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while the spatial parts of the current are

I+(&I)= W

and

i —,'(n'-1) l' —,'(n —1) -', (rt —1) l i
,
—L(»'+1)(2i+1)j"'Z

I

S me «'«ks(m&1) —k' -,'(m+1)+k' —m&1 —,'m —k —,'m+k —m)

X{L(-', (ts'+m))' —k")"'h«,«"' '+"(o,y) vh(. pr)+«, h(~)+«h'"+"(P) vh(. pr)-«, h(~)-«" +"(—P)

+E(s(rs' —m))' —k"3"'h««"' '+"(cr,v)v;(-+»+«. I(-)+«" +"(P) v'"(~r) '. I-(-)-"'-+"( P)—} (A5)

(-,'(n'-1) -', (n'-1) l'
~ )-', (rt-1) —,'(rt-1) l ~

!I'(q) = ——P(2l'+ I)(2i+1)j"'P !
S @me '. ) —;m—k' -', m+k' —m] & —,'m —k —,'m+k

X{-',L(n'+1+2k')' —m'j'"h««+ &' t+')((r y)vi ~ «+r i ~«(P)

——',$(rt' —1+2k')' —m'j'"h«, «&' t+')((r,y)vh„.+«. r i~+«(P)}vi„. «, i «(—P). (A6)

The angles (r,p,p are defined in terms of the momentum transfer q and the principal numbers n and rt oi initial
and 6nal states by

1
sinh(-', p) = L(n' —r)t'+ qn' r't$'"

2(n'n) "'
a = arc sin(nq/sinhp),

y = —arc sin(n'q/sinhp),

where the principal value of arc sin has to be taken for n'&n, while for n'&m, 0, starts out at q= 0 with the value
z, and y with —~. A plot of some of these form factors is given in Ref. 10.
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The possible existence of multipion nonrelativistic bound states is examined with variational principles.
It is found that of two likely candidates (the v meson, and a possible o meson with I=X=0 and even parity),
only the o can be a bound state of 4 pions. If the g were bound, there would unavoidably be a three-pion
bound state with the quantum numbers of the co and mass &3m . The four-pion channel couples to the
two-pion channel, which turns the cr into a resonance. The multichannel problem is investigated with an
E/D method, which yields an estimate of the width of the o resonance. A theorem of Blankenbecler is used
to dispose of the difhculties of anomalous thresholds. Crude calculations show that the physical 0- should lie
above the four-pion threshold.

1. INTRODUCTION

HERE has been much interest recently in the idea
J. that so-called elementary particles are, in fact,

composite structures, in much the same way as a nucleus
is a composite of protons and neutrons. Unfortunately,
it is rare in elementary particle physics to 6nd a com-
posite system and a proposed set of constituent particles
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quirements for the Ph.D. degree.
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such that the binding energy per particle is small com-
pared to the constituents' masses. It is important to
study these weakly bound cases because they must have
a dynamical structure which parallels that of ordinary
nuclei (which are also weakly bound), and we certainly
understand nuclear physics better than we do ele-
mentary particle physics. In particular, we can use such
well-tested machinery as the Schrodinger equation to
carry out part of the investigation.

There are at least two interesting weak-binding candi-
dates for systems of a small number (four or less) of
pions. These are: (1) the rt meson, mass 550 MeV, with
zero spin and odd parity; (2) an IX~=00+ meson which
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we call the u meson in the nomenclature of Brown and
Singer, ' who proposed a resonance with these quantum
numbers to explain E 3 and q decay spectra. Brown and
Singer suggested a mass around 400 MeV or less, but
such a low mass would contradict the E,4 data. ~ It is
possible, however, that there could be a r meson which
is a bound state of four pions, and a mass (in the absence
of coupling to 2s. channels) of the order of 450—550 MeV.
Likewise, the q might possibly be a four-pion bound
state. In both cases, the binding energy per pion would
be nonrelativistic. Coupling to 2x channel shifts the 0
mass and turns it into a resonance; our calculations
show that the real part of the r mass increases, even
though there are attractive forces in all channels. The
reason for the increase is essentially that the bound-
state channel (4') is coupled to a channel with a lower
threshold, as we discuss in Sec. 4.

Our investigation begins with a study of the non-
relativistic bound states of two, three, or four pions
with a given set of two-body potentials. It is important,
of course, that these potentials do not form bound states
where none are observed experimentally. Potentials
which meet this constraint are too weak to bind the q,
leaving the 0 meson as the only possible weakly bound
state. It is perhaps not unreasonable that pion-pion
forces do not bind the p, but that they do form a 0.
Forces in the s-wave nucleon-antinucleon channel can
make the odd-parity r), but in p wave these forces are
weakened by the centrifugal barrier, and may play only
a minor role in forming the even-parity 0..We shall focus
our attention on the 0, 6rst considering it as a four-pion
bound state, and then considering the coupling of the 0
to the two-pion channel, in which the 0 appears as a
resonance.

