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The Adler self-consistency condition is shown to be true without reference to currents, provided that
the pion trajectory is a member of a conspiracy with

~

3I
~

~ 1.It is then shown from the Adler self-consistency
condition that the antisymmetric part of the amplitude for forward scattering of low-energy low-mass
pions of'f any target is equal to a universal constant multiplied by the isotopic spin of the target. Thus all
restrictions which current algebra imposes on hadron scattering amplitudes can be derived from conspiracy
theory; production amplitudes are not examined here. We next investigate the question whether a system
which contains massless pions satisfying the Adler self-consistency condition possesses a conserved axial-
vector current. Assuming that the usual Omnes-type equation can be solved, we 6nd that it does. Finally,
the commutation relations between total axial-vector charges are shown to follow from the conservation
equation under very general assumptions.

C. INTRODUCTION

HE object of this paper is to study some of the
assumptions made in the theory of partially

conserved axial-vector currents (PCAC) and current
commutators, and to investigate whether they may be
derived from analyticity-unitarity assumptions or from
one another. To begin with, we investigate the restric-
tions which PCAC and current-commutation relations
impose on hadron scattering amplitudes. One such
restriction is the Adler self-consistency condition, which
states that scattering amplitudes involving soft pions
of low mass must be small. A further restriction is
necessary for the self-consistency of the Adler-Keis-
berger relation. Expressed as a low-energy theorem,
the Adler-Weisberger relation gives the axial-vector
renormalization constant in terms of the antisymmetric
part of the pion-nucleon scattering amplitude. One can
obtain similar relations between the axial-vector
renormalization constant and the antisymmetric part of
the amplitude for the scattering of pions off any target
at low energy. By eliminating the axial-vector renormal-
ization constant, one can relate the antisymmetric
part of the amplitude for scattering of low-energy pions
by different targets. One easily finds that the anti-
symmetric part of the amplitude must be equal to a
universal constant multiplied by the isotopic spin of
the target. Ke shall refer to this relation as the Adler-
Weisberger self-consistency condition.

All experimentally veri6able results of PCAC make
use of the low mass of the pion, and it is uncertain
whether the hypothesis of a partially conserved current
has any content except in this approximation. One can
only obtain exact results in a system where the pion
mass is equal to zero; partial conservation then becomes
exact conservation. We shall take the pion mass to be
equal to zero throughout this paper; the results should
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be true to a good approximation in nature, where the
square of the pion mass is a good deal smaller than the
square of the mass of any other particle.

Chew has made the suggestion that the Adler self-
consistency condition might be a consequence of
conspiracy theory, ' ' which shows that several trajec-
tories with diGerent quantum numbers pass through
the point 1=0 at equal values of o., or at values of n
which differ by integers. From our point of view the
important aspect of the theory is that it places restric-
tions on the Regge residues involving such trajectories.
If the trajectory passes through an integral value of n
at t =0, as the pion trajectory does in our approximation,
the Regge residues are products of two vertex constants
associated with the pion. The Regge residue in a multi-
particle reaction will be the product of two scattering
amplitudes involving the pion. Conspiracy theory
would therefore be expected to put a restriction on
such amplitudes.

We shall show in Sec. 2 that the restrictions imposed
by conspiracy theory do imply the Adler self-consistency
condition, provided we assume that the conspiracy
quantum number ~M i

of the pion trajectory is 1 or
greater. In outline, the argument will be that we are
able to obtain a relation between the sense and nonsense
residues associated with the pion trajectory. This rela-
tion shows that the sense amplitude is zero if

~

M l is
greater than the spin of the pion, i.e., if

~
M

~

is greater
than zero. Conspiracy theory only applies when al/.

fossr cornportertts of the pion srtornertturrt are zero, and
scattering amplitudes involving a soft massless pion
therefore vanish. This is the Adler self-consistency
condition. We shall mention briefly the arguments for
believing that )M~ for the pion is equal to 1. Such
arguments have been quoted by several authors

' D. V. Volkov and V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 44,
1068 (1963) /English transl. : Soviet Phys. —JETP 17, 720
(1963)g.

s M. Toiler, Nnovo Cimento 53, 671 (1968).' D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560 (1967).
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independently of the relation between the value of
~

M
~

and the Adler self-consistency condition.
Our object in Sec. 3 is to derive the Adler-Weisberger

self-consistency condition from the Adler self-consis-

tency condition. The antisymmetric part of the scatter-
ing amplitude is linear in the pion momenta if these
momenta are small. Furthermore, by the Adler self-
consistency condition, it has to vanish when either pion
momentum is zero. These two requirements place
strong restrictions on the amplitude. If we write the
antisymmetric part of the amplitude in the form

T„(pq—pq)„, where the pion rnomenta p~ and p2 are
small, we shall show that the restrictions imply that
T„satisfies a divergence condition. The Adler-Weis-
berger self-consistency condition can then be proved
following the arguments by which one proves that an
electromagnetic field interacts with a conserved
quantity.

The result of Secs. 2 and 3 is therefore that all
restrictions which PCAC or current commutators place
on hadron scattering amplitudes can be obtained
without mentioning currents if the pion has ~M~ =1.
We have not examined production amplitudes involving
several soft pions, but it would be surprising if the
situation were different for that case.

The next question, which will be discussed in Sec. 4,
is whether the existence of massless particles satisfying
the Adler self-consistency condition implies the existence
of a conserved axial-vector current. Our aim is to
construct matrix elements of the axial-vector current
by solving Omnes-type equations. We are not concerned
here with the deeper questions of solubility of the
equations; we shaB assume that Omnes equations
such as those for vector-current matrix elements are
soluble. There are, however, additional problems posed
by axial-vector current conservation, since certain
axial-vector current matrix elements are found to
acquire a pole at t= 0 as a consequence of the conserva-
tion equation. In a theory with massless pions which
satisfy the Adler self-consistency equation, the poles
can be attributed to one-pion intermediate states, and
we shall find that everything is consistent. In other
words, the existence of a conserved axial-vector current
in such a theory is on the same footing as the existence
of a conserved vector current in a theory with the
appropriate symmetry.

