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d/f ratio, the relation

cr+48+8= 0.

It is hard to see in what sense this could be approxi-
mately true in our result.

In conclusion, it is tempting to speculate that pertur-
bation theory is, after all, well suited to strong interac-
tions, except in those cases where its accuracy is masked

by the presence of resonances. The latter are such a
common occurrence that they may have, so far, suc-
cessfully hidden the basic validity of the Feynman-
Dyson techniques. Further, there may be, after all,
a well-de6ned set of particles which are more elementary

than the others, and the spin-2 members of this set
could be the baryon octet.

It would be interesting to attempt a program in which
all the strong couplings are ultimately determined by
the convergence of weak processes;
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The structure of the X&4 decay spectrum is displayed in its full generality as a function of a complete
set of five kinematic variables; polarization effects are in part similarly described. The nontrivial dynamical
aspects of X«decay reside in certain form factors, which depend on only three of the variables. It is shown
that, with large cuts at the two remaining variables, the measurement of the decay spectrum alone suffices
to overdetermine the form factors. On certain standard assumptions, these form factors carry information
relating to the phase shifts for pion-pion scattering. It is an important practical matter to extract some-
thing of this information under conditions of limited statistics, where the spectra have to be treated in
partially integrated form. We find that this can be accomplished, with surprising economy, for the energy-
dependent phase-shift difference b;8„,on the single additional assumption that the dipion system is produced
chiefly in s- and p-wave states. The information emerges from the intensity spectrum for E,4 decay, and
again from the polarization spectrum for E'„4decay, the spectra being treated as functions of only three
variables. Moreover, the structure in two of these variables is simple and therefore relatively undemanding
in a statistical sense.

I. INTRODUCTION

A MONG all semileptonic decay processes for which
extensive accumulation of data can reasonably

be expected in the near future, the X~4 reactions
E-+ 2z +o+ (e or tt) 'are singularly rich in their
kinematic structure. A number of standard weak-
interaction issues arise for these processes: e.g., the
validity of the semileptonic AI= ', and AS=AQ ru—les,

tests of time-reversal invariance, the implications of
current algebra, etc. But more exclusively, one has the
possibility here of extracting direct information on
pion-pion phase shifts over a range of energies. ' ' Some
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preliminary experimental results in this connection are
already in hand, 4 but much more remains to be done.

The intensity and polarization spectra for E&4 decays
are functions of Ave configuration variables. The present
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work is principally based on the following crucial
remark. If the five variables are properly chosen, then,
on the one and only assumption of effectively local
coupling of the lepton pairs to hadronic currents, the
structure with respect to two of these variables is
explicit and independent of hadronic effects. The
essential dynamical effects are contained in certain form
factors which can depend at most on the remaining
three of the five configuration variables. This separation
into "2+3" reduces the complexity of the situation
and, as we shall see, can be exploited to decompose the
over-all structure into intrinsically more interesting
parts.

For these purposes the following set of variables,
introduced by Cabibbo and Maksymowicz. ' is suitable:
the angles 8 and 0& which describe the "decay" of the
dipion and of the dilepton systems in their respective
rest frames; the angle q between the normals to the
planes defined by the dipion and the dilepton; and the
invariant masses Qs and Qsi of the dipion and the
dilepton. Precise definitions are given in Sec. II. 0~ and
q are the "trivial" variables, dependence on which can
be exhibited explicitly. ' The form factors depend at
most on 8, s, and s& only.

It seemed worthwhile to us to investigate theo-
retically the problem in its full dependence on all five
variables, even though a correspondingly complete
experimental investigation is surely nowhere in sight.
The more practical idea is to find out what are the most
efficient ways to extract significant information by
partial integrations or "cuts" at the data, with minimal
a priori assumptions about the form factors. Accord-
ingly, we have worked out the structure of the intensity
spectrum in its dependence on all five variables, in-
cluding the effects of finite charged lepton mass (rele-
vant for E„4decay). The results are presented in Sec.
II. We have also computed (again relevant for E„4
decay) the structure of the polarization spectrum in its
dependence on all the five variables. For a general
choice of polarization direction, the spin-dependent
effects are excessively complicated. The general formu-
las are recorded in the Appendix in a not fully reduced
form. However, for the particular component of p-
meson polarization normal to the dilepton plane, a
considerable simplification occurs. In Sec. IIB we give
a fully reduced form for this polarization component,
which, as it turns out, is at the same time of greatest
potential diagnostic value.