A number of possible multipion states have been
studied, principally with the aid of variational tech-
niques. Similar problems have been dealt with by other
authors, including Schiff' and Mitra and Ray. 4 SchiG
uses a variational principle to discuss the eo meson with a
square-well potential, while Mitra and Ray use sepa-
rable potentials. We try to stick to more realistic po-
tentials, mostly dominated by p exchange. We agree
with the qualitative conclusions of these authors: the p
meson cannot be a four-pion bound state, ' and the pion-
pion potential must have some repulsion in it, to keep
objects like the ao from being too tightly bound. '

Table I lists the various multipion channels of in-
terest. In each channel, there is an experimentally
observed resonance (with the possible exception of the o.

channel). Of course, not all of these resonances can be
considered as nonrelativistic bound states or low-lying
resonances; nonetheless, it is important to study these
channels in order to make sure that no spurious bound
states are made by a certain choice of a two-particle

' L. Brown and P. Singer, Phys. Rev. 1BS, B812 (1964).' R. W. Birge e1 al. , Phys. Rev. 139, B1600 (1965).' L. Schi8', Phys. Rev. 125, 777 (1962).
4 A. N. Mitra and S. Ray, Phys. Rev. 137, 8982 (1965).

TA&LE I. Multipion bound states.

Channel
Iso- No. of

Jp~ spin pions

Observed states
Mass Decay

Name (MeV) mode

Is the ob-
served state

a possible
nonrelativ-
cstsc bound

stateP

0++ 0
p++ p
0+ 0
0 1
1 0
1+ 1
1+—

400-500
400-500

550
140
780
770

1070

2r
2Ã

3~ 2v
stable

3m

2'

no
yes
yes
no
no
no
no

' See, e.g., F. Zachariasen and C. Zeraach, Phys. Rev. 128, 849
(1962).

6 G. Chew, Phys. Rev. 140, B1427 (1965).' R. Blankenbecler (private communication).' R. Slankenbecler, Phys. Rev. 122, 983 (1961).

potential. Some of the states in this table have already
been discussed as multipion states in various relativistic
frameworks, especially the p meson. ' It is traditional to
think. of the p as mainly a 2x state, but it should not be
excluded that p has a large 4m component; we have not
studied this possibility.

For each channel, we write an appropriate multi-
particle Schrodinger equation and look for bound states
with standard variational techniques. We assume that
pions interact through two-particle potentials only. The
potential consists of two parts: an attractive force
coming from p exchange, and a repulsion, which might,
for example, come from Pomeranchuk exchange as
envisioned by Chew. ' The parameters of the repulsive
potential are considered adjustable, and are determined
by the requirement that there be a four-pion r bound
state with small binding energy, and that there be no
spurious bound states in other channels. It turns out
that the parameters so determined are quite close to
those given by Chew. ' As a further check on the
reasonability of this potential, we calculate the low-
energy s-wave nsscattering .-with a special 1V/D equa-
tion, in the Appendix.

In Sec. 3, we consider the more dificult problem of
coupling the four-pion 0 meson to 2~ channels. This two-
channel multiparticle system is simulated by replacing
the 4x channel with two 0. mesons, and gives a two-
body multichannel problem with prominent anomalous
thresholds. According to a theorem of Blankenbecler, '
the determinant of the D matrix has no anomalous
thresholds, which greatly simplifies the question of
determining the mass shift and resonant width of the r
meson. We prove this theorem for the problem at hand.

The actual 4x scattering states are very crudely in-
vestigated by using a generalized set of E/D equations
given by Blankenbecler. ' The determinant of D yields
the parameters of the physical 0 meson. We find that if
the 4x bound state has zero binding energy, the physical
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FIG. 1. Exchange of a p meson in ~-7l- scattering.

this potential, we neglect the energy dependence and set

VJ (t,u) = G—(m /M)'(2tr)'"e'~~'8;tb, i,

+ (1++u, P-~ l), (2)

where 6 and 3f are adjustable. The total potential is
just V= V,+Vi, and the configuration-space potential
is related to V(t, u) by

0. meson has a mass of about 650 Mev and a width of 120
MeV, for a reasonable value of a cutoff parameter.