Finally, we wish to treat the axial-vector current
commutation relations, which we shall do in Sec. 5.
Most successful applications of the commutation
relations depend only on the commutator between total
axial-vector charges and not on the more detailed
commutation relation between current densities. In
particular, the Adler-Weisberger relation depends only
on total-charge commutation relations. We shall show
that the total-charge commutation relations can be
derived from the conservation of the axial-vector
current without further assumption. One way to obtain

the result would be to use the methods followed by
Adler or Weisberger. They assumed knowledge of the
commutation relations and related these to the anti-
symmetric part of the pion-nucleon scattering ampli-
tude, but it would be equally possible to assume the
results of Sec. 3 and to deduce the commutation
relations therefrom. This method assumes that the
time-ordered product of two axial-vector currents can
be defined, and that it satisfies locality properties from
which the reduction formulas can be obtained.

While we have no reason to doubt these assumptions
we shall show that they are not necessary to derive the
commutation relations. One can derive them directly
from the properties of amplitudes involving soft pions,
by examining the intermediate states involved in the
commutator. We shall show that the only intermediate
state which gives a contribution is that obtained from
the initial or final state by the addition of one soft
pion and we shall be able to calculate the contribution
from this state explicitly. Our derivation will thus place
the axial-vector charge commutation relations on a
similar footing to the vector charge commutation
relations; they can be obtained from the conservation
law by considering possible intermediate states. The
type of intermediate state which contributes is different
in the two cases. For the vector charge, the intermediate
states are the same as the initial states, except possibly
for an isotopic-spin rotation, while for the axial-vector
charge, they diGer from the initial states by the presence
of a soft pion. The commutation relations are therefore
closely bound up with the properties of scattering
amplitudes involving soft pions and, in particular, with
the Adler-Weisberger self-consistency condition.

Our axial-vector charge commutation relations will
of course involve an arbitrary constant, since the
normalization of the charge is arbitrary. The normaliza-
tion is usually deemed so that this constant is unity. If
we make the Gell-Mann universality assumption that
such a normalization is appropriate for the weak
interactions, we obtain the Adler-Weisberger relation
in the usual way.

2. ADLER SELF-CONSISTENCY CONDITION

In this section we wish to show that scattering
amplitudes involving a zero-mass pion with conspiracy
quantum number

~
M

~

unequal to zero must necessarily
satisfy the Adler self-consistency condition. Before
doing so we make one or two comments on the reasons
for believing that ~M

~

for the pion is in fact equal to 1.
We assume that the residue associated with the pion

trajectory in nucleon-nucleon scattering does not van-
ish at t=0, since measurements of backward proton-
neutron scattering and of photoproduction of pions
seem to require a nonzero residue. It then follows that
the pion trajectory must be a member of one of the
three types of conspiracy described by Freedman and
Wang. ' Their type-I conspiracy has no pion trajectory,
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their type-II conspiracy has a pion trajectory which
conspires with an axial-vector trajectory, and their
type-III conspiracy has a pion trajectory which con-
spires with a scalar trajectory. If the mass of the
pion is small, the axial-vector trajectory of the type-II
conspiracy would pass through 0,=1 at approximately
the mass of the pion and would choose sense at this
point. We would therefore have an axial-vector meson
of mass approximately equal to that of the pion. Since
no such particle is observed in nature, we reject a type-
II conspiracy. With a type-III conspiracy, the scalar
trajectory would pass through o.=0 at approximately
the mass of the pion, but it would choose nonsense at
this point. It would therefore not give rise to any
unobserved particle. Accordingly, we assume that
the pion trajectory is a member of a type-III con-

spiracy. Since a type-III conspiracy has ~M
~

=1, we
conclude that this value of M is associated with the
pion trajectory. 4

We now return to the problem of obtaining the Adler
self-consistency condition from the assumption that
the pion is a member of a conspiracy with ~M~ =1.
Our starting point is the relation between Lorentz
poles and Regge poles. A Lorentz pole at position X gives
rise to a series of Regge poles at X—e, where m=1, 2,
3 . ..5 The residue at the Regge pole factorizes in
the form

mIm2, mgm4 t mI m2 ~ m3m4 (2 1)

where s~ and s2 are the spins of the two particles, m is
the total crossed-channel helicity (m=nzi —m&), and

y, is a constant related to the residue at the Lorentz
pole. The factor V is a purely kinematical coefficient
which depends on the properties of the groups O(3,1)
and O(2, 1) and which has been calculated by Sciarrino
and Toiler. ' This coeS.cient is zero unless

(2 3)

We now observe that the right hand side of (Z.-Z) involves
the helicity only in the known kinematical coegcient V.
This feature is crucial to our result. It is valid only at
t=0, where the Lorentz-pole theory applies; at other
values of t the dependence of the Regge residues on the
helicity is not given by kinematical considerations. If
A. is integral, so that the Regge trajectories pass through

4 Another possibility is that the residue associated with the pion
trajectory does vanish at t=0, but that two other conspiring
trajectories pass through n =0 or n = 1 near t =0. It has been found
possible to 6t the data with such trajectories, but they usually
imply the existence of particles which have not been seen. I should
like to thank Dr. G. Ringland for discussions on this point.

~ In our de6nition of P we are following Toiler's notation. The
relation between X and the e of Freedman and Wang is X=I+1.

