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Our subject is the class of iteration procedures which can be written as a functional F(p) used, via the rule
P„+& F(rj——), to generate a sequence fo, f&, P2, ~ ~ ~ desired to converge quickly to the wave function of a
quantum-mechanical system. Given such a functional F1(p), we seek methods of manipulating it to obtain
an improvement P2(P); the starting point is the functional which generates the Born expansion. Four such
methods are developed which, if applied serially, are capable of generating many likely iteration procedures.
Only simple potential scattering is considered, but our methods seem to promise extension to cases much
more complex. In these methods a central role is played by matrix elements J and T which measure the be-
havior of a functional for small and large distances from the scattering center. The resulting F (rP) are highly
nonlinear; the P„ they generate are rational functions of the coupling constant with coeKcients given by
various combinations of J- and T-matrix elements. Numerical results for the 6rst two orders of approxima-
tions are presented for square-well and exponential potentials. One of the procedures F (rP) gives the Fredholm
determinantal expansion, and in a form more easily calculated than the expressions usually employed;
this expansion is shown to be unitary, and a relation is obtained connecting the Fredholm determinant and
a dispersion integral of the T matrix off the energy shell. Another of the improvements generates the inverse
T-matrix expansion; this is shown to converge for coupling constant less than the smallest value which puts
the phase shift at +180'. In all of the above, the iteration sequence was started with 1I 0 being the free-wave
solution corresponding to the scattering energy: An important advantage of iteration procedures is that, in
contrast with the perturbation expansion, they are not pinned to this choice of $0. We go on to select as input
the free-wave solution of a different energy which better represents the average wavelength in the scattering
region. The above iteration procedures then become much more powerful. When applied to the square-well
potential, they yield the exact solution on the 6rst iteration.

I. INTRODUCTION

ET f„be the scattering wave function of energy
~ E for a quantum system with Hamiltonian H:

through rearrangements of the series (1.4), or by modi-
fying the split (1.2), or both. ' '

The present work explores a diferent approach for
obtaining the scattering solution P„. We seek a single-
valued functional' F(f) having the property

4-=F(4-), (1.6)Probably the most generally applied method for solving
for P„ is the Born perturbation expansion, ' whereby
the Hamiltonian is split into two parts:

which will be used, via the rule

li"+t=p(lt"),
(1.2)H=Ho+V= Ho+hVo—

to generate a sequence fo, f&, fs, ~ . One hopes that
this sequence will quickly converge; Eq. (1.6) implies
that if this sequence converges at all, it must converge
to the exact solution f„of Eq. (1.1).

An example of such a procedure is furnished by the
Born expansion itself' with the iteration functional of
Eq. (1.6) taken to be'

(1.3)Hog= E4,

P„=@+K/+K'I.+K'@+

K=(E Ho+is) 'V. —

yields

with'
(1.4)

(1 5) For the choice

and lf„ is obtained as a power series in the coupling
constant ). The method, which requires a knowledge
of the unperturbed eigenfunctions @,

This procedure fails whenever
~

h
~

is large enough to
support a resonance, and is thus inapplicable to a very
large domain of problems. There have been various
attempts at extending the Born expansion, either

*The main results of this paper were reported at the Washing-
ton, D. C. meeting of the American Physical Society, April, 1966,
and sketched in a problem note in Report of NRL Progress
(March, 1966), pp. 42-44 (unpublished).' M. Born, Z. Physik 38, 803 (1929). See, for example, Refs.
12 to 16.

s Our notation will be that f„(x) and 4 (x) are the exact and
unperturbed wave functions, as defined by Eqs. (1.1) and (1.3).
f(x) shall represent an arbitrary continuous function of the con-
figuration space variables x= (x& xz, ,x„). The It of Eq. (1.5)
is an integral operator: fthm(x) —= E(x,x')P(x')dx'.

