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An assumption about the structure of single-particle matrix elements of the weak nonleptonic Hamiltonian
is suggested and motivated. Using this assumption together with the algebra of currents, we calculate
the 5- and P-wave decays of hyperons, and the It decays, and Gnd good agreement with experiment.

I. INTRODUCTIOH

HE current algebra as applied to the current-
current form of the weak Hamiltonian combined

with the SU(3) symmetry has led to numerically
satisfactory results for the S-wave nonleptonic decays
and to very bad results for the I'-wave nonleptonic
decays. ' In this work we shall introduce a simple
dynamical assumption about the matrix elements of
the weak Hamiltonian which will serve as the substitute
for the SU(3) assumptions usually used.

Since in the SU(3) limit both the S- and E-wave
amplitudes vanish in this new scheme, it is profoundly
different from the usual theory. Consequently, we shall
show that it is possible to predict the observed I'-wave
amplitudes if some of the as yet unmeasured axial-
vector coupling constants for the semileptonic processes
depart signi6cantly from the values predicted by the
SU(3) symmetry. This departure is in accord with
several recent theoretical predictions. In addition, our
scheme predicts the S-wave decays very well in terms
of one parameter which turns out to be simply related
to the universal weak-coupling constant.

IL REVIEW OF USUAL TECHNIQUES

Before we proceed to the new method it will be
convenient to outline the conventional formulation' so
as to emphasize the points of departure. We introduce
the nonleptonic Hamiltonian density which is assumed
to have hI=-,'and 25=1 selection rules. The decay
E' —+ lVx, where E and E' are baryons, is then described

by the matrix element

(X(p)sr(q) I
i d4x Hvr(x) IX'(p'))—

= —i(2sr) 8'(p' —p —q) (2q, V)-'t'M (q) . (I)
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For purposes of extrapolations that will be performed
later, it is convenient to display explicitly the pion
momentum in the above definition of M (q). Contracting
the pion, Eq. (I) becomes

M, '(q) = (q'+m, ') d'x e "*

M '(q) =—(q'+m. ') iq„d'x e-'& *

x(x(p) I T(A„,'(x)Ps (0)) IN'(p'))

ds& &
—iq. x

x9 (p) I
I:A vt'(x, 0),&~(0)1 I

&'(p')) . (3)

Assuming commutation relations of the form
I Av(x, 0),

Htr(0)fnP(x), the second term of Eq. (3) may be
evaluated regardless of the value of q„. The evaluation
of the first term is, however, in general, not so elemen-

tarv and this difficulty forces the usual expansion of

M, '(q) about q=0. In this case, it is easily seen that
contributions for q=0 occur only when intermediate
states are degenerate in the mass with the initial or
the final state. In actual computations, we shall avoid
calculating any such contribution by introducing a
6ctitious mass difference where necessary and take the
limit of mass degeneracy at the end of the calculation.
Consequently we find

v2
M, '(0) =—~t.'(E(p) I

d'x Av, '(x,0)

xll (o) I
~ (p )). (4)

X(tV(p) I
T(4»*(x)&~(o)) I

tV'(p')) (2)

Introducing the hypothesis of partially conserved
axial-vector current (PCAC) in the form

ct„A„t'(x)= (c /v2)y (x), c,=—2Mivm„'gg/Gtvtv,

Eq. (2) may be written as
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At this stage, it is now necessary to make a very natural
assumption about the structure of the Hamiltonian. It
is postulated that its structure is such that

using rather symbolic notation, it follows that'

P" iHs "(0)iÃ")=Xdp r zz+Vfp r rr

d'x LAp(x, 0)t*,Hs (0)]

d'x (Vp(x, 0)j,H s (0)], (5)

d'x A pj(x 0) H s &' (0)

and

d'x Vp a(x,0),Hs p v. (6)

d'x A p '(x 0) H s &' (0)

d'x Vp '(x,0),H s

where t/'0 is the time component of the vector current.
This assumption essentially states that the parity-
violating part of the weak Hamiltonian H~I' has the
same weighting as the parity-conserving part B~& '
and, so, may be reexpressed as the two equations