'A. Sciarriiio and M. Toiler, J. Math. Phys. 8, 1252 (1967).

where m~, m2, m3, and m4 are the crossed-channel helic-
ities of the particles. The factor P, ," is then given

by the equation

P,„,"=g C(si, s2, s,mi, m2, nz)y, V, ,„~i ", (2.2)

integral values of 0. at t=0, the ratio between the sense
and nonsense helicities will be determined by the
kinematics. From this fact it will be possible to derive
the Adler self-consistency condition.

We therefore have to investigate the dependence of
the coefficient V, ,

~~" on m. The pion trajectory
passes through +=0 at t=0. Since o.=A, —e and we are
interested in the leading trajectory, we conclude that
X=1, n=1. We have agreed to tak.e ~M~ =1. Further-
rnore, the Clebsch-Gordan coefFicient in (2.2) vanishes
unless ni~s. We then find from Ref. 6, Eqs. (6.6) and
(4.25), that

+1,1,1 0 m=o (2.4a)

V +i,i,i~0 ~~~ ~0 (24b)

At o.=0, the value m=0 is the sense value while all
other values of m are nonsense. It follows that V is
nonzero if and only if m has a nonsense value. This last
result is valid for other values of M, X, and e, provided
that the inequalities

)
ni

~

~ s,
~

M
~

~ s are satisfied, as
they are for Lorentz poles, and provided also that

From (2.2) and (2.4) we now conclude that either

P, , (t) is infinite from some ni) 0 (if y3 is infinite) or
P, , (t) =0 for m=0 (if y, is finite). It is not difficult
to see that the first possibility must be rejected. The
factor P, ,(t) could be infinite at t=0 if there were
fixed poles in the Jor s planes, if there were singularities
other than poles, or if two Regge trajectories intersected
at t=0. Fixed poles in the J plane are excluded by
unitarity, fixed poles in the s plane by assumptions of
analyticity in s and t, and singularities other than poles
by our assumption of Regge asymptotic behavior.
(The cuts in the angular momentum plane which are
known to be present cannot result in p being infinite,
as the discontinuities associated with them vanish
when the angular momentum takes on an integral value
of the correct signature. ) The possibility of two trajec-
tories intersecting cannot be rejected on a priori
grounds, and we shall assume that this possibility is
not realized. Even if it were, it is probable that our
conclusions could still be obtained, but the argument
would be rather more involved.

One might ask whether the coe%cient y, on the right
of (2.2) could be infinite, with the P s remaining finite
for

~
m~ ~ 1 as a result of a cancellation. By proceeding

from large to small rn and using the inequality
~

rn
~

~ s,
one can easily reject this possibility. The Clebsch-
Gordan coefficients vanish for

~

rn
~

~ 1 if s=0, but this
value of s is excluded by (2.3).

We thus conclude that P(t) is zero when m takes on
its sense value of zero. This means that the coupling
constant associated with the vertex ABz vanishes,
provided m&=m&. The equality of the masses is
certainly a necessary condition for our reasoning to
apply, since conspiracy theory, and, in particular, Eq.
(2.2), only applies to the equal-mass zero momentum
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transfer amplitude, where all components of the pion
momentum vanish individually.

VVe obtain the Adler self-consistency condition by
extending this result to the case where A and 8 may
be multiparticle systems. The reasoning of the la,st
few paragraphs remains valid in this case, provided
always that m~=mg. If, for instance, we consider the
case where A consists of a nucleon and a second pion
and 8 consists of a nucleon alone, the vertex A8x
becomes the pion-nucleon scattering amplitude. We
then obtain the result that the amplitude for the
process E~x2~ E~x~ vanishes if m~, „,——m~, or, in
other words, if all four components of the momentum
of m~ are zero. The point where this occurs is at the
threshold for the physical region (provided m„,=m. ,
=0). We emphasize again that our reasoning does not
imply the vanishing of the amplitude when m&, ,Q ns~,
as conspiracy theory does not apply to the unequal-mass
case. Our result is thus that the amplitude vanishes if
the pion x~ is soft, i.e., if all the components of its
momentum are zero. This is precisely the Adler self-
consistency condition. '

The assumption that
~

M
~

~ 1 is crucial to our result.
If 3f were equal to zero, inequalities such as (2.4)
would not be true.

In certain cases the results we have quoted are well
known and follow from simple kinematics. The Regge
residue factor for the process A —+ A+pion trajectory
has a square-root zero at t=o if m =0. One can show
this by making use of the usual kinematic-singularity
analysis of hehcity amplitudes and, indeed, one can
obtain a similar result for the process A ~ 8m, where A
and 8 may be simple or composite systems with equal
mass and the same intrinsic parity. The vanishing of
the amplitude when A and 8 have opposite parities
does not follow from simple kinematics and requires
the assumption that the pion is a member of a con-
spiracy with

~

M
~

= 1. The Adler self-consistency
condition applies to such cases, and, in particular, to
the case where A is composed of 8 together with a
soft pion. The Regge residue factor P for the process
A-+ 8+pion trajectory then has to behave like t at
1=0. A square-root zero would be excluded by the
analyticity requirements.

3. ADLER-WEISBERGER SELF-CONSISTENCY
CONDITION

We begin this section by showing how one can
eliminate the weak-interaction constants from the

7 If we are interested in the behavior of multiparticle amplitudes
involving a soft pion, we must apply special treatment to the
bremsstrahlung diagrams. Owing to the one-particle pole, the
nonsense amplitudes involving such diagrams are infinite and the
sense amplitudes are finite. The bremsstrahlung diagrams will
only affect I'-wave pions and will involve the pion momentum in
the form q/~ q). Our results will still apply to S-wave pions. I
should like to thank S. steinberg and J. leis for discussions on
this point.' L.-L. Rang, Phys. Rev. 142, 118/ (1966).