168

o=4,

4=4+K4,
A=e+Ke+K'e

~ ~ ~

4-=&+K@+.. .+K"@.
(1.1O)

' Q. A. Baker, Advan. Theoret. Phys. 1, 1 (1965).' M. Rotenberg, Ann. Phys. (N.Y.) 21, 579 (1963).
~ S. Weinberg, J. Math. Phys. 5, 743 (1964).' S. Weinberg, Phys. Rev. 131, 440 (1963); M. Scadron and

S. Weinberg, ibid. 133, B1589 (1964).
r M. Wellner, Phys. Rev. 132, 1848 (1963).
8 I. Manning, Phys. Rev. 139, B495 (1965).

With the choice (1.8),Eq. (1.7) is just the Lippmann-Schwinger
equation f„=@+Ef„.
i875
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Our starting point will be this functional B(lf); we
seek methods of operating on it to obtain an improved
procedure F(f). While the present work deals only with
simple potential scattering, we shall restrict ourselves
to improvements which, it seems to me, promise exten-
sions to the more complex cases of actual physical
interest.

The idea of using iteration procedures to generate
functional approximations is of course not new &0

Much of the work done in this field is unfamiliar to
physicists, perhaps because the results, while possessing
mathematical elegance, have been of limited utility for
quantum mechanics. In the present work we give up
the condition that the outcome be susceptible to mathe-
matical analysis and, instead, take an approach guided

by physical considerations. Our main result will be the
observation that, working within the framework of iter-
ation procedures, a pedestrian approach can lead to
substantial improvements on the Born expansion.

Given a wave function P, we define its T measure'
to be

{P}z=—lim P/X, (2.6)

T(4)—= (4,J'lf). (2.9)

We introduce the J measure {P}q of a wave function
f to discuss its behavior at the scattering center;

where r is the separation of collision products and X is a
fixed function —given by Eq. (2.4) in our case—chosen
so that for the exact solution

{f„—P}r ———isr T„, (2 7)

where T„ is the (exact) scattering T matrix. " From
Eqs. (2.1) to (2.4), one finds

{EP}r i7r T———(P), (2.8)

where T(P) is the usual T matrix of scattering theory":

{p}g—=lim li'/p. (2.10)

E(r,r') = —isry*(r&) X(r)) V(r') (2 1)

= —i~y(r&) X'*(r&)V(r'), (2.2)

where r& and r~ are the r, r' of (respectively) lesser and
greater magnitudes, P is the unperturbed solution of
Eq. (1.3), and"

II. J AND T MEASURE

In our methods a central role is played by matrix
elements J and T which measure the behavior of a
wave function at asymptotically small and large dis-
tances from the scattering center. To fix ideas, consider
the case of simple potential scattering with p an eigen-
function of energy and angular momentum. One then
has for the operator E of Eq. (1.5)" "

One 6nds
{Eip}s i srJ(p),—— — (2.11)

where J is the matrix dement

J(4)=(X',l'4), (2.12)

T = isrg„—p}r—— (2.13)

X' being given by Eq. (2.5).
Note the parallelism of the two asymptotic measures.

The function X in the definition of {P}z is closely related
to the adjoint of the function X' in the delnition ofjQ); the P in the definition of {tP}q is the same as that
appearing in the definition" of T(P).

Given a sequence of wave functions its, ipt, its, . . .
(which we hope will converge to P„), we define a cor-
responding sequence T&, T2, T3, of approximations
to T„:

(2 3) Thus, for the Born expansion (1.10),

X(r) = (2P/sr) '")tt
t'& (Pr) I't (r),

X'(r) = (2p/sr) ' "h t t"(pr) F t (r) .

(2 4)

(2.5)

"See, for example, H. A. Antosiewicz and W. C. Rheinboldt,
in Survey of Numerical Analysis, edited by J. Todd (McGraw-
Hill Book Co., New York, 1962), Chap. 14.