As a first example of optimal cuts at the data, we
mention some tests for the very assumption of lepton-
pair locality on which all. our work is based:

(1) Integrating the intensity spectrum over all
variables but 8E, there results the simple distribution in
0& given in Eq. (13) below.

In Ref. 2, the X,4 distribution is integrated from the outset
over 8l. As a result, a cegtajn amount of rigorous informs, tion gets
)ost.

(2) Likewise, integrating over all variables but p,
there results the simple p distribution given in Eq. (14)
below.

Of course, locality is not exact in any event, owing to
some of the electromagnetic corrections to the leading
hadronic effects. However, apart from nonlocality
effects, which are presumably quite small (but not less
interesting, therefore), we come in Sec. II to the
following general conclusion. Not only is it possible,
from the intensity spectrum alone, to arrive in principle
at an exact determination of all the form factors, with
big (and specified) cuts in Hi and y, but, in fact, the
form factors are overdetermined by our procedures.
This is true for E„4,while the overdetermination is even
stronger for E,4, where we may neglect the charged
lepton mass. It should be stressed that this conclusion
is independent of the assumptions of (a) T invariance,
(b) the AI=-', sernileptonic rule, as long as locality is
preserved.

These general results of Sec. II can serve, when high
statistics some day will warrant it, to extract full
information on the form factors. In Sec. III we turn to
the more immediate task of seeing what can be learned,
particularly about the pion-pion phase shifts, in limited
statistics situations. At this stage, the assumptions (a)
and (b) just mentioned do come into play. We make a
few brief comments about them.

(a) T Azecriaece Insofar as. this invariance holds
true, the partial-wave amplitudes in a decomposition
of the form factors with respect to dipion angular
momentum must have the phases of the corresponding
pion-pion partial-wave scattering amplitudes. In Sec.
III, we point out several ways in which the T-invariance
assumption can be tested in K&4 decays. Our tests allow
for the presence of partial waves up to and including
d waves. This would seem quite adequate for the energy
regime under consideration. For the purposes of Sec. III
we shall adopt the assumption of T invariance.

Nevertheless, there remains the question of principle
whether one can extract rigorous phase-shift informa-
tion in the presence of T violation. This problem has
been analyzed in detail by I.ee and %u.' It follows from
their work that indeed one can get this information
from a comparison of the conjugate reactions Eg4+ and
X~4, provided that CPT invariance obtains. Con-
versely, such a comparison can serve to test CPT itself,
and even more directly and obviously, CP invariance.
In the present work, however, we are concerned pri-
marily with the question of getting at the phase-shift
information, economically and with a quite reasonable
theoretical accuracy, from a single decay channel, in
particular E+ +7r++m. +l++v. —

(b) Semileplonic bI= i2 rule. This rule is surely not
exact, if only because of electromagnetic corrections.
But there is no indication elsewhere in semileptonic

o T, D, gee and C, S. Wu, Pnn, Rev, Nucl. Sci. 16, 4'i1 (1966),
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reactions of violations of the rule beyond, roughly, the
10%%uz level. This accuracy is probably good enough for
present purposes, where one would be delighted to
extract even qualitative information on the behavior of
the m-x phase shifts. Accordingly, the further analysis
in Sec. III is based on a presumed validity of hI =-,', so
that the even partial-wave amplitudes correspond to
states of de6nite isospin, I=0.

Finally, we study in Sec. III the consequences of the
following approximation, which allows us to make
slbstueiial cuts at the data:

(c) Only s and p states of the di piow system play a role
ie E~4 decay. ' The full structure of the E.4 spectrum in
this approximation was first displayed by I.ee and Wu. '
YVhile this approximation does not seem unreasonable,
we still give at once a test for it, suitable for limited
statistics situations. Namely, in the s-p approximation
the intensity spectrum integrated over all variables but
8 should yield a distribution in 8 given by Eq. (16)
below.