A& &(v) =av+O(v').

The Adler-Weisberger relation then states that

g (gv/g~)=2m a,

(3 2)

(3.3)

where g' is the pion-nucleon coupling constant and
gv2/g~2 the inverse of the axial-vector renormalization
constant. Again we are taking the pion mass to be zero.

For the forward scattering of pions by any other
particle at rest, one can write a slight generalization
of (3.1):

A„p ——b pA + "(v)+'2{p pp}A + "(v)
+l. ;,A'-'(), (34)

where the p s are the isotopic-spin matrices appropriate
to the target particle. One can again expand A& ~ in
the form (3.2), and one can again derive (3.3). It
therefore follows that the constant a must be the same
as for pion-nucleon scattering.

We therefore require the following consistency
condition, which we shall call the Adler-Weisbcrger
self-consistency condition: If the amplitude for the
forward scattering of a pion by a target particle is written
in the form (3A), and the antisymmetric part Al & is
expanded in powers of v around v=0, the coefficient of v

is equal to a universal constant a, which is independent of
the target particle. We wish to derive this condition
without the use of current commutators. We shall show
that it is a consequence of the Adler self-consistency
condition.

Ke take q~ and —
q2 to be the four-momenta of the

incoming and outgoing pion, Pr and —P2 to be the four-
momenta of the incoming and outgoing target particle.
Because of conservation of momentum, there will be
three independent four-momenta, which we take to be

Q pl+'g2 Pl+ P2)

9=2(Vr—92) ~

P=2-(Pr —P2).

(3.5a)

(3.5b)

(3.5c)

Adler-Weisberger equations for different processes and
thereby obtain relations involving hadron amplitudes
alone. We shaB then proceed with our main purpose of
showing that such relations can be derived from strong-
interaction considerations alone, without referring to
weak interactions or current commutators.

It is most convenient for our purposes to use the
Adler-Weisberger equation in the form of a low-energy
theorem. The amplitude for forward scattering of
pions by nucleons at rest is written in the usual notation:

A.p h.pA——&+l(v)+ ', e.p, r-,A' '(v)—, (3.1)

where 3 p is a matrix in the charge space of the nucleon,
v the laboratory energy, and 7 the isotopic-spin matrix.
The function A' ) is usually referred to as the anti-
symmetric part of A, and the crossing relation implies
that it is an odd function of v. We may therefore write
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where
T, ' (p„o)= 2e.„p,-a,

pp
——(m,0,0,0)

(3.7a)

(3.7b)

and a is the constant in (3.2).
The Adler self-consistency condition can now be

used to obtain a restriction on the amplitude T"'. We
require that T vanish when either q» or q2 is zero. It is
of course easy to obtain an amplitude involving two
powers of q which satisfies this restriction, but we wish
to obtain an amplitude linear in q. Thus, putting T=O
when qi=0, i.e., when q= ——',Q, we obtain

T "(p,e)-le.T." (P,Q) =o(Q'). (3 8a)

Similarly, putting T=O when q&
——0, i.e., when q=-', Q,

we obtain

Ti ~(p,e)+-',Q.T.&)(p,e)=o(e)
Subtracting (3.8a) from (3.8b), we obtain the equation

Q.T. "(p,e)=o(e) (3 9)

Thus T„&') is a vector amptitgde whicIi satisfies the

divergerice conditioe whee Q is small.
We can treat the low-energy forward scattering of

massless pions by a multiparticle system in a similar
way. i We then take as our variables Q and q, defined by
(3.5a) and (3.5b), together with a sufhcient number oi
other momenta which we denote collectively by p. The
development from (3.7) to (3.9) will remain valid, and
again we find that the amplitude T„&') satisfies the
divergence condition when Q is small.

The divergence condition essentially provides us with
the result we require, since it is known that a vector
interaction which satisfies the divergence condition
when Q=O must involve a coupling constant which is
proportional to a conserved quantity. This result has
been derived from on-shel1 analyticity properties by
Weinberg. ' He was interested in proving that the
electromagnetic interaction is characterized by a con-
served charge, but his methods are equally applicable
to the present problem. Following his reasoning line by
line, we can show that Kq. (3.9) requires a consistency
condition which relates the amplitude for scattering of

'To avoid the bremsstrahlung diagrams we should work with
the amplitude from which the P-wave pion states have been
projected out.' S. steinberg, Phys. Rev. 135, Bi049 (1964).

For the forward scattering of massless particles at p =0,
both pions have zero four-momentum. We therefore
expand the amplitude in powers of q:

T=T"i(p,e)+qpT8("(p, Q)+o(q'). (3.6)

We use the symbol T rather than A simply to indicate
that we are expressing the amplitude as a function of
the components of the momentum. We shall suppress
the isotopic-spin indices n and P. By going to the
laboratory system it is easily seen that

pions by diferent target particles. The condition is

T„,p~" (pp, O) = co „, (3 1o)

where pv is defined in (3.7b), r is a subscript character-
izing the target particle, cr„ is the matrix element
between the initial and final states of the target particle,
of some conserved quantity, and c is a universal
constant.

From (3.7a) we observe that T must transform under
isotopic-spin rotations like the matrix ~ p~p~. The only
conserved quantity which does so is the matrix e p~p~
itself. We must therefore identify o.„with this matrix
and, on comparing (3.10) with (3.2), we conclude that a
is a universal constant independent of the target
particle. This is the result we wished to prove.

q„j„'(q')= 2mpsf i(q')+iy, q' fp(q') .