"H. Buckner, Duke Math. J. 15, 19/ (1948).
~~ M. L. Goldberger and K. M. Watson, Collision Theory

(John Wiley &: Sons, Inc. , New York, 1964).
"K. Gottfried, Qnantnm Mechanics (W.'A. Benjamin, Inc. ,

New York, 1966).
"N. F. Mott and H. S. W. Massey, The Theory of Atomic

Collisions (Oxford University Press, New York, 1965).
"R. G. Newton, Scattering Theory of 8'aves and Particles

(McGraw-Hill Book Co., New York, 1966).
"T.Wu and T. Ohmura, Qaantnm Theory of Scattering (Pren-

tice-Hall, Inc. , Englewood Cliffs, N. J., 1962).
"We use units such that A=m=1. The spherical Bessel func-

tions j&, h&('), and h&(') are as deaned, for example, in P. M.
Morse and H. Feshbach, M ethods of Theoretical Physics (McGraw-
Hill Book Co., New York, 1952).

(T„),...= T(y)+ T(Ey)+ ".+ T(Z"-'y).
' "Measure" is a misnomer for the complex number g }; it

does not have the properties of the length (jib~( of functional
analysis. However, in dealing with iteration functionals F(p) we
will be using lib) in a way similar to that which (~ib(t is ordinarily
employed.

"See Refs. 12-16, For scattering from a spherically sym-
metric potential, T„=—s. 'sinb exp(ib), where b is the phase
shift.

~0 In terms of the notation above, T„=T(P„).
2' For completeness we give a connection between J(P) and the

otf-diagonal (i.e., off the energy shell) T matrix. Inserting a
complete set of states into the expression (EP}=lim EP/@, one
finds (ICP) =Pa (p@ ) z(E E'+ie) '(pE, VP), wh—ere p@ is the
unperturbed solution of energy E', and E is the scattering energy.
For our case this can be written as

(If/) s — dE (E /E) (2t+1) /4(E E+ie) 1T& (ib)—
0

When combined with Eq. (A1.13) and the Lippmann-Schwinger
equation, this provides a connection between the Fredholm deter-
minant D„and the off-diagonal T matrix: g„)g ——D„'=1
+{EP„)J, with the term (EP„}ggiven by the above integral.
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III. IMPROVEMENT BY J ANDND T CLAMPING

1 J-Controlled Iteration Procedure

iven z de6ne a correspondingGiven a wave function q, e
altered function

3.14~=et((~), ( )

ber de ending on P but not x: c=c(f .where c is a num p
rt with the Born functional o%e start wi

'd f r an improved procedureand consider as a candidate or an im
the functional

=8( ) (3.2)~(1t =—&1. ~

to a modi6cation of the rule P +i B(f„)——:

the resulting output is(4-);
choose the sca ing cons an

'bl like the exact solution

equation at every point x ut we can
for example, the scattering center;

(3.3){4'~}z= {&(4'~))z.

t sa this improvement techniqu
'

ue rescales theThat is to say, is i
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(3.5)

8 b Jrefer to this result t improving y
r lied iteration procedure. Forclamping) as the J-contro e i era

'

ps=@, one finds

180—
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CA
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'
i ns of Sec. II one obtains" asOn applying the definitions o e .

approximations to T„ 0.5 1.0
l I l

1.5 2.0 2 5 XO 5.5 4.0

1+i'(y)
&(~)+i J(S)&(~)+&(Ke)

1+krJ(rjp) rr'Js(P)+irrj(KP)—

(3.6)

(c)

of the 6rst- and second-order J-co-controlled
t eq - '11 ot t 1,

momentum. Key: Z= exact (2'„); JCI,
t 11 d m d , E . (3.6).

a with additions. Bq, Bs=Born exp an-() p o 'g ()
sion, Eq. (2.14). (c) The curves, correspon i
the phase of the T matrix.

are t ical of the results we shall 6nd for all our

en dby th Born expansion (1.10)ener ate y e o
for y, we avhave a rational function in, e n

a roach, W. F. Ford [Phys. Rev. 157,
h l 1 f h1226 (19eI)j bt,. n pp. s p

expression (3.6) for T1, both diagona an o

function T„will in genera e various

lfi d F(P) i hi hl
t seem to be easily susceptible tononlinear and does not seem to e eas'
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analysis; it appears that the approximations generated
will have to be investigated by acutally applying them
to specific cases and building up a body of experience.
Figures 1(a)—1(c) depict the approximations (3.6) for
the case of S-wave scattering from an attractive square
well of unit radius:

