the entire
time interval, and we may write'6

p-'(ti t-; t) ={IICln(tt) I 2tttttttj}
it=ttt 1

X{IIC1—I (4) I'2 &t j}, (7.27)

p.(t " t.)=G'"'(t " t-; t-" t ) II 2 &t;, (7 22) II L1-
I (")I'2 ~t j

i = exp{—p I
n(t, ) I

s2.at.}
where the function Gt '(ti t; t ' ti') may be
defined for arbitrary 2m times ti t, ti' ~ t ' as

G' &(ti t t ' t ')= trtz{pt~&(0)(—z *'tt)t-
X (z ztmt&)tt" ztm'o. . .e—ztt'tt} (7 —23)

and therefore takes the form, for t; = t

G'"'(ti t; t ti) = exp. [—tt 2tttg]

= exp —2~ a t' 'Ct'

exp{ lno I
s(1—e '"')} (7.28)

where the last step follows from the definition (3.12)
of n(t). If we substitute Eq. (7.28) into Kq. (7.27) and

"A similar calculation has been performed by L. Mandel,
Xtro{p&~&(0)ttt t&l }. (7.24) Phys. Rev. 152, 438 (1966).
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make use of Eq. (3.12), we find

p '(ti. t„„t)

=exp{—g 2)(t, ~t2() ~'(1—e '"'))
j'=1

'tn.

X~no~2 g 2xht, (7.29)

= exp) —g 2)d,5) ((2()
~

a™:exp{—a'a(1 —e '"')):
j=l

states of the detector at any time are nonradiant, the
probability of a quantum being absorbed between the
tines t and t+At, if the field has exactly n quanta at
time t, is the same as it would be if the detector were
in its ground state at time t, and is therefore equal to
2mht. The quantum-number distribution for the field is
thus described by a time-independent Markov process,
a result which was found in Eq. (4.24), for the case in
which the detector is not monitored.

The general expression for p
' is, by virtue of the

diagonal nature of the operator expression in Eq. (7.32),

tn

Xa ~np)F g 2)(dt;, (7.30)
j=1

and if we compare this relation to Eq. (7.16) and make
use of the fact that the operator 6' ' is determined'~ by
the function tt(t)t()

~

(Pm'
~
no) t., we find, for arbitrary

initial fields,

m

=expI —g 2)d, 5 tr);{p(~)(0)atm
j=l

X:expL—ata(1 e'"'—)5: a ) g 2)(dt, (7.31)
j=l

tn

exp( g 2Kt 5 tr {p(E)(0)a(me xstaa—m}
j=l

m

X g 2 at;, (7.32)
j=l

where the identity (3.21) was used to reach the latter
expression.

If the field is initially in the n-quantum state ~n)F,
Eq. (7.32) takes the form

p
'( )(ti. . .t t)

'tn

=expL —p 2(d;—2)d(n —nt)5
j=1

'tn

X g 2)tht; for nt & n (7.33a)
(n —n2)! t'=i

for nt) n. (7.33b)

It is interesting to observe that Eq. (7.33a) may be
written in the form

=g I e (" '+')'"(' ''-')2(n —j+J)t(&t;5
j'=1

Xe—(tt m) 2 t ( t tm) (—7 34)—
where tp=—0. This is a relation which can be deduced
directly with the aid of the results of Sec. VI. Since the

It is interesting to observe that the Eq. (7.34) is what
we would write down if we pictured the initial state of
the system as containing e distinguishable quanta, and
postulated that the probability of any quantum being
absorbed between the time t and t+ht, if it has not been
absorbed before time t, is 2ftht. The complete description
of photocounts given by Eq. (7.35) would then corre-
spond to a statistical distribution of the initial number
of such distinguishable quanta. When a non-negative
I' representation exists, this way of picturing the ab-
sorption process gives the same results as the semi-
classical picture described earlier, in which the proba-
bility of recording a count is proportional to a classical
field intensity, and the initial state of the quantum-
mechanical field is thought of as an ensemble of classical
fields, each of which becomes attenuated during the
detection process.