Proceeding, then, with the s-p approximation we
arrive in Sec. III at the following results:

(1) The phase-shift difference 8, (s )—8~(s ) as a
function of s can be obtained without further assump-
tion and mitholt loss of information by (a) integrating'
over all values of si and 8„and (b) integrating over
large specified domains of 8~ and q, so that these last
two variables can be regarded as discrete in a statistical
sense. Thus the s-p approximation is very suitable for
a treatment with modest statistics, but, we repeat, with
high statistics this approximation need not be made to
get at the form factors.

(2) By taking alternative cuts at 8i and q, one can
find this phase-shift difference in several irideperident

ways.

It is our over-all conclusion that the phase-shift
information one is seeking can be extracted within
modest statistics, despite the five-dimensional char-
acter of the K~4 phase space and with a reasonable
minimum of a priori assumptions —assumptions that
can themselves be tested within modest statistics.

II. GENERAL RESULTS

A. Kinematic Preliminaries

For definiteness we consider the decay E+ + s.++s
+l+v, where l stands for electron or muon. The momen-
tum four-vectors of E+, x+, m, l+, and v are denoted,
respectively, by E', k+, k, p, q; and the symbols for the

' Reference 2 deals only with the case where d and higher m-x
partial waves are neglected, while not all p-wave contributions are
systematically included. LMore precisely, it is assumed that the
form factor f in Kq. (6) below has negligible p-wave contribu-
tions. g Furthermore, the s=s- phase shifts are discussed under the
assumption that the form factors are independent of sg. The
present work shows a way in which one can dispense with this
assumption.

s~= —I" s~= —I.'

and we note the relations

(2)

Qs —s 4/2

P I.= ——', (M' —s.—si).
(2')

For the remaining three variables we choose: 8, the
angle formed by the x+ three-momentum vector, in the
dipion rest frame, and the line of Right of the dipion as
defined in the E-meson rest frame; 8~, the similar angle
formed by the l+ three-momentum vector, in the di-
lepton rest frame, and the line of Right of the dilepton
as dined in the E-meson rest frame; y, the angle
between the normals to the planes defined in the
E-meson rest frame by the pion pair and the lepton
pair. ' In terms of scalar-product invariants, we have

Q I.= —(Q'/s. )'~'X cos8. ,

P N= (m'/si)P. L (1—m'/si)—X cos8i,

Q.N= (m'/si)Q L+ (Q'/. s )'I'(1—m%i)
X[P L cos8 cos8i+ (s si)'" sin8 sin8i cosy 7,

where
X-[(P L)'—s~s(7'"

%e also note the relation

(3)

(3')

(QPNL) = e„„p.Q„P„NpL, —
=i(siQ')'"(1 m'/si)—X sin8 sin8i sing. (4)

On the usual picture of vector and axial-vector
coupling of the leptons to hadronic currents, the
transition amplitude for E~4 decay is given by

(G/v2)sin8, (k+, k
~

A )+Vg
~ E)N(q)yi(1+ps)e(p), (5)

where Aq and Vq are the strangeness-changing axial-
vector and vector currents, 8, is the Cabibbo angle, ' and
G is the standard weak-interaction coupling constant.
The hadronic matrix element has the structure

(k, k ~A + V ~E)= (1/M)[fP +gQ„+ (E P)—
+ (h/M') e),„„,K„P„Q.7, (6)

the 6rst three terms coming from the axial-vector
current, the last from the vector current. The (dimen-
sionless) form factors f, g, r, h are functions of the

More precisely, p is the angle between the factors h+)&h and
yQq. The sign of q is fixed by Eq. (4) below.' Our work hardly hinges on the here assumed equality of the
vector and axial-vector Cabibbo angles.

particle masses are defined by E'= —M' k+'=k '
= —ti', p'= —m', q'=0. It will be convenient in what
follows to deal with the independent four-vector
combinations

P=k +k, Q=k„—k, L=p+q, N=p —q. (1)

Apart from spin, E&4 decay is kinematically parame-
trized by five variables. For two of the variables, we
take the dipion and dilepton squared masses
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F~ Xf (P I.)——(Qg/s—~)'~'g cosg~,

Fg= (Q's~)'"a,

F = (Q's )'IgX(h/Mg)

F,= (P I.)f s~r X(Q—'/s )—'~'g cosg . (10)

Notice that F4 is simply related to the matrix element
of the divergence of the axial-vector current: —iMF4
= (gr+gr

—
i
8Ag/gxg

i
E).