(3.7)

(by the constant c) only the second term oi Also, in
contrast with the previous section, we clamp the itera-
tion procedure at asymptotically large distances from
the scattering center;

(3.1O)

Equations (3.2) and (3.8) give the improvement

2. T-Controlled Iteration Procedure

Here we proceed in much the same way as the pre-
vious section. Again, an improvement F(P) is sought
via Kq. (3.2). However, instead of Eq. (3.1), use

4&= (1—c)y+ 4, (3 8)

where c is as before a number depending on p but not
pn g' c=o(p). The exact solution is of the form

While the present work. does not, in general, attempt
to analyze the improvements F(P), the J-controlled
procedure (3.4) is further examined in Appendix I.
There it is shown that, for Po

——g, the f generated is

3ust the result of truncating the Fredholm determinantal
expansion. ""

Now, for nonpathological cases, the determinantal
expansion is known to converge at all energies for all

values of the coupling constant, " "so our very first
example establishes the main point of this paper. A
pedestrian approach can yield substantial improvements

on the Born expansion. The J-controlled procedure pro-
vides a new formulation of the determinantal method,
the expressions of which are easier to calculate than
those usually employed. ""

But the result (3.4) does much more: it casts the
determinantal method as an iteratiou procedure Sp fa. r
we have been considering only the case where the ap-
proximation sequence is started with Ps ——@, the known

exact eigenfunction of Bo. In contrast with the power-
series method, iteration procedures are not pinned to
this choice of Ps. Any likely guess can be used as input
in the hope that it will start a quickly cconverging se-

quence, and we shall see in Sec. V that only when this
freedom is exploited do iteration procedures achieve
their full utility. For example, the J-controlled pro-
cedure (3.4) will be used to obtain a generalization of
the determinantal method which appears to far surpass
it in power.

(Ep) p
P,=y+Ey+ E'y.

(Kg) s (Ksp) T—
(3.12)

The corresponding approximation to the T matrix is

T2=
T(4)—T(E4)

(3.13)

which is depicted in Fig. 2 for the square well of Eq.
(3.7).

Appendix II shows that the sequence T2,T3,T4, ~ is
essentially the power-series expansion for the inverse
T matrix. "This sequence converges whenever

(3.14)

where X& is the smallest (real) value of the coupling con-
stant 3 which sets the phase shift 5 to &i80'. This is
to be compared with the Born series which converges
only for

(3.15)

where 8=&90 at) =)g. So the T-controlled procedure
(started with Pe ——p+Kp) converges over a domain ap-
proximately twice as large as that of the Born expansion.

IV. IMPROVEMENT BY VARIATION
OF PARAMETER

We shall refer to this functional as the T-controlled
iteration procedure; it is the result of improving the
Born procedure B(P) by our method of T clamping.
Since the choice fe g lead——s to an undefined result, this
method obliges us to start with a first-order approxi-
mation. Starting with the first-order Born approxima-
tion Pr P+EP, on——e finds

f3 9q 1. General Method for Improving Iteration Procedures

where the term co tends to zero at asymptotically large
istances from the scattering center; the approximations

(3 3) and (1.10) are also of this form. The input fz of

Eq (3 8) is npw alsp cpnstrained to this form by scaling

ss R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).
24 J. Schwinger, Phys. Rev. 94, 1372 (1954).
"B.S. DeWitt, Phys. Rev. 105, 1565 (1956).
"M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).

The following" is modeled on a method for improving
iteration procedures for numbers" rather than functions.
Suppose one has two iteration procedures G(f) and

"The inverse T matrix has been investigated by P. T. Mathews
and A. Salam, Nuovo Cimento 13, 381 (1959); G. Feldman, P. T.
Mathews, and A. Salam, ibid. 16, 549 (1960); Bjorken and Gold-
berg, Ref. 30; and K. Wilson, as quoted in Ref. 30.