VIII. SPACE-TIME CORRELATIONS IN
PHOTO COUNTS

In actual photon counting experiments, the spatial
distribution of detecting atoms is not uniform, but is
nonvanishing in a relatively limited region of space. In
describing such experiments, however, we shall be forced
to assume that the number density of detecting atoms
varies slowly over many wavelengths of the field. We
shaB then divide the entire region of space in which the
experiment takes place into many smaller regions,
throughout each one of which we shall assume the
number density of detecting atoms to be relatively
constant. The assumption of spatial homogeneity in
each region is a necessary one if we are to make use of
the results of the preceding sections, which were based
on the assumption that the field consists of a single mode
of oscillation throughout the detection process. If the
spatial distribution of atoms in a given region were
inhomogeneous, then an initial field state consisting of
a single excited mode would become attenuated by
different amounts at diQerent points within the region,
and hence would eventually consist of many excited
modes. The diGerent modes of the 6eld are all coupled
to the same detecting atoms, and hence exert an
inhuence on each other even though they are not
coupled directly by the Hamiltonian.
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It is necessary for this reason to begin our discussion
by continuing to assume that the detecting atoms are
homogeneously distributed throughout a region of
volume V, and establishing the conditions under which
the diGerent modes of 6eld may be treated indepen-
dently of one another. %e shall then treat more realistic
situations by letting the region in question be a small
part of a larger region, over which significant variations
in the density of atoms may tat.e place.

If we substitute the general expression (2.4) for the
field within a region of volume V into Eq. (2.8) and
make use of Eq. (2.2), we find that the interaction
Hamiltonian for the system is

Hi(t) =—i//i P a/, t(t)gi;b, (t)+H.c. ,

of the detecting oscillators are randomly oriented, we
find from Eq. (8.7) the commutation relation

(8.8)

It is not diS.cult to show that in the limit in which the
number density of detecting oscillators approaches
infinity but remains constant throughout the cavity,
the operators b/, ,„(/) and b/, ,„(t), for k&k', describe
independent harmonic-oscillator modes. The com-
mutator of b/, „(t) and b/, , t(t) is, according to Eq. (8.8),

in which the coupling parameter g» is given by Eq.
(2.10), with ~ and e replaced by s» and e/„respectively.

It will simplify our analysis if we assume that the
frequencies of the detecting oscillators are allowed to
take on only certain (closely spaced) discrete values, and
that there are a large number E„ofoscillators through-
out the region in question with any given allowed
frequency ~. Since the oscillators are assumed to be
homogeneously distributed, the number of oscillators
per unit volume with the same frequency co is

/V (r)c'/(o'))1, (8.10)

then summations over j in Eq. (8.9) may be replaced by

=8„„P;(e/, u;)(e/, "u,)e'~"' ~&'/ (8. .9)
07 j=(d

If there are many oscillators with a given frequency ~
within a volume equal to the cube of the wavelength
1/k c/a& of the absorbed radiation,

iV„(r)= iV„/V

It is convenient to introduce the function

(8 2) dr, /V„(r;) . (8.11)

If we carry out the summation over the randomly
oriented vectors u/, we find then that Eq. (8.9) reduces
to the relation

—1/t2/V„1 )
f(&/ &)= c

3/d/, V m)

( 3 )i/2
g»=g(~~~/)I I (c'«) c '""

~~„,)
(8.4) X d'r X„(r)e'&"' "&' (8.12)

G)y Al

in terms of which the coupling parameter g// may be L&&,~(/)&b/', ~' (/)j=&~~' (e/' i')
expressed as

The interaction Hamiltonian (8.1) may then be ex-
pressed in the form

Hi(t) = ik P ay~(t)g((o/—„(v)b/„„(/)+H.c. , (8.5)

where the operator bi,„(I) is defined as a phased sum of
annihilation operators with frequency co..