The first expression shows that M & '(0) can be
expressed in terms of two parameters, coupling strength
7' and the Ii/D= V/X ratios of the weak scalar spurion.
Thus, to the extent that M & '(q) for a physical pion
is described by the value for q=o, the S-wave non-
leptonic decays of the baryons are described by two
parameters. Kith proper adjustment of these param-
eters it is possible to get a good fit with the experiment.
The second expression arises because of charge-conjuga-
tion invariance combined with the SU(3) symmetry.
It shows that M p '(0) cannot be a good estimate of
M, 'p '(q) with q corresponding to a physical pion for,
if it were, the P-wave decays would not occur. In order
to get around this di6iculty, Brown and Sommerfield'
have observed that the Born-approximation contribu-
tion to Eq. (2) does not extrapolate slowly to Mg '(0).
In, fact, while Ma& '(q) ~ $3I(E')+M(E")] ', one
has Map '(0) pc [M($')—M(Ã")] '. Consequently, it
was suggested that the correct expansion for the
nonleptonic decay should be written as

M(q) {lim/M(q) —Ma(|1)]+Ma(q)) .

It is understood that i and j are restricted to the values
1 and 2, so that J'd'x Ap, '(x) is always a pion-type
axial charge and that J d'x Vp, '(x) are the time-
independent generators of isotopic spin transformations.
These conditions are, of course, met by the usual
current-current form, as well as its special form with
octet dominance,

H~=

(G'/v2)dpi'(A

p'+ V') (A'+ V.') (8)

and also by the scalar density Hamiltonian'

Hg =o.(gyp) 7|P+PXyP). (9)

In Eqs. (8) and (9) we have used the well-known
SU(3) notation of Gell-Mann, instead of the tensor
notation. Substituting Eq. (5) into Eq. (4) and using
the fact that (1Vi J'd'x Vp is a combination of states
in the same isotopic multiplet as the E, it follows that
the problem of evaluating M, '(0) is reduced to evaluat-
ing matrix elements of the form (N'

~

H s (0)
~

1P'), where
E' and E" are members of the baryon octet. Now for
H~(0) of the current-current form (8), this matrix
element is, in general, extremely complex in structure
and is not directly evaluated in terms of simple param-
eters. However, if SU(3) is assumed, and Hs (0)
transforms like the sixth component of an octet, then

' M. K. Gaillard, Phys. Letters 20, 533 (1966); Riazuddin and
K. T. Mahanthappa, Phys. Rev. 147, 972 {1966);C. G. Callan
and S. B. Treiman, Phys. Rev. Letters 16, 153 {1966);R. Gatto,
L. Maiani, and G. Preparta, Nuovo Cimento 41A, 622 (1966).

Proceeding in this manner and using the value of the
weak spurion as calculated to yield the correct value of
the 5-wave decays, one still finds that the predicted
P-wave decay amplitudes are roughly half as large as
the experimental ones. '

III. NEW DYNAMICAL ASSUMPTION

It is possible that the technique outlined above with
slight modifications can in fact correctly produce the
P-wave rates. For example, if the Born amplitudes
extrapolate badly there is no obvious reason forbidding
other perturbative-type amplitudes to extrapolate
badly also and perhaps, in principle, it would be
possible to handle these in the same way as the Born
terms are handled in Eq. (11). On the other hand, it
could be that the extrapolation q

—+ 0 is so bad that no
simple finite number of perturbation corrections can
properly relate M(q) to M(0). Some more insight to the
problem may be gained by noting that Mz& '(q) as
given by Eq. (10) contains only baryon poles, while
work done previous to the development of current-
algebra techniques suggested that there should be
contributions from the E-meson poles as well. ' Some
attempts have been made recently to include by hand,
in the above calculation, the contributions of a Born
diagram and in this manner it has been possible to get

' L. S. Brown and C. M. Sommerfield, R.ef. 1.
G. Feldman, P. T. Matthews, and A. Salam, Phys. Rev. 121,

302 (1.961).
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somewhat closer agreement with the experiment.
However, we wish to extract the content of this diagram
in quite a diGerent way, and in so doing will depart
considerably from the normal structure of the theory.

