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A unitary impulse approximation given previously is described here in a more general (multichannel)
form. To test the method, we apply it to a soluble model of E=d scattering and obtain encouraging results.
The method is then applied to 7r-N elastic scattering. Good agreement with the experimentally determined
d1& amplitude is obtained for energies near the second resonance. %hile the impulse approximation violates
unitarity bounds, the unitary impulse approximation shows no such violations.

C. INTRODUCTION

S OME time ago a modification of the impulse ap-
proximation w'as introduced which incorporates

constraints imposed by unitarity. ' In the present paper
we report two numerical applications of this unitary
impulse approximation to three-body scattering prob-
lems. The first application is to a nonrelativistic model
of elastic E -d scattering with separable two-body
potentials. This allows us to test the method, since the
exact solution has been obtained numerically by Hether-
ington and Schick.' The second application is to elastic
sr-S scattering in the dts and fts states. Numerical
results are presented in Sec. 3.

In Sec. 2 we review the unitary impulse approxima-
tion, presenting a more general version in which re-
arrangement collisions and e8ects of the Pauli principle
are treated explicitly. The discussion is placed in the
context of an effective potential formalism, ' 4 since we
believe that this is the most natural way to arrive at
the approximation. The formalism also suggests more
elaborate approximations. ' Generalization of the method
for systems involving more than three particles is
possible but will not be discussed here.

2. UNITARY IMPULSE APPROXIMATION

We consider a submatrix of the complete S matrix
which refers only to energy conserving states of a given
total angular momentum. This matrix may be repre-
sented in the block form

!

s s
I~s s-) '

where the elements of the matrix S correspond to two-

body initial and final states. (Each "body" may be a

~ Supported by the National Science Foundation.
' L. Rosenberg, Phys. Rev. 131, 874 (1963).
~ J. H. Hetherington and L. H. Schick, Phys. Rev. 137, 3935

(1965).' L. Rosenberg, this issue, Phys, Rev. , 168, 1756 (1968).
4 E. O. Alt, P. Grassberger, and %. Sandhas, Nucl. Phys. $2,

181 (1967).

compound system. ) The unitarity of the complete S
matrix implies that

Sst+$'S't = 1.
For an arbitrary column vector a we have

a~SSta atS'S'tu

(2.1)

(2.2)

Since each term on the left-hand side of Eq. (2.2) is
non-negative we have the inequalities

0&est(1 —Sst)a&tsttt. (2.3)

It follows that
f=E+iKf (2 6)

Af fft= (1 iK)—'AK(1+iK—t) ', (2.7)

and Eq. (2.4) becomes

0&at&(1 iE) A—K(1+-iEt) ja& ,'at-a (2-.8).
If AK is a non-negative matrix the left-hand inequality
will be satisfied. We now show that the right-hand in-
equality is satisfied with no further restrictions on K.
If we de6ne

b= (1+iKt) 'a,

it then remains to show that

btAKb& eb "(1 iK) (1+iKt)b—

(2 9)

(2.10)

is satisfied for arbitrary b. But by rearranging terms in

i.84i

If we write S=1+2if, then the inequalities of Eq. (2.3)
may be expressed as

0&at(A f ff t)a&era—ta (2.4)

Here, and in the following, the symbol 3 means "anti-
Hermitian part, " i.e.,

Af= (2i)-'(f—ft). (2.3)

Now suppose f is determined as the solution of the
Heitler equation
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Fq. (2.10), we can put it in the form

rsbt(1+iK) (1+iX)tb) 0, (2.11)

amplitudes

f-s= ~(p-p)r)'"T-s,

I('.s= --(p.") ) R.s
(2.17)

(2.18)

T-s= V-s+Z V-rGrTrs. (2.12)

Here 67 is the two-body Green's function for channel

y and V p is the effective-potential matrix. It has been
shown'4 that in the three-body potential scattering
problem the effective potential is rigorously defined as
the solution of a set of integral equations of the Faddeev
type. They differ from the usual Faddeev equations' in
that the input involves not the two-particle amplitudes
T~ (the subscript indicates the particular two-particle
subsystem) but the modified amplitudes Tr obtained
from T~ by removal of the bound-state pole contribu-
tions. For example, if there is only one bound state for
subsystem y, at energy Er)r, then f'„may be defined as

Tv= T7 1'v(& &~v)—'1'r', — (2 13)

where I'~ is the exact vertex function. We write Eq.
(2.12) in the matrix-operator form

T= V+VGT (2.14)

and define a reaction matrix R' as the solution of

R=V+RGr V, . (2.15)

where the subscript I' denotes the principal-value pre-
scription. Equations (2.14) and (2.15) imply that

T=R+RGrT, (2.16)

where G~= G—GJ has energy 5 functions along the main
diagonal. We work with the momentum-space repre-
sentation of Eq. (2.16), using states of well-delned
total angular momentum. If we write k~'dk~= p~dg~,
where k~ is the relative momentum variable in channel

p, the energy integrals can be performed. It is con-
venient to remove the fa.ctor p7 by introducing the

which is evidently correct.
For energies below the three-particle continuum

threshold the two-body submatrix S contains all the
open channels and is therefore unitary. For these en-
ergies we require 3K=0, a familiar result.