'8 Section IV can be skipped without loss of continuity."I.Manning, Proc. Cambridge Phil Soc. 65, 22 (1967).
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H(f) for the same P„;
(4.1)4-=G(4-) =H(4-).

Then, for any finite quantity p, the functional

F(4)=uG—(4)+(1 p)H—(4) (4 2

s E . (1.6) and is therefore a possible iter-

' )
'

that for a given variationiteration procedure F~ is a, o
the quantity

(4.3)

(4.5)

bF= F(4+—W ) F(4)—

h ld be small. s "Equation (4.2) yieldsshou e sm

bF [ju(6G bH)+—bH j+(G H)51J, .— ( . )
~ ~

a roach here is to choose p, such that SIC is likely
to be smaller than

the be continuous an satis y-6 "--.. 6'--.er rocedure need necessar y co
nontnvial funct' G,ctional6, t ere exis ma

ethod for example,whic may
'

h be used to explore the me o;
'~G G'jf, and so on.

e in 't f this paper, we make twoe in with the spirit o is
which wi a oww

' 'll 11 the outcome to be tract-p' "'
(a lications. Since t ese sev

11 tihd th b
on) by the utility of the results.defended, if at, o y y'

stead of 5F we shall wor wit e
11

Secondl, we restnc ey
ns baal': Given a function fixe, e ne

@(x,c) of it, depending on a cons

P(x) =e(x,c) ~,=,.

I.O

0.8

"0.6

OA

(a)

I.Q
TCp

0.8

l-
g 0.6

OA

0.2
p= I.O

E
TCp

0.5 I.O
I I

l.5 2.0.0 2 5 3.0 3.5 4.0

(b)

I80'—

l50'-

I I I I l l

l2 I4 I6 IS 200 2 4 6 8 IO l2

hall deal with are dehned byThe variations we s a

8
fgbf= f(x,c) ~,=r—bc=—fbc. —

BC

In terms of this notation, Eq. (4.3) gives

(4.6)

1-

~ l20'—
CO

X~ 90'-

60'

30'

bF= F(f) ~,=rbc= F—'P—'bc. —
BC

(4.7) 0.5 I.O I.5 2.0

~ ~

ade these two drastic assumptions, it is easy
f. 29. Set the measure ofarr out the analog of Ref. . e

E . (4.4) to zero, thus fixing 1i;the bracketed term in q.

(c)

a roximation, Eq. (3.13) (curve TC2),-co Bed ppro
plotted (a) as in Fig. 1(a), (b) as in ig.
Fig. 1(c).

(H'(&))

(G'8') )—{H'(4))
termined p, the candidateg (of P) of interest. Having determine

rm ofill then be sma w11 henever the second term
. ( . )'; fi 't ) this is certainly true for. (4.4) is small; (for 1i ni e

. (4.1) the second term is zero. In
wo drastic assumptions, we are hop g

thtth o dve ~ is slowly varying, so t a
term of Eq. (4.4) will remain sma over @(x,c) = cP(x) . (4.9)

2. Improvement of Born Expansion by
J Variation

ion 4 x c) ofAsa6rsti usra'fi 'll t ation define the extens (,
Eq. (43) to be
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I I

JVOg

IO— /

0.4—

0.2

I

0 2 4 6 8 IO l2 I4 I6 l8 20

{a)

(4.2) and (4.7)

{Eij)g
~(f)=4— -(4 —4)

{p)z—{E4')~
—Eig. (4.11)

{4)z—{E4')~
For yo —y, p& is identical with that of the J-controlled
procedure, Eq. (3.4); the other P„are different. The
resulting &2 is depicted in Figs. 3 for the square well of
Eq. (3.7).