bi..(t)=— P; g/;b, (I)
g(Mi, (d)

(8.6)

3 )i/2
P/ (e/, ue, )-"~'/b;(t) . (8.7)

/V I

We have introduced the factor 1/g(co/„~) into the
definition (8.6) of the operator b/, , (t) so that it satisfies
the usual commutation relation for harmonic oscil-
lators: If we recall that the polarization vectors N;

It is clear that if the spatial distribution of absorbing
oscillators is homogeneous, i.e., if X (r) is independent
of r, then this expression vanishes for any two electro-
magnetic modes indices k/k', so that we have, ac-
cording to Eq. (8.9),

Lb, .(/)», „.t(/))=S„„.S„„,. (8.13)

Thus, in the limit we are considering, any two distinct
electromagnetic field modes are coupled by the Hamil-
tonian (8.5) to independent modes of oscillation of the
detector. The equations of motion for the variables
which describe the different field modes are therefore
decoupled from one another, and the problem of the
interaction of field and detector may be solved by
treating each field mode separately.

We may note that the condition (8.10), which is a
necessary one for the decoupling of the modes, leads to
stronger conditions on the number density of detecting
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e(&o)ll))1. (8.14)

Since there are X„(r) oscillators per unit volume with

any given frequency ~, the number of oscillators per
unit volume per unit frequency range is

E(ol,r) =g„(r)N(ol), (8.15)

where E„(r) is t'he average of the function X„(r) over
many nearby discrete levels. Sy multiplying the left-
hand sides of the inequalities (8.10) and (8.14) and
making use of Eq. (8.15), we find the result which was
asserted without proof in Eq. (2.29a). In a similar way
we see that the restriction

oscillators than are required by the approximations
made to solve the Eqs. (2.11).Since the derivations in
the Appendix require that the frequencies of the ab-
sorbing oscillators take on many values between the
frequencies co and ol+x, it follows that if there are e(ol) doo

possible oscillator frequencies between oo and ol+doo,
we must have

expressed as in Eq. (3.32), where the generating operator
Q(g, t) is equal to the product of the generating operators
for each mode,

Q(),t) =exp{go aotao lnL1 —$(1—e '"&')]}. (8.22)

The monitoring theory developed in Sec. VII to
describe the statistics of the temporal distribution of
photocounts may be straightforwardly generalized to
the many-mode case. %e Gnd that for an initially
coherent state of the field, the probability of counts
being recorded between the times ti and ti+hti, ~

and t +At, irrespective of what happens at other
times, is

where n&(t) is given by Eq. (8.19). For arbitrary initial
fields, the probability p„(ti t„) may be expressed by
first introducing the noncanonical operators

t«N(&o), (8.16) ao'(t) —=s-'o'ao(0), (8.24)

which we must impose on the time t leads, by virtue of
the inequality (8.10), to the condition (2.28).

%hen these conditions are satisfied, the results of the
preceding sections are easily generalized to the case in
which many modes of the field are excited. Each field

mode is then characterized by a decay rate a& and a
frequency shift Sol&, which are given by Eqs. (2.20) and

(2.21), with oo replaced by olo. The decay rate is then,

by virtue of Eq. (2.22),

G kl' ~ Om'Ol "'Om (ti ™itm ti )
=—tr~{p&~~(0)ao,'t(ti) ao„'t(t )a, '(t ') ~

Xao,.'(ti') },
the probability p„(t, . t„) may be expressed as

P (ti t ) = g (2xo,) (2llo„)

(8.25)

which reQect the attenuation of the Geld. If we then
introduce the correlation function

(s.17)

which of course is independent of r. If the initial state
of the detector is the ground state and the initial state
of the Geld is the product of coherent states for each
mode,