All of the discussion up to Eqs. (10) and (11)seems to
be very basic and we wiO accept it as valid. As men-
tioned, the SU(3) assumptions leading to Eqs. (10) and
(11) were made because of the basic difhculty of
evaluating the matrix element of the product of two
currents or, for that matter, of a scalar density. We have
no general prescription to overcome this difficulty so
we shall, instead, replace the SU(3) assumption by an
alternative dynamical assumption. We assume that
the weak spurion has the following matrix elements
between single-baryon states:

PIHw" (*)I&')=) ~~.(&l~ 7(x) I&')

(X I
H w" (x) I

E')= Asa„($ I V/7(x) I
E'), (13)

where, of course, V„p2(x) is the vector current and
A „pP (x) is the axial-strangeness-changing neutral current
density. We emphasize that these equalities are asslmed
only for the siegte particte -matrix elements and not
for the operators. For the time being, we will treat Xq

and X~ as independent parameters.
At this point a few comments are in order about

Eqs. (12) and (13) and their relation to the earlier
formulations of this paper. From the above equations
it might be conjectured that we could define

H rr %+7~+X——B„V7~. (14)

Indeed, in the initial formulations of this theory' it was
suggested that (14) be considered seriously as a phenom-
enological interacting mediating the nonleptonic decays.
Although all numerical calculation of a preceding paper'
are in correspondence with calculations in this presenta-
tion, we will not consider that Hs as given by (14) is
actually the nonleptonic Hamiltonian because of basic
theoretical di6iculties. These difficulties are consider-
ably subtler than one might think and, consequently,
we only discuss them brieQy at this point. It is usually
stated that adding a divergence to a Lagrangian is
equivalent to a unitary transformation and, conse-
quently, that no change in the physical predictions of
the theory can occur. This is a gross oversimplification
since, under certain circumstances, when either there is
a spontaneously broken symmetry or the operator
whose divergence is added contains a part linear in a
field operator which has canonical commutation rela-
tions, the transformation induced is nonunitary and
may change the physical predictions of the theory.
Thus a divergence interaction is not of necessity trivial.
Quite aside from this argument, it can be seen directly
that if a decay E'~ 1V+s. is to be described by H rr as
given by (14), then we must have for the 6rst-order

' S. A. Bludman (unpublished).
6 G. S. Guralnik, V. S. Mathur, and L. K. Pandit, University of

Rochester Report Nos. UR-875-148, 1966 and UR-875-169,
1966 (unpublished). In this context, see also K. Nishijima and
J.L. Swank, Phys. Rev. 146, 1161 (1966).

contribution

) s~2
M, '(0)= — m '(Nl o'(*), .() I

')

x(p —p )„. (15)

If for S waves M (0)~3II,'(q), then the above when
inserted into (1) becomes

(iVm
I

id4x-H s (x) I
1V')

) sv2m. '
= (2~)'6'(p' p q)——

c.(2qpv)'~'

xpl d'x Vp, '(x), V„p(0) I
S'). (16)

This structure looks very similar to the structure of
the matrix element for baryon decay after using pion
factorization. To this end we consider the analytically
continued matrix element (n I

—iHs (0) IÃ1V'). Using
HTr as given by (8) and inserting a complete set of
intermediate states and using the hypothesis of partially
conserved axial-vector current (PCAC), it easily follows
on the particle mass shells that, for the S-wave amplitude,

( I
—iH (0)lÃw)
G'- c. i(p'-p)„
v2 v2m. ' (2qpw)'~'

x(ol d'x Vpj(x), V„7(O)

+ Q (n-I V„;+3„;In)(nl V„,+2„;IX1V')
S-~ave par&

y'I dxHw(x)IX~)=(2x)~(P P-q)—

X (p —p —q)„y'IA„, (0)+V„7(0) I X+),

which vanishes unless (1P
I &„7(0)+V~z(0) I &) 's

ular for Q =inst"+~. It may be conirmed that, with the
known particles given these physically observed masses,
no simple approximation can produce the necessary
pole in the above matrix element. Consequently, we may
reject (14) as a serious possibility for the Hamiltonian
on the basis of physical, if not theoretical, arguments.