B. Distribution Functions

The distribution functions I and A„have a simple
explicit structure in those variables, 8~ and p, which do
not enter into the form factors. It is useful, therefore,
to group terms according to their behavior with respect
to these variables, since this will serve in a crucial way
to "decompose" the intensity and polarization spectra.

For the intensity distribution function I, we have the
expression

I=I~+Ig cos28~+Ig singg~ cos2q+I4 sin20~ cosy
+Ig sing~ cosy+Ig cosg~+I7 sing~ sin &p

+Ig sin28~ sin go+I g sin'8~ sin2 gg, (11)

invariant variables P', (E—P)', E Q; equivalently, of
the variables s, s~, and 0 .

The probability, or intensity distribution, summed
over lepton spins, takes the form

grg Ggsingg (Qg) 1 /g / mg) 2

d'm=
(2gr)g 16Mg E.s, / 4 sg I

XI(s,s~,g,g~, y)ds, ds~d cosg d cosgidgg (7.)

The intensity distribution function I will be recorded
below. To describe the expectation value (e) of the
charged lepton spin vector, we decompose in an
orthonormal set of base vectors defined by

e =I/II I,
e-= (IgX»)/I IgX»I, (8)

e.= E(l X») Xl l/I I I I I X» I

the momentum vectors y and g being referred to the
rest frame of the E meson. Ke write the expectation
value (o), multiplied by the intensity distribution
function I, in the form

I(e)=A(&e((+A e„+A,e, .
The quantities A 11, A„,A& are functions of the variables
s„,s~, |I„,8~, y, and an explicit expression for the normal
polarization function A„will be given in Kq. (12)
below. Expressions for the other two functions, All
and A&, are given in a not fully reduced form in the
Appendix.

For purposes of expressing the distribution functions
I and A

„
in compact form, it is convenient to introduce

the following combination of kinematic factors and
form factors:

where the functions I~, ~, Ig depend on s., st, 8 and
are given by

I(———,'L(1+m'/s, ) ~
F,

~

'+-', (1+m'/3s, ) sin'0.

X (IFg I'+ IFg I')+ (2mg/sg)
I
F4 I'7

Ig= ——:(1—mg/s~)LIF~I' —g»n'0 (IFgI'+ IFgI')]
Ig 4———(1 m—'/sq)[[ Fgf' —[Fg f'j sin'0,
Ig ,' (1———mg/—s~) Re(F~*Fg) sing„
I,= R—eLF&*Fg+(m'/s~)F4*Fgj sing,

Ig —Re——
t Fg Fg sin'8 —( m/ ~s)F,*F4],

I7 —Im——
t
Fq"Fg+ (mg/s~)F4*F gj sing, ,

Ig ———,'(1—m'/s~) Im(Fq Fg) sin8. ,

I,= ', (—1 -m—/ ~s) Im(Fg*Fg) sin'8, .

For the polarization distribution function A„,we find

A~= —g([Fg/' —IFgI')

Ag ——Re(F4~Fg —Fg~F g)

A g
——Re(Fg"Fg

—F4~F g)

A,= rm(F; F, F,*F,)-—
A g= Im(F4*F g

—Fg*Fg)

A g= Im(Fg*F g) sin'8,

Ag ———Im(FR*F4).

sin'8,
sln8

sino,
sino,
sino,

(12')

We may observe that the quantities I3 and I9, when
evaluated for lepton mass m set equal to zero, are simply
related to quantities appearing in the polarization
spectrum

2lg(m=0) =Ay,
—2Ig(m=0) =Ag.

(12")

C. Decomyosition via the 6~ and q Variables

The form-factor combinations Fj ~ ~ F4 depend in
a priori unknown ways on the variables s, s~, and 8;
indeed, it is the elucidation of this dependence that
constitutes the goal of X&4 experiments. The intensity
and polarization spectra also depend on the variables
8& and q, but in a simple way. This simplicity stems
from the assumption of locality of the coupling of lepton
pairs to hadrons, as reflected in Eq. (5) by the factori-
zation of the transition amplitude into a hadronic part
and an explicit, simple lepton part. Even for limited
statistics situations, this very basic assumption of
locality can be subjected to direct experimental test.
For example, suppose that one investigates the decay
spectrum in its dependence on the single variable 0~, all
other variables being integrated over. Then locality