3. Improvement of Born Expansion by
T Variation

l.O

0.8

l-
0.6

OA

0.2

0.5 I.O

I .l~
JVD~

~ ~

E

JVg
%a

E---» —Jvp
—"--- JVDp

f f l l I

l.5 2,0 ? 5 3,0 K5 4.0

Here we choose for Eq. (4.3) the extension (3.8);
iP(x,c)= (1—c)it'(x)+cP(x) (4.12)

and designate the measure to be T measure. Procee ing
as in the previous section (IV 2), one finds

{E(~-~)).
~(4)=4— (4 —4)

Eg . (4.13)

For fi=iti+EP, f& is identical to that given by the
T-controlled iteration procedure (3.10); the other P„are
diferent.

l80

I 500 "

—}204

90'
CL

JVp

60'

30'

l l i 1

0.5 I.O l.5 2.0 2.5 XO 3.5 4.0

(~)

FH;. 3. Improvement by J variation p o1 tted (a) as in Fig. 1(a),
(b) as in Fig. 1(b), and (c) as in Fig. j.(c). JV&=Eq. 4.

d h ~ =q +Ep JVD2=two iterations, using Kq. 4.10
started with Po ——4. The JVDg curve rises to a ma~mum of abo
5.8 in Fig. 3(a).

&Q) =4, (4.10)

and the measure to be J measure, one finds from Eqs.

We shall refer to the family g so generated as J vari-
ation. Choosing G(f) to be the Born functional B(f)
LEq. (1.g)l,

V. OFF-DIAGONAI PROCEDURES

As mentioned in Sec. III 1, a major advantage of
iteration procedures is that they are not restricted to
the choice go=it; any appealing guess can be used as
input, in the hopes that the ensuing sequence Pi, fy,

will rapidly converge. Here we consider the choice3)

4o=4s, (5.1)
p/the eigenfunction of Ho corresponding to energy

different. from the scattering energy E.We aim to choose8' such that the input better represents the average
wavelength of P„ in the scattering region. That is to say,
we wish to adjust E' so that, to the iteration procedure
F(f), the input Po looks as much as possible like P„.
Mimicking Eq. (1.1), we would like to have

(8 II)itis =0, — (5.2)

which, of course, is impossible, Nor can one set the
expectation value of (E H) to zero, since the—wave
function its. is not normalizable. Even if we could, it
would not be the most desirable choice since all our
iteration procedures F(f) employ the scattering operator
E of Eq. (1.5), which weights the value P(x) by V(x).
In configuration space, those parts of P(x) are most im-
portant where V(x) is large. We therefore select E' suc
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40
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O
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I
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l
'l l l 1 1 l
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S &et' = 25
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Xgg = -2.5 JV
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0

O
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f t
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S

(b)

FIG. 4. (a) Effective-range plot, p coth as a function of s= p'
for the attractive exponential potential of Eq. (5.7). This is Fig. 7
of the paper by Bjorken and Goldberg, Ref. 30, to which we have
added points depicting an approximation of the present work. On
account of the difference in units, XgG is twice our coupling con-
stant h. Key: E=exact, M1=6rst-order Mandelstam, T1=6rst-
order expansion of tanb in powers of ) (not discussed in the present
work), D1=6rst- rdeor determinantal Lwhich coincides with our
diagonal J-controlled approximation, Eq. (3.6)g. The added points
J1 are our oft-diagonal J-controlled approximation to first order,
the result of starting the procedure of Eq. (3.13) with Pp=pz, of
Eq. (5.4}. (b} Second-order approximations for the attractive
exponential potential of Fig. 4(a). W is the second-order expansion
of cotS in powers of X pand coincides with our diagonal T-con-
trolled approximation Eq. (3.13)j. See the caption of Fig. 4(a)
for a key to the other curves. This is Fig. 8 of the paper by Bjorken
and Goldberg. The added points JV2 are the improvement by
J-variation Eq. {4.10), o8-diagonal, started with P& of Eqs. (5.5)
and (5.4). To the scale of this 6gure, other approximations of the
present work nearly coincide with the (exact) E curve; they are
depicted in Table I.

that the expectation value of (E H) weighted by V—
vanishes;