I &o)z= expt:Pa(aa'aoo —~oo*ao)3 I 0)„(s.ls)

then the state of the system at any time is the product
of a state for the detector and a coherent state In(t))i
for the field. The complex amplitudes of the field state
are given by

(8.19)
where

(s.20)

The probability of Gnding ns quanta absorbed by the
detector at time t is still given by the Poisson distribu-
tion (3.11), but the mean absorbed quantum number

A(t) is now equal to the sum of separate contributions
from each Geld mode,

(8.21)

For arbitrary initial fields, the generating function
(3.30) for the photoabsorption probabilities may be

The Eqs. (8.19) and (8.20) may be regarded as the
solutions for the time-dependent Fourier components
of a classical field propagating through a medium with
a frequency-dependent complex dielectric constant. The
positive-frequency part of this field may be expressed
by means of the Fourier integral representation

e(k, t)e'"', (8.27)
(2ck)'"

where k—=
I kI, and e(k, t) is perpendicular to k. Let us

now assume that the bandwidth of the field is narrow
enough so that we may ignore the eGects of dispersion
and of the frequency dependence of the attenuation
parameter ll&. Then the Fourier amplitudes a(k, t) obey
the di6erential equations

(8.28)

where ~ is the value of ~& at the mean frequency of the
field. The time evolution of the function I(r, t) is then
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governed by the equation

8—$(r,t) =L
—iQ—«)$(r,t),

BI,
(s.29) (s.35)

an operator field A'(r, t) which satisfies the equation

8—A'(r, t) =
l
—iQ —«(r) gA'(x, t),

8t

where Q is a (Hermitian) integral operator repxesenting
the free propagation of the field: The expression
QS(r, t) is an abbreviation for the integral

(8.30)

and which is assumed to reduce to the positive-frequency
part of the vector potential in the absence of absorption.
If we then introduce the correlation function

/ IQ«p"«~; «~' ~ ~ «q'(xl' ' 'xej xe ' ' 'xl )—=trr fp&~&(0)A)„"(x~) A«„"(x„)A«„.'(x ')

XA)„.'(xg')}, (8.36)
where

where x; means (r;,t;) and the index X specifies the
Cartesian components of the 6eld, then the probability
of recording counts in the detecting regions V;, between
the times t; and t,+t«t;, may be expressed in the form

(S.31)Q(r—x') =

d res(xg)t«tg' d'r„s(r„)at„P
XG'"')„-.«„;«„...«,(xi x~; x„xg). (837)

Our analysis so far has depended upon the assumption
that the detecting medium is spatially homogeneous. It p (t&, V~ ~ t„,V )
is clear, however, that our results will remain valid in
an approximate sense if we allow the properties of the
medium to vary slowly over many wavelengths of the
field. The function @(r,t) will then obey the differential
equation

(8.32)

where the absorption parameter ~, as given by the right-
hand side of Eq. (8.17), is now a function of position.

I et us divide the entire region of space under con-
sideration into many subregions, throughout each one
of which the absorption function «(r) is relatively
constant, and let us then suppose that measurements of
the total number of excitations in the detecting atoms
in each region are made, at closely spaced intervals of
time. In this way we may speak of counts being regis-
tered at specified times, and in speci6ed regions of
space.

If the field is coherent, the probability P„(t&,V& ~ ~

t,V ) of recording counts between the times t; and
t;+t«t;, and within the regions V;, is simply the product
of the probabilities for each region considered individu-
ally. If we make use of Kq. (8.23) to evaluate these
individual probabilities, and recall that ~~ is assumed to
be independent of frequency, we find.

p (tg, Vg - t„,V )

IX. ABSORPTION BY MORE
GENERAL SYSTEMS

In this section we shall extend our formulation of
photodetection theory so as to include absorption by
two-level systems, and by ionizable atoms. %e shall
restrict our discussion to the case in which the detecting
atoms are uniformly distributed throughout a cavity;
the case in which the number density of atoms is a
function of position can then be described by the
methods of the preceding section.