V(t,u)

32m

m~
dxPe"*Vd;, (x)+e+'" *V (x)j (3)

4x

g'(2s+m '—4m ')
V„(s,t,u) =

where

Cilm6&'y~

+(1~u, k~l), (1)

s= (P,+P,)'=4(m '+q'),
t = (Pi—P4)'= —2q'(1 —cosg),

u= (Pi P)'= —2q'(1+—cos8),

and q, coso are the center-of-mass momentum and
scattering angle, respectively. We shall ignore the s de-
pendence of the potential, and set s=4m ' in the
variational calculation. The potential (1) has both a
direct and an exchange part; because of the over-all
Bose symmetry of the wave functions to which V, is
applied, the effective potential is either twice the direct
potential or zero. The value of g' is gotten from the
decay p —+ 27r, we take' g'/47t = 2.4.

The form of the repulsive potential is obtained from
the s-wave projection of the Pomeranchuk exchange
amplitude in ~-~ scattering. In our parameterization of

9 J. J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).

2. VARIATIONAL CALCULATIONS

A. Schrodinger Potentials

In addition to the usual long-range one-particle ex-
change forces, we must also consider short-range forces
(of a repulsive character) which are a phenomenological
representation of multiparticle exchange. Chew' has
characterized this force by Pomeranchuk exchange,
which gives a local, almost energy-independent, poten-
tial of Gaussian shape. We treat the strength and range
of the Gaussian potential as semiadjustable parameters,
but our final values agree rather well with Pomeranchuk
exchange.

The only significant attractive force between two
pions comes from p exchange. (Exchange of the e. meson
with properties we later calculate is fairly unimportant. )
The numerators of the Feynman amplitudes in Fig. 1
are to be evaluated at the p pole, with nonresonant
terms dropped. These nonresonant terms are repulsive
and of very short range (8 function in coordinate
space); our phenomenological repulsive potential pre-
sumably is a more correct way of handling the repulsion.

The contribution of Fig. 1 is then

where Vq;„V, are the direct and exchange potentials,
and t=Pi P4, n=Pi Pe.

B. Trial Wave Functions

For all of the states listed in Table I, the trial wave
functions are of the form (angular momentum wave
function) X (isospin wave function) X1t (W). Here p(W)
is a scalar wave function of the type

1t (W) = We exp (—-', e W'~'), (4)

N
W= Q (r,—r,)', /=2, 3, 4.

The variational parameters are P and e; of course, o)0,
and P is such that the kinetic energy of the wave func-
tion is finite. 1t (W) is totally symmetric, hence so is the
product of angular momentum and isospin wave func-
tions. It is easy to construct the total wave function; we
list the result only for the p and co cases:

P =rXg(AtXAe A3)f(W),
y= 2—'i'(rt —r2),
r= 6 'i'(rt+ r,—2r3),

W=3(p +r'),
P„=(n (vXw)-', (2u' —t' —te')(AtXAg) (ASXA4)

—6v w(AiXA4) (A2XA, )lg(W),
n= -', (r,+r,—r,—r,),
v= 2—'"(ri—r2),

w = 2—'~'(r3 —r,),
W= 4(u'+ v'+w') .

(6)

(7)

All integrals in (H) can be done in closed form, but the
length of the calculation makes it convenient to evaluate
the potential energy on a computer, which can search

The A, are isospin wave functions. The particular choice
of spatial variables in (6) and (7) diagonalizes the
kinetic energy, and it is relatively easy (but tedious) to
calculate the normalized expectation value of the
Harniltonian
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for minima as the parameters P and o are varied. The
calculations were done twice, once with Pomeranchuk
repulsion included, and once with only p-exchange
forces, which are predominantly attractive.

C. Results

FIG. 2. Force graphs from
t-channel exchange.

a)

b)

gl
qt

Qi

qp

TAm, E II. Variational binding energies without repulsion. Results
of variational calculation with repulsion (G =45, M =M,).

Channel

A'

yl

P

Binding energy

(a)
B&3~.
not bound
not bound
B&4~.
not bound
B&2m.
not bound

No. of pions

The calculations show at once that a repulsive po-
tential is necessary, as well as the attractive p-exchange
potential of Fig. 1. With no repulsion, the s-wave
multipion bound states (which have the quantum num-
bers of o and ~) would have binding energy greater than
the rest mass of the constituents. Even with this
unpleasant feature ignored, the purely attractive p-
exchange force is unable to bind the rt (Th. e state with
quantum numbers of ao, p, and A' are also unbound. )
When repulsion is added, with parameters chosen some-
where near those given by Chew, ' the result is that the
only possible candidate for a multipion bound state is a
0 meson made up out of four pions. These facts are
summarized in Table II.