A „=—(m'/st)'I'(A q sing~ sin2 gg+A g sing

+Ag sing cos8+A4 cosrp+Ag cosg~ cosy
+A g sing~ cos2 gg+A 7 sing~), (12)

where
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implies the spectrum shape

dw/d cos8~ ——a+5 cos8i+c cos28i, (13)

a structure of very simple and limited form. Similarly,
the one-variable spectrum in q has the simple shape

d7e/dq =n+P cosy+ad sing+8 cos2q+e sin2q . (14)

With more statistics, one could go on to test the joint
distribution in 8& and p implied by Eq. (11).Such tests
are very important, bearing as they do on the lepton
pair locality assumption which is at the very root of our
picture of the weak interactions. "

For the rest of the discussion, however, let us adopt
the locality hypothesis. Observe in Eqs. (11) and (12)
that the form factors enter in difFerent combinations in
the various terms classified according to behavior with
respect to the 0&, q variables. This afFords the possibility
of separating the form factors, one from another, in an
economical way. The variables 0& and p can be regarded
as statistically discrete, in the following sense. Suppose,
for example, that one wishes to isolate the coefficient
I6 of cos8& in Eq. (11),for given values of s, s&, 8 . It is
enough for this purpose to group all events into merely
two categories, according to cos8~&0 and cos8~&0,
independent of q. The difference in the numbers of
events in these two groups then arises solely from the
term in question in Eq. (11).The other terms in Eqs.
(11) and (12) can similarly be isolated in turn, by
lumping the data in at most four domains in the
variables 8~ and q, the number of events in each domain
being combined with appropriate algebraic signs. The
interested reader can easily work out his own table of
rules.

It is formally amusing to observe that the intensity
function I contains nine distinctive terms as classified
with respect to 9~ and p. On the other hand, for given
values of s, s~, and 0, we are dealing with seven real
quantities to be determined: namely, the magnitude of
F~ Ii4 and their three relative phases. It is therefore
possible to extract complete information on the form
factors solely from the intensity spectrum, without use
of polarization data; indeed, the problem is over-
determined. For the case of E,4 (with m=0), F4 does
not come into play, so that the overdeterrnination
becomes even stronger there.

III. PION-PION PHASE-SHIFT INFORMATION

A. Partial-Wave Expansion

The E&4 form factors, of course, carry information on
the weak interactions, but they also reflect in intricate
ways on the strong interactions. Insofar as time-
reversal invariance holds to sufficient accuracy, how-
ever, there is one outstanding respect in which the form
factors carry direct strong-interaction information. In
a partial-wave expansion of the form factors with

"Equations (13) and t'14) apply both to E„4and E,4 decays.

respect to angular momentum of the dipion system, a
partial-wave amplitude of definite angular momentum
and isospin must have the phase of the corresponding
pion-pion scattering amplitude. In the odd partiaI
waves in E+ —+sr++~ +l++v decay, one deals un-
ambiguously with isospin I=1 for the dipion system.
For the even partial waves, however, one encounters
an u priori unknown mixture of I=0 and 1=2 states.
The two can in principle be disentangled on the basis
of a joint study of E+~ m++7r +1++v and E+—+

27r'+3++v decays. For practical purposes, however, we
shall invoke the celebrated AI=-', rule of semileptonic
weak reactions, and, accordingly, we suppose that the
even partial waves correspond to the definite isospin
value I=0.

The first couple of terms in a partial-wave expansion
of the various form factors can now be indicated:

f=f,e"+f„e"~ cos8.+
r=r,e"+r„e"~cos8 +.
g=g„e'~+gee""cos8 +
h=h e"~+hde'" cos8.+

The quantities f„f„,etc., which bear the tilde marks,
are real functions of the variables s, s~,. and the phases
8(s ) are pion-pion phase shifts evaluated at the
invariant dipion mass Qs . The subscripts s, p, d,
refer to the angular rnornentum quantum number.
Isospin labels are suppressed, on the understanding that
even partial waves are taken to correspond to I=0, the
odd partial waves in any case corresponding to I=1.