It should be emphasized at this point that these
considerations for the above matrix element in no way
imply that the matrix elements between baryon states
of the actual B~, whatever it may be, cannot behave
as in Eqs. (12) and (13).

It is of interest to consider if there is, in the presum-
ably realistic case of a current-current interaction as
given by Eq. (8), any sort of mechanism which at least
suggests the validity of Eqs. (12) and (13).

Note that using (13) combined with (4) and (S), we
find that
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If it is now conjectured that in the soft-pion limit
every term but the Grst of the above expression becomes
negligible, it is then possible to deduce (12) and (13) if
the identification

) s ——(G'/V2) (c./van. s)3

is made.
We have not been able to substantiate our conjecture.

In the special case of SU(3) symmetry with M(1V)
=M($'), it cannot be valid for Hsp since by C
invariance (O~HirP ~Ã1V )=0 which is not consistent
with Eq. (12). However, when SU(3) is not valid, the
case of concern in this paper, C invariance places no
restriction on the amplitude and it is conceivable that
the conjecture is valid and that (13) does really derive
from a current-current form of the nonleptonic decay
interaction. If, then, the identification (18) is also
valid, we still find that a comparison with the experi-
mental numbers shows that G'= G, the universal Fermi
coupling constant. This is remarkable since, if the
Cabibbo angle were associated only with the strong
currents, one would expect that O'= G cos8 sin8. ~ A less
ambitious program, but one which makes more sense in
terms of SU(3) limits, results from considering Hs to
be a scalar density as given by (9). In this case it is
postulated that the dynamics is such that the solution
of the field equations would demonstrate the validity
of relations (12) and (13). It follows at once that with
this representation of Hs (x) it is not necessary for
(0~HwP' ~1PE) to vanish in the SU(3) limit, so that
C invariance does not cause any difhculty with
the identification of relations (12) and (13) with
the Hamiltonian as given by (9). Having dropped
the requirement that the SU(3) matrix element of the
pseudoscalar spurion vanishes by C invariance, one
might think that the dynamical scheme which we have
proposed is unnecessary and that the SU(3) invariance
can be used to calculate the matrix elements. This is
not the case because of an elementary but remarkable
theorem of Coleman and Glashow. ' lf the total Hamil-
tonian is given by

H= HsU(3)+Hm. s.+Hp. o.+Hp. v. &

with

, =@VS)i'
and Hw given by (9), it is easily seen that under the
transformation p-+4'=e &'N~'m»rf, to first order in
Q'~

HS U {3) +Hm. s.+Hp. v. ~

Consequently, if the medium-strong SU(3) symmetry
breaking is of the mass-splitting type as given above,
a simple canonical transformation demonstrates that
there are no nonleptonic P-wave decays. We conclude
that the medium-strong interaction must be of a more
complicated nature than the simple mass-splitting
type indicated above if a scalar density weak Hamil-
tonian is retained. The departures from SU(3) are very
important. This effect will be rejected in the formulas
we derive for the P-wave decays, which will vanish when
the coupling constants' involved take on their SU(3)
values. We note at this point that the S-wave ampli-
tudes also vanish in the SU(3) limit corresponding to
their relation to the divergence of a conserved vector
current. Thus the theory proposed here, unlike others
suggested to date, is meaningful only for SU(3) broken.