For conservation, we therefore require

fi(q') = (2miiq') fi(q'),

(4 2)

(4.3)

so that the formula for a conserved axial-vector current
becomes

j„'(q') =&&(ip„2mq„/q') f, (q'—)+igloo„„q„f&(q'). (4.4)

The first term has a pole at q'=0. We could eliminate
this pole by demanding that fi(0) =0, but the matrix
element of j„'would then vanish when taken between

"See, for instance, Y. Nambu and G. Jona-Lasinio, Phys. Rev.
122, 345 (196i).

4. DEFINITION OF CONSERVED AXIAL-
VECTOR CURRENT

We now assume that we have a system containing a
massless pseudoscalar particle and we investigate
whether it is possible to define a conserved axial-vector
current. It is not our aim to investigate the general
problem of the solution of the dispersion-theoretic
equations which define currents or form factors. We
shall assume that such equations normally have solu-
tions and shall concern ourselves with the particular
problems raised by axial-vector current conservation.
It will be found that such problems do not arise if the
system contains a massless pseudoscalar particle and if
the scattering amplitudes satisfy the Adler self-con-
sistency condition.

As is well known, a conserved axial-vector current
cannot exist in a theory which possesses neither chiral
symmetry nor a massless pseudoscalar particle. " In-
deed, it was the difhculties in this connection which
led to the concept of Goldstone bosons. To indicate the
nature of the problems involved, we begin by quoting
the usual expression for the axial-vector form factor of
the E/ system:

i.i(q ) ='v.v.f.(qi)+'v.-,q,f.(q )+'v.q.f.(q'). (4.1)

By using the Dirac equation for the nucleons, we easily
find the following formula for the divergence of j:
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nucleon states at rest. When discussing a conserved
axial-vector current, one usually implies that this matrix
element does not vanish, and we shall assume that
y&(0) wo.

On taking the matrix element of (4.4) between states
at rest, we find

(i,'(0))= ( '-( q)q'/Af (o)

FG. 1 P 1 dig
element for a current.

(io6(0))=o. (4.5b)

The pole in (4.4) therefore causes no infinity in the
matrix element, but it does cause a discontinuity at
q=o. In order for this discontinuity to disappear f&(0)
would have to be equal to zero.

One can generalize this result to apply to the axial-
vector form factor of a partide with arbitrary spin by
making use of the analyticity properties of helicity
amplitudes. It follows from the results of Ref. 8 that
the axial-vector form factor of any particle must vanish
like q' as q' approaches zero. If this is not the case the
invariant form factors must have a dynamical pole at
q'=0, analogous to the pole in (4.4).

If a theory allows the delnition of a conserved axial-
vector current, it must therefore have massless particles
in order to produce the dynamical pole. From (4.4) we
observe that the coupling between the axial-vector
current and the massless particle must have the form

bq. (4.6)

where b is a constant, so that the particle must be
pseudoscalar. Ke shall henceforth refer to it as a pion.
If the pion is coupled to a particle such as the nucleon
by a matrix of the form iGF5, the axial-vector form
vector wiH contain a term

—bG(q„/q') r, . (4.7)

The Feynman diagram corresponding to such a term
is shown in Fig. 1.

It is not difficult to see that scattering amplitudes
involving the pion must satisfy the Adler self-consist-
ency condition. The invariants associated with the
axial-vector form factor between two systems of eqgul
mass bet diferent parity will have no pole at q'=0. Such
invariants have exactly the same properties as those for
the vector form factor between two systems of the same
parity. On the other hand, Eq. (4.7) indicates that a
pole is present unless G= 0. We therefore conclude that
the coupling of the pion between two systems of equal
mass but opposite parity vanishes; this is the Adler
self-consistency condition.

If our system contains massless particles whose
scattering amplitudes satisfy the Adler self-consistency
condition, so that poles in the form-factor invariants
are allowed, the problem of ending a conserved axial-
vector current is very similar to the analogous problem
involving the vector current. In general, an axial-vector
form factor such as that given in (4.1) will consist of
two parts, one being divergenceless and the other the

gradient of a pseudoscalar. We shall refer to these
parts as the conserved part and the gradient part. By
writing dispersion relations in q' and using unitarity,
one obtains Omnes-type equations for the form factors.
Furthermore, the unitarity equations will. not mix the
conserved part with the gradient part, as the 6rst
involves intermediate states with J=1, the second
intermediate states with J=O. One therefore obtains
Omnes-type equations for functions such as f& and
f2 in (4.4), and they can be treated in the same way
as the corresponding equations for the vector form
factors.

The value of a form factor at q=0 will be fixed once
the constant b of (4.6) and the appropriate coupling
constant G are known. The residue to the pole in the
invariant function will be given by (4.7) and, if this
residue is known, one can 6nd the form factor at q= 0 by
an equation such as (4.4). Again the situation is similar
to that we encounter with a conserved vector current,
when the form factor at q=0 is determined by the
conservation laws. The situations are not identical
since, with a vector current, the form factor at q=0
depends only on the quantum numbers of the relevant
particle, whereas with an axial current the form factor
depends on coupling constants involving the pion.

The normalization of the current is not defined by
the Omnes equations, which are linear. The constant
b in (4.6) will remain undetermined until the current is
normalized. One usually normalizes the axial-vector
current through the weak-interaction e6ective Lagran-
gian, in which case the function fq in (4.4) will be equal
to gz/gv at q'=0. Comparing the pole terms in (4.4)
and (4.7), and putting G=g, I'~ ——y5 in the latter eq-
uation, we then find that

b = 2mgg/g gr. (4.8)

The matrix element of the axial-vector current
between the one-pion state and the vacuum will be
equal to

i/(2~) f )(1/2—p0) t bp„, (4.9)

where p is the momentum of the pion. If we assume that
this formula is approximately true when the pion mass is
small but not zero, and if we use Eq. (4.8) for b, we can
obtain the Goldberger-Treinian relation in the usual
~ay.
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5. COMPUTATION RELATIONS BETWEEN
AXIAL-VECTOR CHARGES

In a theory with a conserved vector current, the
commutation relations between total charges follow
from the conservation equations, and it is unnecessary
to make a separate assumption. We shall show in this
section that the same is true of the commutation rela-
tions between total axial-vector charges in a theory
with a conserved axial-vector current. The intermediate
states involved in the axial-vector charge commutator
will be different from those involved in the vector charge
commutator, since the massless pions play an essential
role in the conservation of the axial-vector current, but
the 6nal result is similar.