It is clear that the partial-wave expansion can ie
priecipie be carried out in full once the form factors
have been determined, as discussed in the previous
section, in their full dependence on the variables s, s~,
8 . But it is fanciful to expect such an experimental
achievement in the near future. We are therefore con-
cerned here with the art of extracting partial, but useful
information under limited statistics conditions where
one has to treat the spectra in partly integrated form.

The phase shifts depend on the single variable s,
which must of course be retained as a free variable,
although in practice one would be willing to average
over more or less sizable bins. It would be nice, however,
to be able to integrate over the variable s~ without total
loss of phase-shift information, and without a priori
assumptions on the variation of the form factors with
s~. This turns out to be possible, under the following
hypothesis. I.et us suppose that the pion pair is pro-
duced exclusively in s and p waves; or rather, that the
amplitudes for the higher partial waves are sufFiciently
small so as not to seriously distort the deductions to be
extracted for partial waves that are retained. Clearly,
the assumption is a reasonable one for small values of
s, whereas at the upper end of the spectrum it could
prove to be less reasonable. It is an important point
that the assumption can be subjected to experimental
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test, even for limited statistics conditions. Namely, on
the s- and p-wave hypothesis, the form factors g and h
are taken to be independent of 8, whereas f and r are
at most linear in cos8 . In turn, this implies that the
quantities Fz and F, of Eq. (10) are independent of 8,
whereas P~ and F4 are at most linear in cos8 . It is
easily seen from Eq. (11) that the intensity spectrum
in the single variable 8, all other variables being inte-
grated over, must on the above hypothesis have the
simple form

dw/d cos8 =2+8 cos8 +C cos28 . (16)

El=Fr, ,e"+Fr,~e"r cos8,
I 2=72,„e"~,
F,=P, ,„e'",
F4=P4, ,e" +F4,„e"zcos8,

(17)

The correctness of this expression, of course, constitutes
only a necessary condition, since higher-order trigon-
ometric terms may happen to vanish on integration
over the other variables. With more data one could
impose more stringent tests, say for the joint distri-
bution in the variables 8„,8~, y, the implied structure
in these variables being easily read off from Eq. (11).
Such tests, it seems to us, are very worthwhile.

For the remainder of the discussion, we accept the
low partial-wave hypothesis and go on to consider how
the phase-shift difference 5,—b„canbe determined in
an economical way, both from the intensity spectrum
of E,4 decay and the polarization spectrum of E„4
decay.

As is obvious from Eqs. (10) and (15), the functions
Fj.. - F4 can be expanded under the present assumption
in the form"

where

XdsId cos8 =2 Xdsi,

and where (I), which still depends on s, 8l, and q, is the
weighted average defined by

XIdsid cos8~ .

The function (I) has the same decomposition in the
variables 8l and y as in Eq. (11), with the functions I;
replaced by the corresponding weighted averages
(I;), these depending only on the variable s .

As we have repeatedly emphasized, the quantities
(Il) (I&) can be separately determined with relative

economy, on the basis of the spectral variations in 8&

and q. Suppose then that this has been accomplished,
so that the quantities (Il) . (I,) are separately known
as functions of s . Recalling that the lepton mass nz has
been set equaL to zero, and invoking the expansions of
Eq. (17), we see that

(I )= ,'(F,,'+~F-~, '+F,„'+F,„'),
(Iz)= —(Fl 2+zFl, z zFz, z Fz )

(I )= (F, ' F, ')
(I4)=sir(Fl, Fz,„)cos(b,—8„),
(Iz)= 4llr(Fl, ,Fz, ~—) cos(B, 8„), —
(I )=—'(F ..F..),
(I7)= ~~lr(Fl, ,Pz,„)sin(8, —8„),
(Iz)= ', vr(Pl, ,Fz, ~)—si—n(8, —8,),
(I.)=o,

where, of course,
where the quantities bearing the tilde mark are real
functions of s and s~.