(5.3)

which gives a transcendenta1 equation for E';

(&~ I
i'I &~ )

(5 4)

Some of our improvements required that the form
(3.9) be preserved; in such cases start the sequence with

4t=4+&4z (5.5)

instead of the fp of Eq. (5.1).
With Eqs. (5.1) or (5.5) as input, all of the iteration

procedures again yield approximations of the genera1
form discussed in Sec. III 1, with the coefficients in the
rational function in X now involving mixtures of J- and
T-matrix elements, both diagonal (in energy E) and
off diagonal. "(The emergence of these off-diagonal ele-

"3
-0.4 0 OA 0.8 l.2 l.6 2Q 2.4

S

(b)

FIG. 5. (a) First-order approximations for a repulsive exponen-
tial potential. See the caption of Fig. 4(a). This is Fig. 5 of the
paper by Bjorken and Goldberg with the E curve shifted to cor-
rect a small plotting error, and with the added points J1 of the
present work. (b) Second-order approximations for a repulsive
exponential potential. See the captions of Figs. 4(a) and 4(b).
This is Fig. 6 of the paper by Bjorken and Goldberg with the E
curve shifted to correct a small plotting error, and with the added
points JV2 of the present work. To the scale of this figure, other
approximations of the present work nearly coincide with the
(exact) Z curve; they are depicted in Table II.
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TAzz, z. I. Approximations which nearly coincide with the exact curve of Fig. 4(b). This table depicts the errors in p cot8; error= (approx)-(exact). The curve D2 of Fig. 4(b) is included for comparison. JC2 is the off-diagonal J-controlled approximation obtained
from Eqs. (3.4) and (5.4); TC2 is the off-diagonal T-controlled approximation, Eq (5. .6).

Appr

D2
JC2
TC2

0.4

1.0X10-2
2.3X10-~

—12X10 '

0.8
—4.0X10-2

12X10 ~

—4.5X10-~

1.2
—6.6X10 '

5.1X10-
—1.4X10 '

1.6
—8.4X10 '
—43X10 5

—59X10 4

2.0
—9.7X10-2
—42X10 '
—9.3X10-4

gABLE. II. Approximations which nearly coincide with the exact curve of Fig. 5(b). (See the caption of Table I.)

Appr

D2
JC2
TC2

0.4
—8.7X10 '
—6.0X10 '
—3.4X10-3

0,8

—1.1X10 '
—6.6X10-~
—7.9X10-4

1.2
—1.1X10 '
—6.5X10-'
—6.4X10 '

1.6
—1.1X10-~
—6.1X10 2

1.1X10 '

2.0

—1.0X10-~
—5.7X10-2

1.5X10-2

ments prompted the title of this section. ) For example,
the T-controlled procedure (3.11) gives

T2—
T(ys ) T(Eg~ )— (5.6)

With the square-well potential (3.7) and any of our
improvements, the above off-diagonal inputs generate the

exact solgtion P„at the first iteratioN for all scattering
energies and all values of the coupling constant.

To differentiate between the various off-diagonal ap-
proximations it is therefore necessary to calculate a
different example; the exponential potential

V(r)=Le ' (3 7)

was selected, since comparisons with other approxima-
tions already exist in the work of Bjorken and Gold-

berg. " Results are depicted in Figs, 4 and 5, and in
Tables I and II.

tives are known. Correspondingly, the Born expansion
requires that the Hamiltonian be split in such a way
that, in Eq. (1.2), the eigenfunction g be exactly known;
the sequence yielding the Born expansion is correspond-
ingly started with its ——p. In contrast with usual per-
turbation theory, iteration procedures are not pinned
to this choice of input; Sec.. V suggests that this ad-
vantage of these procedures is of even greater impor-
tance than their richness.
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VI. CONCLUSION

The four improvement methods described in this

paper were applied only to improving the Born expan-
sion+/). rhey are, however, applicable to a much wider

class of iteration procedures and, by applying these
methods serially, many approximations can be gener-

ated, each of which is a candidate for improvement over
the Born expansion. For example, one might use im-

provement by T variation (see Sec. IV 3) with G(lt)
the J-controlled procedure (3.4) and H(f) =P, B(P), the
T-controlled procedure (3.11), or some other procedure.
It is clear that iteration procedures are a rich source of
possible improvements.