As we explained in Sec. 1, we wish to obtain our result
by showing that only a small number of states can
contribute to the commutator, and that the matrix
elements involving such states can be written down
explicitly.

The equal-time commutator between two charge
densities is given by the matrix element

(27r)' dqlpdq20Q'I Ljp.'(qt, qrp), jpp'(tis q»)] I &&
(5.1)

g&= q&=0,

where E indicates a nucleon state (or any other state)
at rest, and jo ' is the zeroth component of the Fourier
transform of the charge density. "The subscripts n and

P refer to the isotopic spin. With qt= qs= 0, axial-vector
current conservation would imply that jo ' had a factor
5(qp), and the integrations over qrp and q, p in (5.1)
would be trivial. We shall, however, find it necessary
to use a limiting procedure in which q~ and q2 tend to
zero. We therefore leave (5.1) as it stands.

One can now insert a complete set of intermediate
states in (5.1). If q& qs

——0, the divergence condition
q„j„(q)=0 eliminates the intermediate states with
energy diferent from that of the nucleon. On the other
hand, the one-nucleon intermediate state itself will not
contribute, since we saw in the previous section that
the expectation value of jp (0) for the one-nucleon state
is zero. The only other intermediate state which can
possibly contribute is a state consisting of a nucleon
and a soft pion. We shall show that the matrix element
involving such an intermediate state is singular,
and that the state gives a finite contribution to the
commutator.

Two singular diagrams for the matrix element of the
axial-vector charge between a nucleon state and a
nucleon-soft-pion state are shown in Fig. 2. In Fig. 2(a),
the pion changes into a current while the nucleon goes
on unchanged; in Fig. 2(b) we encounter a pion pole
term of the type discussed in the previous section.

"We normalize the Fourier transforms in the usual way, i.e.,
j(p) = (2x) ~J'd4x e '&~J(x). Feynman diagrams will then have a
factor (2~) ' associated with an external wavy line.

I

I
l

l

I

I

l

(a}

Fn. 2. important diagrams for a matrix element
of an axial-vector charge.

b 1 qg„
~'(1 s+ a.—»—e)

(2pr) ' (2qtp)' '
qsp

X~(q» —
I el)~-s(l el),

p1 p2 tll Qs qsp Small. (5.2b)

The subscripts 1 and 2 on the matrix elements on the
left of (5.2) indicate that they correspond to Figs. 2(a)
and 2 (b), respectively. In writing down (5.2b), we have
assumed that p»= p»=35, apart from terms of second
order which we have dropped.

We draw attention to the factor 1/(qsp' —q') in
(5.2b), which becomes large when qsp and ri are small.
There will of course be other diagrams for the matrix
elements in (5.2), but they will be negligible compared
with (5.2b) when q» and q are small.

We can now evaluate the matrix element

With pion-nucleon intermediate states, the matrix
element becomes (1VI j 'IE~)(1Vprl jsslE). Each of the
two factors will be the sum of two terms corresponding
to (5.2a) and (5.2b). The term where both factors
correspond to (5.2a) will only be nonzero when n=P.
Since we are interested in finding the commutator of j
and js, we shall restrict ourselves to the case n/P.
In the term where both factors correspond to (5.2b),
there is an integration over q~p and q» Lsee Eq. (5.1)];
this integration removes the singular factor 1/(qsp' —q').

Owing to the singular nature of the quantities involved
we shall consider the momenta in (5.1) to be small but
nonzero; when we have found the commutator we shall
allow the momenta to approach zero. The matrix
elements associated with the diagrams are

P (Ps) I j.,-'(9pq») I &(»),~s(qr)) t

= (2')' 2bLqs„/(2qsp)"']P(qs —qr)B(qpp —
I gr I)

X6'(ys —»)&.s, (5.2a)

P (p.) I j.,-'(asq»)
I &(»),~s(qr)) s
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The amplitude A (I qll) in (5.2) involves soft pions and
is therefore small and, as may easily be verified, the
result is that the whole term is small.

Ke are left with terrr~ where one factor corresponds
to (5.2a) and one to (5.2b). The integrations over q01

and q02 in (S.i), as well as the integration over the
intermediate-state pion three-momenta, are trivial
because of the 8 functions in (5.2a) and (5.2b). We thus
obtain the equation

(22r)2 dqlodq20d2»1

Xp(A(p2)l j0 '(»2/20)IE(p2+»2 q')% ('«))1

xp'(P2+ »2—q')2r, (»')
I j0p'(»l, q10) I +(Pl))2

= l&2I.
I »2ll(»' —«12)l~-p(l » I)

X~'(pl+»1 —
122

—»2) (5 3a)

The corresponding term, with the subscripts 1 and 2

interchanged, is

2b2I:I «lli(»12 —»22) j~-p(l «ll)
&&&'(121+»1—122

—»2) (5 3b)

In evaluating the amplitude A p in (5.3a) and (5.3b)
we shall ignore the symmetric part, as it will not
contribute to the commutator of j0 aiid j0p. From (3.1)
and (3.2) we may therefore write

Substituting (5.4) in (5.3) and adding (5.3a) and
(5.3b), we are led to the result

(2~)' dV10d~20(&(12) I j0-'(»2, V20) j0p'(»1, V10) I &(11)&

2f 2~0 p r ~ (Pl+»1—122»2)

pl, p2, ql, q2 small. (5.5)

Equation (5.5), together with the corresponding
equation in which the order of jo 5 and joys is reversed,

/
/

/I
/

/
I

FIG. 4. A diagram which does not
contribute to the matrix element of
an axial-vector charge.