(F F)= XFFdsl—
B. X,4 Intensity Syectrum

For E,4 decay, it is an excellent approximation to set
the electron mass equal to zero. In this approximation,
as is known, the electron polarization is purely longi-
tudinal and there is nothing of dynamical interest to be
learned from polarization effects here. Let us, however,
consider the intensity spectrum. Suppose that one
integrates over the variables s& and 8, thereby regarding
the spectrum as a function of only the three variables
s, 8l, and y. According to Eq. (7), this reduced spec-
trum is given by

lr' G' sin'8 (P)'"
d zo= W(I)ds d cos8ld y, (18)

(2lr)' 16M' ks I
"The general partial-wave expansions are obviously given by

E1=QP1, re"9'), Fg ——+F2, Ie'"I'&' Eg ——+F3, )e@'Es' F4——+F4, r
e*"Pl where Pl'(z) =dPl/dz

The phase-shift di6erence can evidently be deter-
mined in two distinct ways; namely,

and
«n(8 -8.)=-:(I.)/(I )

tan(8 —8 )=2(I )/(I ). (20)

Equations (20) implement the earlier statements that
the phase-shift information in the s-p approximation
can be obtained by integrating over s& and 8 .Moreover,
Eqs. (19) contain several tests of our basic assumptions.

(1) In the absence of d waves, tested for separately
by Eq. (16), any observed inconsistency between the
two phase-shift determinations given by Eqs. (20)
would be an indication for an I=2 admixture in the
s wave and/or for a breakdown of time-reversal
Ulvarlance.
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(2) The prediction that (I~)=0 is especially in-

teresting because it continues to hold even if one allows
for d-wave states of the dipion system. To the extent
that still higher waves are really negligible, a non-
vanishing value for (I9) could arise only from a break-
down of the AI=-,' rule, i.e., from admixture of I=2
states in the d wave; and/or, from a breakdown of
time-reversal invariance. Notice, however, that F3 is
proportional to h/M'. Thus if h were comparable to f, g,
and r, then Fa wouM be small compared to F~, F2, and
F4. On this account alone, the quantities (I&), (Ia),
(Is), and (I») might be small. But by the same token,
the very presence of any of the terms (Is), (I&), (Is)
Pand (I»)g can be used, in limited statistics situations,
to establish whether the vector current form factor It

contributes at all appreciably to E«decay. For quali-
tative purposes, one could integrate also over the
variable s, treating the intensity spectrum as a function
solely of the variables 8& and p—the "easy" variables.

where

G'sin 8 t'Q'&&' '
W(A„)ds d cos8&d&p, (21)

(2~)s 16~a (s j

W(A )= X(1—eP/s&)'A dsgdcos 8„.

The function (A„)depends on s, 8~, and y, and it
decomposes with respect to 8& and &p as in Eq. (12), the
quantities A; being replaced by the weighted averages

(A;), which depend only on. s .
Again invoking the expansions of Eq. (17), we 6nd

(A )=--',(F,,'—F~,,'),
(A2)=-,'n (F4„F2,~ F&, ,F~,„)cos(5.—8—~),

(As) = ',z.(F~,.F2,„P4„P~,„-)cos(8.—8—,),
(A4) = ;7r(F&„P,,„P4,,—Pg—,,) sin(8, ——8,), (22)

(A5) = ——,'~(F4,.P2,,—P~„F3,„)sin(8, —8,),
(A, )= (A, )=0.

C. X„4Polarization Spectrum

Recall that the polarization function A ~(s~,s&,8~,8&, p)
is defined by the statement that the expectation value
of the component of muon spin normal to the dilepton
plane is given by (e e„)=A/I. Taking the difference
between the decay spectra for spin-up and spin-down
muons (quantizing along the normal), we obtain what
we shall call the polarization spectrum. It is given by
Eq. (7), with the intensity function I replaced by the
polarization function A, As in the preceding discussion
of E,4 decay, let us again imagine that one integrates
over the variables sg and 8, the polarization spectrum
being regarded as a function of s, 0~, and q. As before,
we write this in the form

Ke again find two distinct determinations of the phase-
shift di6erence

and
tan(8, —S„)= —(A, )/(A, )

tan(S —S„)= —(A, )/(A, ). (23)

As already observed in connection with Eq. (12"), the
quantities A6 and I&(no=0) are simply related. So the
remarks applied in the preceding subsection to the
vanishing of (I9) also apply to the vanishing of (A6).
On the other hand, the prediction that (A7) =0 would

no longer follow if one were to include d-wave dipion
states in the analysis.