IV. TABULATION OF THE AMPLITUDES

Without further conjecture as to the dynamical
orgins of Eqs. (12) and (13), it is possible to take them
as given and to calculate the 5- and the P-wave decay
amplitudes. As has been previously mentioned, one
should be particularly careful in extrapolating the
Born part of the amplitudes to vanishing pion four-
momentum. In order to account for any difhculties
that might arise in this process, we shall determine
M(q) through Eq. (11).Using Eqs. (12) and (13), it is
easily determined that the off-shell P-wave Born
amplitudes are of the order 6M/2M and, hence,
negligible, so that

M (q) M (0)+M s""(q). (19)

For the 5 waves on the other hand it is found that the
Born terms on and o6 the mass shell are of the same
order of magnitude, so that

M (q)=M (0) (20)

We define in the standard manner the A (S-wave)
and the 8 (P-wave) amplitudes by the following
expression:

M(q) = 3(M~M—~ /pspp'V')"'33(p)

X (A+Bus)l(p'). (21)

Using the standard definitions for the vector and the
axial-vector coupling constants, the result for the
various hyperon decays are tabulated below:

A (h. —+ p7r ) = v2(rr3 3/—c,)rshs(Ms Mx)gv(—A —+ p), (22a)

A (Z+~ Ns+) =0, (22b)

A (Z+ -+ Ps-') = (rN '/c, )33Xs(Mz Mx) g v
(Z+ ~ P), — (22c)

A(Z -+ms —)=—(&2m '/c )3)s(Mx MN)gp(Z —~e), (22d)

A( —+As )=—(V2m 3/c. )-', Xs(Mp Ms)gv(.—~A). (22e)
Thi»esult is in contradiction of the trend indicated by saturation calculations. See, e.g. , E. Ferrari, V. S. Mathur, and L. K.

Pandit, Phys. Letters, 21, 560 (1966);Y. T. Chiu, J. Schechter, and Y. Ueda, Phys. Rev. 150, 1201 (1966). It is in accord with the
observation independently made by Sakurai on the basis of a vector-particle-dominance model; see Ref. 10.' S. Coleman and S. L. Glashow, Phys. Rev. 134, 8671 (1964); B.W. Lee, ibid. 140, B152 (1965).

3 J. Schwinger, Phys. Rev. Letters 13,355 (1964);13, 500 (1964).
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8(h. ~ p~ ) = —(&2m '/c ) sht (Mg+Mtv) L g—g(A ~ p)+(2M&/(Ma+Mtv))gv(& ~ &)g~(& —& p)
-((M,+Mz)/(M, yMtv))g. (i1-~+)gv(~+- p) j, (23a)

B(Z+~ 07r+) = —(&2m '/c )-,'X&(Mz+Mx)$(2M~/(Mz+M~))gvp+~ p)g~(p~ I)
—((Mz+M~)/(Mz+Mtt))g~(&+ &)gv(A ~ n) 1, (23b)

~(~.-p-)=(- ./. )-:h.(M-+M-)B.(~"-p)+(2M-/(M. +M-))g. (~ -p)g. (p- p)
(2M'—/(M++M~)) g~(Z+ ~ Z+)gv(Z+ ~ p) j ) (23c)

B(Z —+ tsar )= —(%2m '/c )-', Xp(Mz+M~)L —g~ (Z ~ ts) (—2Mz/(Mz+Mtv))g„(Z ~ Z')gv(Z' —+ n)
—(Mz+Ma/(Mz+Mtv))g~(Z —~&)gv(t1 ~ ts)], (23d)

8 (=- ~sr—r )= —-(V2m. '/ct )-', hp(M- +M.A) $ gA (—:- ~A-) +(M~+Ms/(Mz+M, ))gv(=- ~ Z—
)g~(Z

—~ A)

(2M=-/(M=-+Ma))g~( ~ )gv('~ A)]. (23e)

A(Z,+) =O, (25a)

A (A ')/(Ma —M~) = (Q-', )A (Z:)/(M —Mtv), (25b)

2A(:)/(M-. Mt, ) =A(A ')/(Ma —Msr). (25c)—
rs K. Nishijima and L. I. Swank, Phys. Rev. 146, 1161 (1966);

Note that, as mentioned previously, the SU(3) limit
of both the S- and the I'-wave amplitudes vanish.