To the extent that these calculations do not predict
unobserved bound states, they are in satisfactory ac-
cordance with experience. One might have hoped, how-
ever, that the 7t. and g could be multipion bound states.
Our methods have nothing to say about the m, which
would have to be a relativistic bound state, but we can
draw a very definite conclusion about the p'. There is eo
physically reasonable m-m potentiat which binds the rt,
which does not at the same time form a 3m. bound state with
the quantum numbers of ~. The words "physically
reasonable-" mean that the potential is not too singular,
and not too long range. This conclusion obviates the
hope that a clever combination of attraction and re-
pulsion, or exchanged isospin, could lead to an g made of
four pions with no other unphysical consequences.

The reason is to be found in an examination of the g
and to wave functions (Eqs. (6) and (7)j.The first term
in square brackets of the q wave function (7) has pion.
pairs in relative p wave, just as for the cu; hence also
these pairs are in relative I= 1 states. Thus the expecta-
tiori value of the potential energy from this term is the

c)

same, per pion pair, as for the co,. this is also essentially
true for the kinetic energy of this term. The second term
has two pion pairs in d waves, hence it contributes very
little to the potential energy, but a great deal to the
kinetic energy. It is clearly impossible to overcome this
large kinetic energy without a potential which would
bind three pions into a state with co quantum numbers.
We are not, of course, at a loss for mechanisms to form
the odd-parity ~ and rt; perhaps they are XE boun. d
states. ""

In the next sections, we focus our attention on the 0.

meson. We do not know for sure, of course, whether w' e
have not used too weak a repulsive potential, and nature
consequently has no four-pion bound state. We shall
assume that the forces are such that they can bind a 0.

meson, with small binding energy. With the values
G=45, M=Mp, the variational binding energy is zero.
These should be compared to the values G= 50,
M=0.92M, given by Chew. ' In what follows, we will
ignore the binding energy, so the kr bound state has a
mass of 550 MeV. This will be changed by forces
coming from the coupling to 2m. channels.

3. COUPLED 2~ AND 4~ CHANNELS

A. Effective Two-Body Pxoblem

By virtue of coupling to 2x channels, the kr bound
state 0- of Sec. 2 becomes a resonance, with a primary
decay channel into 2w. It is, of course, very dificult to
handle scattering states with more than two particles.
Consequently, we make a crude attempt to simulate the
s-wave coupled channel problem with the two-body
reactions 2w —+ 2w, 2z ~ 2o-, and 20.—+ 20.. We need not
at this point 6x the mass M of the 0., since eventually we
make an analytic continuation in this mass, but for the
physical problem M & 2m .As is well known, this means
that there are additional singularities in the 5 matrix.
In this section, we state and prove a theorem of
Blankenbecler's~ to the e8ect that the determinant of
the D matrix does not have such singularities.

The scattering amplitude is a matrix:

T= T;;=ND ', i, j=1, 2

(b)
not bound
B~ 0
not bound

3
4
2

where the index 1 refers to the 2m channel and 2 refers

'0 E. Fermi and C. N. Yang, Phys. Rev. 76, 1739 (1949)."J.S. Ball, A. Scotti, and D. Y. Wong, Phys. Rev. 142, 1000
(1966).
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s. Rev. Letters 9, 84 (1960)."S.Mandelstam, Phys. Rev. e
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P,

so that unitarity reads

center-of-mass frame, and 0 can be taken as the angle
variables for either dipion in the over-all center-of-mass

FIG. /. One-Pion-exchange contri- frame +7e
bution to X~4 and E4~.

P P/32~2sl/2 P ( s m 2)1/2

p4= (1/24) (22r) 'F12/4M12XP34/4M34XQ/4s'/' (45)

with

with

ImA;;= —-,'Q A, 3A2;*,
k

( ) P . .—(1M, 2 m 2)1/2 M, 2 (p,+p .)2
(38)

Q'= (4s) 'Ls —(M12+M34)2]Ls —(M12—M34)']. (46)

1
(2~)4—3//

X~

d P3/X- 8(P p;)8( ' '—g E,). (39)
2Eg

1
D,,=$;;1-

27r

p, (s')1V,;(s')ds'

s —s//

(47)

It is understood that p2, p4 vanish whenever any of the
momenta I', I';;, Q vanish or become imaginary.

Equation (41) for the D functions is formally solved

by

2 ~'ap2 'D3;=&...
k

ImD;;= —,'p;X;, . (41)

The X;;are taken as input, and D;; and A;, are solved
for. The quantities p are phase-space densities, to be
dehned below. The D; s have imaginary parts coming
from anomalous thresholds, and (41) is not a totally
adequate specification. However, we are only interested
in the determinant of D, and, in view of the theorem of
Sec. 3 A, we ignore anomalous cuts.