At this stage we could state our choice of approxi-
mate E matrix and verify that it satisfies the unitarity
constraint. A more meaningful procedure, we believe, is
to place our approximation in the larger context of an
effective-potential approach to the three-body problem.
In this approach one represents the transition matrix
for scattering processes in which a pair of particles is
bound in the initial state and a (possibly different) pair
is bound in the final state as the solution of the integral
equation (in operator form)

In terms of these amplitudes, evaluated on the energy
shell, Eq. (2.16) reduces to Eq. (2.6).

The above discussion shows that unitarity requires
AR to be nonpositive. Now Eq. (2.15), along with its
adjoint, gives the pair of equations

R= (1+RGr)V,
Rt= Vt(1+RG) )".

(2.19)

(2.20)

It follows from these two equations, al.ong with the
relation t"p——G~t, that

AR= (1+RGr )A V(1+RG )t. (2.21)

+Q (1—f) „)(1—
&I)r) (@'

I Tr I
C s) . (2.22)

Here C p is the wave function describing the bound sub-
system P moving freely in the presence of the third
particle, and Ho is the Hamiltonian for the system with
no interaction. The modified two-body scattering opera-
tor satisfies the unitarity relation

AT, = ~Q T, Ic,)(c,IT,t—, (2.23)

where P, represents an integral over energy-conserving
free-particle intermediate states. States in which the
pair y is bound are omitted from the sum, since the
pole contributions have been removed in the definition
of T7. From Eqs. (2.22) and (2.23) we find that

(2s)
—i (V (i) V (i)e)

= —~ 2 2(1—&- )(1—iis )(c'-I»IC.)(@"I»tIC's)

(2.24)

Clearly AR will be nonpositive if AV is nonpositive.
We observe that, by virtue of its definition as a solution
of a set of modified Faddeev equations, the exact
effective potential satisfies a unitarity relation (modified
by omission of two-body intermediate states) which
expresses its anti-Hermitian part in a manifestly non-
positive form. This is the expected result since the
Faddeev formulation of the three-body problem is
known to preserve unitarity.

We now consider a simple approximatr'ol to the
effective potential, obtained by retaining only the lead-
ing terms in the defining integral equation. This ap-
proximation takes the form'

& 1,. D. F@(ideev, Zh. Eirsperim. i Teor. Fiz. 39, 1459 (1960)
PEnghsh transi. : Soviet Phys. —jETP 12, 1014 (1961)].

6 M. L. Goldberger and K. M. watson, CotHsioN Theory (John
Wiley & Sons, Inc. , New York, 1964), p. 215.

m. ,(„)— ) (1—s.„)(c.I T, Ic,,)
In matrix form we have

~V&'&= —ma&,

(2.25)

(2.26)
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which is nonpositive as required by unitarity. Further-
more, we verify that A V&» vanishes, as it should, for
states C and C p with energy below the three-particle
continuum threshold. This follows from the fact that
P, in Eq. (2.24) does not bring in states with a pair
bound, as noted above.

The approximate E.matrix is to be obtained from Eq.
(2.15) with V replaced by V"&. The solution is then to
be used as input in Eq. (2.16) to give the approximate T
matrix, T&'). This procedure can be simplified consider-
ably if instead we take T(» to be the solution of

2'u) —V(&)+ Vo)Gr 2'(&) (2.27)

Since AV&» is nonpositive no unitarity violation is
introduced. It is this simplified version of the unitary
impulse approximation which is adopted in the applica-
tions described in Sec. 3.

In the above discussion the particles were assumed to
be distinguishable. Consider now the elastic scattering
of a particle which is identical to one or both of the
target particles. To satisfy the symmetry requirement
of the Pauli principle, we take as our approximate
effective potential V,"& the appropriate linear combina-
tion of direct and exchange matrix elements of the
effective potential V' ' which is given in Eq. (2.22).
Unitarity requires that V,&", considered as a matrix in
momentum space, must have a nonpositive anti-
Hermitian part. To verify that this condition is satisfied,
we need only observe that V,&" is an eigenvalue of the
channel matrix V(» and may be expressed in the form

V.(» =x~V(»x (2.28)

where x is the eigenvector. It foll.ows that

av. ()=x~WV&)~, (2.29)

which has been shown to be nonpositive.
A relativistic extension of the above results is easily

obtained. For example, one could define a model by
setting up a relativistic version of the Faddeev equa-
tions. The integral equations can then be rewritten in
a form analogous to Eq. (2.12); this is just the Bethe-
Salpeter equation with a particular (nonperturbative)
expression for the inhomogeneous term (or effective
potential). As in the nonrelativistic case, the unitary
impulse approximation is defined by using the impu1se
approximation plus single-particle exchange terms for
the effective potential. Of course, one could simply
verify directly that the approximate E matrix thus
obtained satisfies the unitarity constraint, without
invoking relativistic Faddeev equations as theoretical
motivation.