By using pion and kaon PCAC, the I'-wave ampli-
tudes Inay be recast into a very interesting form.
Equation (23a), for example, becomes

B(A~ p~
—

) = ——;)„L—(frc/f. )Gasrrc

+42gv(t1 ~ Jtt)G~~. gv(Z+~—p)Gaz j (24)

Here f and fz are the w and the E decay constants,
known to be nearly equal, and the 0's are the strong-
coupling constants with the off-shell strong-vertex
form factors equated to unity. The first term on the
right-hand side of (24) represents the purely current-
algebraic contribution and can clearly be interpreted as
the contribution from the E pole diagram mentioned
previously. This is, we emphasize, the contribution
which identically vanishes in the usual treatment. The
last two terms which, in our treatment, arise because of
corrections to the extrapolated amplitude, represent the
Z and the E pole contributions. Consequently, we find
the general structure of the I'-wave amplitudes to be
as suggested by the pole model of Feldman, Matthews,
and Salam. ' The S-wave amplitudes may be interpreted
as contributions from the E* pole diagrams, ' which,
in this case, make the only contribution from baryon
poles. We emphasize that although all our results have
a pole-model interpretation, they arise from the more
systematic current-algebraic approach, and the coeffi-
cients of all pole terms are determined precisely by
this approach.

Before proceeding to the detailed numerical compari-
son of the above results with experiment, note that for
the S-wave decays we have extra relations besides the
usual hI=-', sum rules. Using the SU(3) values of the
gv's which are accurate to second order in the SU(3)
breaking, we find, ' in excellent agreement with the
experimental data, "

TABLE I. The S-wave decay amplitudes.

S-wave amplitude
(10~(MeV sec) '~sg A (A ) A (Z++) A (Zo+) A (Z ) A (" )

Theory

Kxpt11

O.i35 0 —0.112 0.158 —0.153
(input)

0 —0.079" 0.158 —0.1690.132

J. J. Sakurai, ibid. 156, 1508 {1967);B. W. Lee and A. R. Swift,
ibid. 136, 8229 (1964).

'N. P. Samios, in Proceedings of the Argonne International
Conference on Weak Interactions, Argonne National Laboratory
Report No. ANL-7130, 1965 (unpublished); we have changed some
of the signs in conformity with our phase convention. For experi-
mental verification of Kq. (25a), see also D. Cline and J.Robinson,
Wisconsin Report, 1966 ('unpublished).

"H. Sugawara, Progr. Theoret. Phys. (Kyoto) 31, 213 (1964};
B. %. Lee, Phys. Rev. Letters 12, 83 (1964).

"The data quoted by N. Samios (Ref. 11) do not satisfy the
the I=~~ Z triangle very weIl. More recent data, however, are
in much better agreement with the triangle; see R. 0. Bangerter
et at , Phys. Rev. Letters . 17, 495 (1966).

The standard shorthand notation for the decay proc-
esses is employed in the above relations. Note that (25c)
divers from the well-known Lee-Sugawara triangle"
only through the mass-diQerence denominators. If we
use the Gell-Mann —Okubo (GMO) mass formula, Eqs.
(25b) and (25c) reduce to the exact Lee-Sugawara
triangle

2A (:)+A(A ') =v3A (Zo+) . (26)

It should be noted that the Lee-Sugawara triangle,
which is conventionally derived in the SU(3) symmetry
limit, is valid here even when the symmetry-breaking
effects are retained in the first order.

As an alternative procedure we may determine the
parameters 38 and 'A& by the experimental value of one
amplitude. It is interesting that numerically the
expression (18) is valid. Table I shows the values for
the S-wave amplitudes constructed in this manner to
be in very good agreement with experiment. " Note
that while the conventional theory has two parameters
corresponding to the F and D content of the weak
spurion, here we have only one parameter.