Let us suppose that the cavity is filled with two-level
atoms, each of which is characterized by a ground state
l0); and a single excited. state l1); with energy M, .
The free Hamiltonian for the jth atom is then

Bo;=Ao),M;,

where the occupation number operator M; is dehned by

M;lm)g ——mlrN)s, (9.2)

for m=o, 1. If we introduce the lowering operator 8;
by means of the de6nition

(9.3)

where

l g(r;, tt) l
2s(x~)der;gt;, (8 33) then we may express M; as

(9.4)
4o

s(r) —= «(r),
Ac

(8 34) The commutator of B; and its adjoint is

EBi~Bi~3=1 2M~ ~ (9.5)
and the complex amplitude function S(x,t) obeys Eq.
(8.29).

For arbitrary initial fields, we may evaluate the time-
dependent photoabsorption probabilities by introducing

and if the atom is isolated, the Heisenberg operator
B;(t) is given in terms of its initial value by the relation

B (t) =e-'"~'B (0)
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J/''+'(t) =&(2) '"~~uA(t), (9.8)

where uj is a unit vector and ej is a real parameter
which may depend upon the frequency 0J;. If we make
the resonant approxima. tion (1.2) in the interaction
Hamiltonian, we find

& (t)= —t& r, L~ '(t)g P/(t) —~ (t)g *&'(t)j, (99)

where

gi; ——-,'c~ZA~/Vj '/2(e~ u;)e '"'/. (9.10)

The interaction Hamiltonian (9.9) bears a formal
resemblance to the one given by Eq. (8.1). The im-
portant difference is that the quantities b, are lowering
operators for harmonic oscillators, while the lowering
operators 8; refer to two-level atoms. If the total
number of atoms is so large, however, that the proba-
bility of any single atom becoming excited during the
entire detection process is very small, then the harmonic-
oscillator states with energies greater than that of the
6rst excited state may be ignored, and the absorption
of radiation by harmonic oscillators, on the one hand,
and two-level atoms, on the other, is very nearly the
same. ' We may demonstrate this equivalence by
defining, analogously to Eq. (8.7),

( 3 )i/2
b/, „(t)—=

~ ~
P; (ei u;)e—'"'~B,(t), (9.11)

(N j /=

where E„is the total number of atoms with frequency
Goj=~ throughout the cavity. The interaction Hamil-
tonian (9.9) may then be expressed as in Eq. (8.5), where
here we must put

g((oi,~)= —,'c
3AGOgV

oe '=6) ~ (9.12)

The commutator of bi, , (t) and bi, ,„.t{t) may be evalu-
ated straightforwardly with the aid of the definition
(9.11) and the commutation relation (9.5). If we
assume that the number density N„{r) of atoms at
frequency id satisfies Eq. (8.10), then we may sum the
contributions from the first term on the right-hand
side of Eq. (9.5) in the same way as we did in Sec. VIII,
leading to the relation (8.13). By including the contri-
butions from the second term on the right-hand side

If the atoms we are considering are small compared
to the wavelength of electromagnetic radiation at the
same frequency, then the current associated with the
jth atom may be considered to be localized at its center
of mass rj, and the current operator for the system of
two-level atoms takes the form

J(r, t) =Q, b(r —r,)J,(t), (9.7)

where J, (t) is the current operator for the jth atom. The
positive-frequency part of this operator may be ex-
pressed in the form

of Eq. (9.5), we find then

t b/, „(t),b/, t(t)]=b„b// +b„„

X P; (e/, u, )(ei'u;)e"~' —+'/( —2M ). (9.13)

= &j co~ ——on ~ (9 14)

If we make use of this relation in Eq. (8.17), we find
that the absorption rate for the kth mode of the field
by the two-level atoms is

where

~2/2

17(&u(„r),
AGOg

2= 2
&k = &j o)q —ouI,

(9.15a)