Corresponding to each one of the three polarization
functions A

~ ~, A„,A~ described in the text, we introduce
a covariant spin vector S„satisfying S'=1, S p=0.
Namely,

S„~~~&= —(1/tnP ~ )$(K p)p„+mK„j,
S„~"& = (z/I &-&).„„„.J&I„I.,p. ,—

S."'= (1/1 '")E~p.+Pq, +vK.j,

D. Concluding Remarks

Apart from the relatively standard, and independ-

ently testable, assumptions of the adequacy of the
semileptonic DI= ~ rule, and of time-reversal invariance,
our single additional assumption has been that s- and
p-wave dipion states dominate over the higher partial
waves in E«decay. We have then seen how a study of
the intensity spectrum d'w/ds, d cos8&dy for K.4 decay
and of the polarization spectrum d'w~, &./ds d cos8~dq

for E„4decay can be used to establish the phase-shift
difference 5, (s )—8~(s,), along with other information
of interest. We have emphasized that the structure in

the variables 0~ and y has a simple explicit form which

permits one to treat these variables in "block" form,
mitigating thereby the demands on statistics that one
would otherwise envisage for the determination of a
spectrum in three variables.

We have rot had to discuss how the form factors vary
with s~, or how the mcgmitgdes of the partial-wave
amplitudes vary with s; in this sense the phase-shift
information comes through as if we were dealing with

free &r-m scattering. (This is no longer true if we go
beyond our s, p approximation. ) No doubt the magni-

tudes of the partial-wave amplitudes have a dependence
on s which reQects on the properties of m-m scattering.
But the connection is model-dependent, whereas the
phases are directly identifiable with the corresponding
x-x phase shifts in a model-independent way. Various
models are of course available in the literature for
estimating the eBects of final-state scattering on the
magnitudes of decay amplitudes; but it would seem
safest to get at the phase-shift information in a direct
way.

APPENDIX
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where

and

n= —[(E p)(E q)+M'(p q)7,
p= [(E p)2 —m'M27,

y= —[(E p)(p q)+m'(E q)7,

p&"'= (1—m'/s))SP "Isin8, p~'& =-,'P'"p&"'.

Let us also recall the notation introduced in connection
with Eq. (4), namely,

(Gbcd): E„„y—Q„b„cyd

For any one of three polarization functions, we then
6nd

(1—m'/sg)A = —m[ai(P. S)+a,(q.S)
+a3(e S)+ia4(PQLS)+ia5(PQNS)

+ia (PLNS)+ia (QLNS)7,

where the appropriate spin vector 5 is to be used. The
quantities aq aq, expressed in terms of scalar (and
pseudoscalar) products, but not further reduced, are
given as follows:

PL QL m'~
,= I fl (P.L—P.N)+Rel f*g+f*h +g*h —.*h l(Q.L—

Q N)
m2i

O' Q N i . (f*»
+Rel g*h +r*h f*r I(sg —m'—)+i Iml l(QPNL),i E3P i

(Q L)'q ) X' r*h~
~2=I If l'+ Ihl' Is —

I Igl'+ Ihl' Q'+m'I rl'+i Im l(QPNL)
3f4 m2i

s pr*h~
+R

I f h l(e L-e N)+R
I i[(P L)(e N)-(Q L)(P N)7m'J &1M i

+Rel g*h I(P L PN) Re—f*r(P L—+P N) Reg*r(Q L—+Q N),
m~i

PL QL m'
~3= Igl'(Q L—

Q N)+Rel f*g f*h —g'h +— r*h I(P I. PN)—
s I'-lV

+Re(f A r"k"—
M' M'

t'g*h1—g*r l(s~—m')+i Iml l(QPNL),i
f*h g*h r*h

(P L PN) (Q—L—Q
—N)+ (~ —m')

I
—i (QPNL),

M' i ~4

a5 ———Im(f*g), a6 ———Im(f*r), a7 ———Im(g*r) .

The full reduction to the variables which we have chosen for E&4 decay is tedious, except for A„,where various
simpliications obtain. More important, the reduced expressions for A

~~
and A& contain factors which couple the

variables 0&, s&, s in a nonseparable way, so that the structure does not decompose simply in 8& upon integration
over s&. But it is just such decomposition that we wished to exploit in this paper, for use in limited statistics situ-
ations. Hence our special attention to A„.