When expanding a function in a power series, one
must select an expansion point for which all the deriva-

&0 J. D. Qjorken and A. Goldberg, Nuovo Cimento 16, 539
(1960).

APPENDIX I: SOME PROPERTIES OF
J-CONTROLLED PROCEDURE

with
A =4+&'vlDx, (A1.1)

(A1.2)

DN Q et+ ~ (A1.3)

The operators B„and the c numbers d„satisfy the
recursion relations

(A1.4)

One easily proves by induction that, for 14=A, the
iteration procedure (3.4) yields
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and
(A1.5)

APPENDIX II' SOME PROPERTIES OF
T-CONTROLLED PROCEDURE

Tpj = —7I (cot5~—1)

thus ensuring that it satisfy the relation" "

To see this, consider the exact solution

f„=g+N„/D„,
the T matrix of which is

(A1.6)

(A1.7)

as well as the conditions do ——1 and Bj=E.
Reference 31 shows that the P~ above is the trunca-

tion of the Fredholm determinantal expansion for P„.
The above it& is also unitary, that is to say, Eq.

(2.13) gives an asymptotic behavior )from Eq. (2.13)j
of the form N

N~= Q B gati (A2.2)

n=o
(A2.3)

and the operators B„and c numbers d„satisfy the
recursion relations

It is easy to prove by induction that, for the choice
lfp= g+ Jtp, the iteration procedure (3.11) yields

fir @+——N ~/D~,
with

with
T„=A„/D„,

A„=i7r '(N„)r

(A1.9)

(A1.10)

(A2.4)

(A2.5)

Being unitary, T„s atis feis Eq. (A1.6);

Im T„'=m. (A1.11)

as well as the conditions do= 1 and S~=E'.
Applying the delnition (2.13) for TN gives

Now, for real potentials, the phase of T„equals that of

{P„}zsince they both equal the (constant) phase of

N(r) in
(A1.12)

n=o

= (Eg) r/D~,

n=2
iver~ (—Q (. Ey——)rd„+ Q (B P)p)DN

(A2.6)

Upon using the condition"

we therefore have in Eq. (A1.9) that

where we have used the condition (A2.5). Since D~ is
a simple polynomial in the coupling constant ), we 6nd

(A1.13) that T(g)/Trr is the truncation of the power-series ex-
pansion of T(g)/T„."

The diagonal procedure therefore converges for
Im A„=O.

Combining (A1.9), (A1.11), and (A1.14),

(A1.14)
(A2.7)

Im D„=xA„. (A1.15)

The key point of the proof is that N„(and hence A„)
and D„are entire functions' " " of 'A, so that Eqs.
(A1.14) and (A1.15) can be expanded in a power series,
and they remain valid if the power series is truncated
at the Eth term;

where Xr is the smallest pole of T(g)/T„, and hence the
smallest zero of T„.It is easy to see that ) & is real, so
that at X=liz the (physical) scattering phase shift is
5=&180:For, in Eq. (A1.9), T„has a zero only when
A„does. The demonstration follows by noting that A„
is real $Eq. (A1.14)J, and applying the Schwartz re-
Qection principle

Im A~=0,
Irn D~——+AN.

These in turn imply, by

(A1.16)
to demonstrate that

(A2.8)

(A2.9)

that
Im Tgq '=m,

(A1.17) The approximation T& is also unitary. Multiplying
Eq. (A1.11) by T(P), expanding in a power series, and
truncating at the Nth term, we have

which completes the proof.

"I.Manning, J.Math. Phys. 5, 1223 (1964).Note the change in
notation: D„of that work equals 8„+1of Appendix I. so TN satisfies Eq. (A1.18).

(A2.10)