For the case of the E'-wave amplitudes, unfortunately,
we do not have precise experimental information on all
the g&'s required. We take the following values as given
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TABLE II. The P-wave decay amplitudes.

p-wave amplitude
$10o (MeV sec) '~op

Theory

EXptll

(it o) B(Z++) B(go+) B(& ) B(":)
0.82 1.632 1.25 —0.14 0.697

(input) (input)
0.858 1.632 1.443 —0.127 0.697

all particles involved in the decay are of more compar-
able mass. Nevertheless, we postulate that, for members
of the meson octet, Eqs. (12) and (13) are valid with
X as determined from the nonleptonic decay of baryons.
Using the commutation relations (5) alone, we may
relate in the usual way" the processes E2' —+x+m m'

to Eg' —+ m.+x to 6nd

from the experiments":

gg(n —+ p) =1.18, gg(A —+ p) = —0.88&0.06,

B(Es' —o or+or or') m. ' X„

A(Eto +o+rr—o) c,
(27)

and
gg(Z —+ n) =0 49&. 0 05.

In the absence of reliable experixnental estimates we
shall be guided by the work of Calucci et al. ,

"who have
estimated the corrections to the SU(3) symmetry
values of the g&'s. They find, in particular, that the
gz(Z+-ok) should be larger by about 30% than the
SU(3) symmetry value ( 0.64). For the g&( —+A),
they do not find much difference from the symmetry
value ( 0.16); we will therefore adopt the values
g&(Z+ —+A)~1.0 and gz( -+ A) 0.16. Failing any
information on the remaining g~'s, namely, g~ (Z —+ Zs)

and g~( ~ o), we have to treat these as parameters.
We shall show in Sec. V that consistency of our theory
with the experimental values of the nonleptonic meson
decay requires that ~Xs~ = ~4 ~

For XB=)i and
g~(Z —+ Z') 1.19 and g~( —+ "e)~0.26, we find
reasonable agreement, as shown in Table II. If experi-
ment should confirm the values of the g~ which we
have used, we may conclude that we have satisfactorily
predicted the P-wave amplitudes.

V. NONLEPTONIC DECAYS OF THE J" MESONS

Equations (12) and (13) as they stand, of course,
give us no information about matrix elements of II~
between members of the meson octet. If the decomposi-
tion (17) is made, it is even less probable here that, in
the baryon case, the first term alone dominates since

l4 We have calculated the gA. 's from the rates quoted by N. Brene
et ul. , Phys. Rev. 149, 1288 (1966).The errors on the rates for the
Z —+ A.ev and the " ~kiev decays are very large; hence we have
not used these rates to obtain gg(Z -o h) and g~( o it).

"G. Calucci, G. Denardo, and C. Rebbi, Torino Report, 1966
(unpublished); Y. Hara and Y. Nambu, Phys. Rev. Letters 16,
875 (1966); D. K. Elias and J. C. Taylor, Nuovo Cimento 44,
518 (1966); S. K. Bose and S. N. Biswas, Phys. Rev. Letters 16,
330 (1966);M. Suzuki (Ref. 1).

A (Eto —+ or+or )

A(Z-~nor —
)

SI~'—3l '
-~—6.4m, . (29)

3f~—3E~

The experimental absolute value of this ratio is 4.96
m„so that our results are off by almost 30/o. We may
interpret this as indicating that we should have chosen
a slightly different value for the parameter ) for mesonic
processes. Of course, it could be that Eqs. (12) and (13)
need correction in this case.
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"The two-pion state must be space-symmetrized to preserve
Bose statistics. See, e.g., M. Suzuki (R.ef. 1)."M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264
(1964)."This result is the same as obtained in their scheme by Riazud-
din and Mahanthappa (Ref. 2).

in excellent agreement with experiment for
~ X„~ =

~

X,
~

but, of course, not a test of our model per se. Next,
we may easily calculate the E& decays" in terms of the
Eis form factor F+(0), and obtain

A (E o or+or )= (m '/V2c, )) (Mx' m'—)
X[F+(E'-+ rr ) F+(Es~—or)]. (28)

This amplitude may be related to the 5-wave hyperon
decays if, in accord with the Ademollo-Gatto theorem, "
weusetheSU(3) valuesofF+andgi(Z -+n);wefind"