I
I

l
i
l

give us the commutation relation. One can write similar
equations for any initial and 6nal states, the matrix
~~ being replaced by the more general isotopic-spin
matrix p~. Since the initial and final states are arbitrary,
we would be tempted to write (5.5) as an operator
equation. However, we have not considered the possibil. -

ity that the initial and final states themselves contain
soft pions, which may interact directly with the
currents, as in Fig. 3. Figure 3(a) corresponds to an
intermediate state with two pions, Fig. 3(b) to an
intermediate state with none. It is not difficult to see
that the contribution of Fig. 3 (a) to the matrix element

(j ' jp') is equal to the contribution of Fig. 3(b) to the
matrix element (jp0j '). Such diagrams therefore
contribute to the product of two currents but not to
their commutator.

One may also inquire about diagrams such as Fig. 4,
in which only one pion interacts directly with a current.
The right half of this diagram is the matrix element of
an axial-vector current between states at rest. As before,
this matrix element is only nonzero when 8 consists of
A together with a soft pion, i.e., a pion whose momenta
are of the same order of magnitude as p~, y~, q~, and qQ.

The phase space associated with the states 8 which
fulfil this condition is of the order of magnitude p2 and,
even if the right half of Fig. 4 contains a pole term such
as Fig. 2(b), it is fairly easy to see that the small
phase space renders the process unimportant in the
limit of vanishing p~, p2, q~, and q2. The amplitude
associated with Fig. 4 will therefore not contribute to
the axial-vector charge commutator.

The presence of soft pions in the initial and 6nal
states of (5.5) will thus give rise only to terms which
cancel when we take the commutator, and we can write
the commutator equation as an operator equation. The
matrix r~ on the right of (5.5), or its generalization p~,
is just the matrix element of the vector charge between
the initial and 6nal states. Ke may therefore write

(22r) d$10~g20fj 0 («2 f20) jop'(»l, gl0) ]
= &'2«-P.j0,(»1,0)&'(»1 '«2) (5 6)

(a) (b)

FIG. 3. Diagrams for the matrix element of an axial-vector charge
between states containing soft pions.

This is the usual equal-time commutation relation
between total. axial-vector charges, apart from the factor

gp
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One cannot get rid of the numerical factor on the
right of (5.6), since the normalization of the current
is not defined. One can normalize the current so that
the constant 2'ab' is equal to unity, i.e, , so that

b'= 2/a. (5.7)

Without further assumption one must regard (4.8)
and (5.7) as alternative normalizations of the constant
b. The Gell-Mann universality assumption is that the
axial-vector current, when normalized so that the factor
~ab' in (5.6) is unity, enters into the weak-interaction
Lagrangian with the same coupling constant as the
vector current. With that assumption the normaliza-
tions (5.7) and (4.8) are the same and, by eliminat-
ing b from the two equations, we obtain the Adler-
Keisberger relation

g gy /g~ = 2ts a. (5 8)

Nothing in the arguments of Sec. 3 or this section
prevents the constant u from being zero. In that case
the axial charges would commute, as they do in certain
models. There is no theoretical reason for preferring
the value a=0 to any other value of a, and experiment-
ally a is not equal to zero.

To summarize the contents of this section, the
conservation equation shows that most intermediate
states give no contribution to the matrix element of the
commutator of two axial-vector charges. The important
intermediate states are those obtained from the initial
state by the addition of one soft pion. In this respect the
axial-vector charge is different from the vector charge,
where the important intermediate states differ from the
initial states only by an isotopic-spin rotation. The
di6'erence is due to the fact that conservation of axial-
vector charge does not correspond to a symmetry of the
system in the usual sense. Nevertheless, the commu-
tation relations have their expected form. They are in-

timately connected with the Adler-Weisberger self-con-
sistency condition on the antisymmetric part of an
amplitude for the forward scattering of a soft pion.

6. CONCLUDING REMARKS

The arguments of Secs. 3 and 4 show that all restric-
tions which PCAC and current commutators have so
far provided on hadron scattering amplitudes can also
be obtained from analyticity and unitarity, always on
the assumption that the pion trajectory has ~M) = i.
This is not to say that the concepts of PCAC and
current commutators play no useful role. Indeed, it
was through them that attention was directed to the
Adler and Adler-Weisberger self-consistency conditions
in the first place. However, the assumption of PCAC
and axial-vector charge commutation relations appears
to be an alternative to part of the content of the usual
strong-interaction assumptions rather than an addition
to them.

In this connection it is interesting to note that Gilman
and Harari, '3 in their attempt to obtain correlations
between resonance parameters from superconvergence
relations and current commutators, really only use the
current commutators to obtain low-energy theorems of
the type discussed in this paper. Their results may there-
fore be considered as consequences of the usual analy-
ticity and unitarity assumptions.

If one wishes to obtain results related to the conserved
axial-vector current itself, as opposed to results related
to hadron scattering amplitudes, one has, of course,
to make certain assumptions beyond on-shell analy-
ticity. The usual assumption is that a matrix element of
a current has the appropriate analyticity and unitarity
properties. We are all familiar with such assumptions
applied to the vector current and, if one applies them
to the axial-vector current, one can put PCAC on the
same footing as ordinary current conservation. Further-
more, one can derive the commutation relations for
total charge from the conservation of the axial-vector
current.