(9.15b)

These results enable us to discuss the absorption of
radiation by atoms containing many energy levels
above the ground state. If the probability that a single
atom becomes excited during the absorption process
is very small, then processes involving transitions
between two excited levels of an atom may be ignored.
Each atom may then be thought of as consisting of many
two-level systems, each with the same ground-state
energy, and with excited energies equal to those of the
excited levels of the atom. The current operator for the
atom may then be approximated by the relation

p, ~0)(0~ J[j&(jl+H.c.
=P; t(2) '

e/, 2u,B;+H.c. , (9.16)
where

(9.17)

(9.18)

With these definitions, the Hamiltonian for the system
of atoms and field may be expressed as in Eqs. (9.9)
and (9.10). The absorption rate ~/, for photons in the
kth mode of the field may then be evaluated by making

It is clear that as S„approaches infinity, while the total
number of quanta absorbed by the atoms remains fixed,
the second term on the right-hand side of this relation
approaches zero. The commutator evaluated in it thus
approaches the value given by Eq. (8.13), and the oper-
ator b/, , (t) defined by Eq. (9.11) may be thought of as
the annihilation operator for a harmonic-oscillator
mode. The Hamiltonians (8.1) and (9.9) thus become
formally equivalent in the limit we are considering. By
comparing the expressions (8.3) and (9.12) for g(or/„~),
we see then that the system of two-level atoms coupled
to the radiation field by the Hamiltonian (9.9) may be
represented formally by a set of harmonic oscillators if
we adjust the masses of the oscillators to satisfy the
relation

AGO
-'~2
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use of Eq. (9.18) in Eqs. (9.15). In Eq. (9.1Sa), the
number N(a&,r) of two-level atoms per unit frequency
per unit volume must be replaced by the number N(r)
of actual many-level atoms per unit volume times the
number N(co) of excited levels per unit frequency for
such an atom. %e have, then

Since a(0)—=a and b, (0)—=b;, the initial values of these
functions are ti(0) =1, »(0)=0. By introducing the
Laplace transform functions p, (s) and»(s), we reduce
Eqs. (A.1) to linear algebraic equations. The solution
for p(s) is found to be

(A2)ti(s) =
s+i(a+ S(s)

C2

lg I'
&(s) =2

s+i(dt
(A3)a result which could have been obtained by calculating

an absorption rate for each atom by perturbation theory,
and then summing over all the atoms in the detector.
The perturbation-theory calculation, however, would in
e6ect be based on approximating the coupling between
the field and the atoms by the erst term on the right-
hand side of Eq. (9.9), and hence would be valid only
for times small enough so that the probability of a
single photon being absorbed remains small.

In the limit in which the spectrum of frequencies co;

approaches a continuum, we may replace summations
over j by the integral

Q —+ did'N((o'), (A4a)

~~= 6~ ( l(0I ~l j)I'};=-.~(»)N(r), (9 19)
Icos where
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APPENDIX

if we also replace the quantity
I g; I

' by its average value
for a given frequency,

lg I'~ (lg I'&-I-;=- —=g'(~').

If we make these substitutions in Eq. (A3) for Re(s) ~ 0,
and then evaluate the result at Im(s) = —a&, we find the
approximate result

By substituting Kqs. (2.19) for a(t) and fi;(t) into
Eqs. (2.11), we find that the c-number functions p(t)
»(t) satisfy the differential equations and

F(s) =~+i 5a,

a = vrN(a)) g'(co)

(AS)

(A6a)

(~
I
—+~ lt (t)= —2 g»(t),

ddt )
(Ala)

N((u') g'((v')
RGB= I dM (A6b)

I

—+~ l»(t)=g't (t).
Eat

By substituting Eqs. (AS) and (A6) into Kq. (A2) and

(Alb) inverting the Laplace transform, we find the result
given by Eqs. (2.31) and (2.32).