3. APPLICATIONS

As a test of the method we compare the unitary im-
pulse approximation (UIA) with the exact solution for
a separable potential model of E -d scattering. ' The

' V. A. Alessandrini and R. L. Omnes, Phys. Rev. 139, 8167
{1965);D. Z. Freedman, C. Lovelace, and J. M. Namyslowski,
Nuovo Cimento 63, 258 (1966); L. Rosenberg, Phys. Rev. 147,
1016 (1966).

TAaLE I. Comparison of exact f~ with the impulse approximation
(IA) and unitary impulse approximation (UIA).

Momentum
(MeV/c)

300

194

105

f IA j' UIA f exact

0 0.340+0.463i 0.151+0.351i 0.165+0.318i
1 0.087+0.120i 0,069+0.113i 0.096+0.127i
2 0.023+0.033i 0.022+0.032i 0.023+0.033i

0 0.454+0.608i 0.163+0.424i 0.120+0.487i
1 0.068+0.094i 0.056+0.089i 0.077+0.095i
2 0.011+0.016i 0.011+0.016i 0.011+0.016i

0 0.479+0.504i 0.192+0.396i 0.012+0.436i
1 0.029+0.032i 0,028+0.031i 0.032+0.029i
2 0.002+0.002i 0.002+0.002i 0.002+0.002i

8 The solution of the relevant dispersion relation, for a given
partial wave, is derived in Ref. 6, p. 908. A dispersion relation for
the full amplitude, along with a discussion of its iterative solution,
is presented in L. Rosenberg, Nuovo Cimento 28, 1107 (1963).

9 An earlier calculation along these lines was performed by J. S.
Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961). The
violation of unitarity which appeared in the Ball-Frazer calcula-
tion suggested the present application of the unitary impulse
approximation to this problem.

partial-wave amplitudes fp", computed according to
the impulse approximation (IA), are given by Hether-
ington and Schick along with the exact solution for
laboratory momenta of 105, 194, and 300 MeV/c. These
results are reproduced in Table I along with the
amplitude

(3.1)

The numerical results show that when the amplitude is
large the IA is very misleading and a substantial im-
provement is obtained in the UIA. For the smaller
aniplitudes the IA is quite accurate and the UIA does
not necessarily improve it.

Ke now describe an application of the UIA to pion-
nucleon scattering, which we treat as a three-body
scattering problem with the nucleon in initial and final
states considered as a pion-nucleon composite. Accord-
ing to the discussion in Sec. 2, unitarity bounds will be
satisfied if we use, as input to the Bethe-Salpeter equa-
tion, the sum of amplitudes represented diagram-
matically in Fig. 1. In Fig. 1(b) the circle representing
the input two-body x-E amplitude has a vertical line
through it which is meant to indicate that the nucleon
pole contribution has been subtracted out. The diagrams
of Figs. 1(b) and 1(c) could in principle be evaluated
using only on-mass-shell two-body w-S and ~-x input
amplitudes. These two-body amplitudes appear, in the
t channel, as final-state interaction corrections to the
Born approximation. Standard dispersion-theoretic
techniques exist for this type of computation. ' In the
simplified calculation reported here, however, we have
confined our attention to peripheral collisions and have
accordingly retained only the contribution whose singu-
larities in the complex t plane lie closest to the physical
region. That is, diagrams 1(a) and 1(b) have been
dropped and diagram 1(c) was evaluated in the strip
approximation. ' A p resonance approximation was made
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for the m-~ amplitude and the m-E-lV coupling constant
was used as vertex function.

The dts amplitude calculated in the impulse (or strip)
approximation is plotted for various pion laboratory
energies in Fig. 2 along with the results of the VIA,
Eq. (3.1). A similar comparison for the fts amplitude
appears in Fig. 3. The unitarity bounds

~ f~ &1 and
Imf —

~ f~'& a are violated for a wide range of energies
by the IA and this is corrected by the VIA. In Fig. 4
the VIA for the d~3 amplitude is compared with fits to
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Fro. 3. The f» amplitude in the impulse approximation and the
unitary impulse approximation,
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FIG. i. Diagrams for approximate effective potential for pion-
nucleon scattering. Dashed and solid lines represent pions and
nucleons, respectively.
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FIG. 4. The d13 amplitude. Dashed curves are 6ts to the experi-
mental data due to Bransden, O'Donnell, and Moorhouse. The
solid curve is the unitary impulse approximation.
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Fro. 2. The d» amplitude in the impulse approximation (IA)
and the unitary impulse approximation (VIA). The parameter is
pion laboratory energy in Me&.

the experimental data. "Good agreement is obtained in
the resonance region, though not at lower energies where
virtual p-meson production is not the dominant effect.
We hope to report in the future on an extension of the
calculation which takes into account diagrams 1(a)
and 1(b).

Note added i', proof After subm. ission of this manu-
script we learned of the work of I. H. Sloan /Phys.
Rev. 165, 1587 (1968)j, who proposed the same multi-
channel generalization of the unitary impulse approxi-
mation as that given in Sec. 2 of the present paper.

' B. H. Bransden, P. J. O'Donnell, and R. G. Moorhouse,
Phys. Rev. 139, 81566 (1965).