As in the case of the vector charge, the method of
obtaining the axial-vector charge commutation relations
is to examine the intermediate states involved. Only a
small number of intermediate states give a nonzero con-
tribution. The actual intermediate states which come
into play with the axial-vector charge commutator are
diferent from those which come into play with the
vector charge commutator, owing to the intimate con-
nection of the axial-vector current conservation with
soft pions. The details have been discussed in Sec. 4.

The vector and axial-vector charges satisfy the
commutation relations of the SU(2) XSU(2) algebra.
Nevertheless, SU(2) XSU(2) is not a symmetry of the
system in the usual sense; the states of the system are
multiplets of SU(2) only. Our system is the analog of the
canonical field-theoretic model in which the Lagrangian
possesses a higher symmetry than the system itself. Such
a system must have Goldstone bosons, and it has been
known for some time that a massless pion plays the
role of a Goldstone boson in a system with a conserved
axial current. The existence of such bosons can be
studied without reference to a Lagrangian. "If a current
satisfies a conservation law but the system does not
possess the symmetry appropriate to that conservation
law, GoMstone bosons must exist. The current com-
mutation relations can then correspond to a larger
algebra than the symmetry algebra of the system. In
nature it appears that the existence of conserved charges
satisfying the SU(2) XSU(2) algebra is true to a fairly
high degree of approximation, whereas SU(2) XSU(2)
symmetry, if it has any meaning at all, is badly broken.

It is important to stress the diferent footing on which
total-charge commutation relations and current-density
commutation relations stand. The former are a con-

'3 F. Gilman and H. Harari, Phys. R,ev. Letters 18, 1150 (1967);
19, 723 (1.967); Phys. Rev. $65, 1803 (1968),



PCAC, COMMUTATION RELATIONS, AND CONSPIRACY i893

sequence of conservation equations, which in turn are a
consequence of symmetry principles (for the vector
charges) or of the existence of a massless particle with
~M~NO (for the axial charge). The current-density
commutation relations represent a further assumption
which cannot be obtained from such reasoning. Further-
more, in all applications of current-density commuta-
tion relations to experiments which are practicable in
the forseeable future, one has to make assumptions
regarding the validity of taking the limit p-+ ao or,
alternatively, assumptions regarding unsubtracted dis-
persion relations for weak amplitudes. Questions re-
garding the validity of such assumptions, or of the
relationship of their validity to the bootstrap assump-

tions, have not been answered as yet. As we have shown
in this paper, most of the sum rules for which we have
experimental evidence are consequences of much more
general assumptions and have no bearing on such
questions. The one exception is the Cabibbo-Radicatti
sum rule. Further evidence in its favor, or evidence
regarding other current-density sum rules so far un-
tested, will provide answers to questions which go be-
yond the general arguments of this paper.
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We consider the behavior of a Regge-pole expansion when the mass of a physical particle tends to zero.
If this variation of the mass is obtained by letting some parameter) vary, it is found that the analytic form
of the residues must change discontinuously when the mass passes through zero. We call such an effect a
transition, by analogy with statistical mechanics. Some consequences are given concerning the reliability of
perturbation expansion, zero-mass pions and their Toiler classification, and the Pomeranchuk singularity.

1. INTRODUCTIOÃ

OR the sake of orientation, let us focus on a special
case of the kind of problems which we want to

consider. I.et us assume that we have a reasonable
model of strong interactions which predicts a Regge
trajectory n(t) and its residue p(t). Let us furthermore
assume that there is an arbitrary parameter in the model
which allows n and p to vary. If n(t) vanishes for some
value t=y', and if the value zero of the angular mo-
mentum is physical for the reaction we consider, there
exists'a particle of mass p,.Since the trajectory can vary,
we shall take p' as a parameter. We can then make
explicit the dependence of n and p as functions of tt' by
writing them as n(t, tt') and p(t, tt').

For positive values of tt', p(tt', tt') is the coupling con-
stant of the particle (we explicitly assume that 7=0
makes sense). Letting tt' become negative, we generate
a ghost. If our model is consistent, it should impose the
condition that the residue p(tt', tt') vanishes for negative
values of p,'.

Our problem is as follows: We have

P (tt', tt') WO, for tt') 0

P(tt', tt') =0, for tt'(0.
~ Laboratoire assoc' au Centre National de la Recherche

Scientifique.

There is no known example of a tractable model

where the physical quantities are not analytic functions
of the parameters. At worst they are diferent analytic
functions for diferent domains of the parameters. But
this "worst" must be reahzed here for an analytic
function p(tt', tt') which is identically zero, because a
Rnite set of real values of p,' cannot in any case be
continued to a function diferent from zero.

We are then faced with the following problem. A

consistent model of strong interactions which allows

the mass of a particle to go to zero must give di6erent
answers for di6'erent sets of values of the parameter.
Such a difBculty is quite new in elementary-particle

physics, although it is well known in statistical me-

chanics in connection with phase transitions. '
In the present paper, we shall investigate this kind

of problem. As we have just seen, it can appear when

the mass of a particle goes to zero. In fact, some atten-
tion has been given recently to the problem of letting

See, for instance, K. Huang, Statistical Mechassics Uohn Wiley
8z Sons, Inc. , New York, 1963); M. Kac, G. E. Uhlenbeck, and
P. C. Hemmer& J. Math. Phys. 4, 216 (1963); G. E. Uhlenbeck,
P. C. Hemmer, and M. Kac, ibid, 4, 229 (1963);P. C. Hemmer,
M. Kac, and G. E. Uhlenbeck, ibid 5, 60 (1964); P.. C. Hemmer,
iblt. 5, 73 (1964).