Total two- and four-body phase space, as a function
of s, is gotten by carrying out the integrals in (39).This
total phase space is defined as p2(s), k = 2, 4:

p3(s)=g 1

The phase-space densities are defined by

p2(s) = dQ p2, (42)

In (39), the channel k has /V pions. The channel labels

i, j, k can simply be chosen as the number of pions in the
channel. No isotopic spin labels are needed, since we are
dealing only with I=O states, although of course
isospin wave functions must be supplied in the actual
calculations. The sum in (39) is understood to include
isospin sulnmation.

Unitarity, as expressed by Eq. (38), is automatically
satisfied'" by solving the following linear integral
equations, as long as the E;; are real in the physical
region:

(40)

where 8;; is a 5 function normalized so that

For example,
Fi22

——8(Q f—Q,), (49)

where Qf, 0; are the final and initial angle variables for
two-pion scattering. The integral over E,; in (47) is to
be taken at fixed scattering angles, and not at fixed
momentum transfers, or D will have a left-hand cut as
well as a right-hand cut, when partial waves are pro-
jected out.

At this point, all the equations are exact (except for
possible anomalous cuts), and the 1V's and D's depend
on all the kinematic variables. Our key approximation
is to assume that the scattering amplitudes A depend
only on the total squared energy s; in part, this amounts
to projecting out the s-wave parts of the E's and D's,
and it also amounts to ignoring the dependence on the
subenergy variables such as M, /2 t see Eq. (46)].

Our purpose is only to give a crude estimate of the 0-

mass and width, so we take the E functions from Born
approximation. The s-wave projection of E» contains
an essential singularity in the s plane, coming from the
repulsive Pomeranchuk potential, which prevents the
usual application of the E/D formalism; this problem
and our resolution of it are discussed in the Appendix.
Before projecting out the s wave, 1V22 is given (aside
from a change of sign) by the I=O projection of the
potentials (1) and (2):

p4(s) = dQ dQ12dQ34/JM12 dM34 p4 ~ (43)

2g'(m '+4m ')
+G (m./m, )2 (22r) "'

Xexp(t/m, ')+ (t ~ I) . (50)

In (42), Q refers to the center-of-mass angle variables.
In (43), we consider a four-pion state as composed of
two dipions, with masses M~2, 3f34, 0~2 gives the angle
variables for the momentum p~ —p2 in the 12-dipion

We take G= 45, and have set s= 4m ' in the p-exchange
potential. The D function for 2r-2r scattering (without
coupling to 42r channels) as calculated from E22 (see the
Appendix) has no resonances or ghosts.
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In Born approximation, S&4——S4& is given by the
graph of Fig. 7, which depends on m-x scattering ampli-
tudes. For our purposes, it is sufFicient to replace these
amplitudes by their value at threshold, namely 16xam,
where a is the I= 0 s-wave m-m scattering length. This
scattering length is estimated to be 0.5m ', in the
Appendix. Then

4 (16m am. )'
N24=N42= Q —m~

(51)

(52)

where ~4ir) is an I=O phase-wave state, ~0) is the
variational wave function of Sec. 2, and V is the ~-x
potential. The integral in (53) is over the center-of-
mass coordinates, with the rest of the integrations
subsumed in the Dirac notation. After carrying out
some tedious integrations, we get the result that (near
threshold)

A, 4 (4m)'(24) (0.16m ')/(s —'ski), (54)

where san&16m '.
Unfortunately, we do not know much about E44, it is

a very complicated object involving (for example) p
exchange between various pion pairs. This is not a
serious handicap, for (if the 2~-47r coupling is not too
strong) all we need to know about the 44 channel is the
position s~ of the bound state, and the residue of the
s-wave part of D44. The procedure we adopt is tanta-
mount to an ef'fective range calculation in two-body
scattering. Assume that 344 itself approximately obeys
elastic unitarity, and write A44(s) =N44($)/D44($), with

ImD44(s) = ',p4(s)N44(s), - (55)

where p4 is the total four-body phase space [see (43)).
Choose various smooth forms for N44(s), such that A 44

has the correct pole and residue as in (54). From these,
the residue

(56)R=—BD44(sg)/8$

is evaluated. If E44 is chosen to damp toward zero
somewhere in the range 50m '(s(150m„', we find R in
the range —0.03(Rm '& —0 01

Note that E24 does not depend on the dipion center-of-
rnass angle variables Qi~, 034 [see (43)) but only on the
over-all center-of-mass angle variables 0, as well as the
M;,~. After projecting out s waves in the variables 0, we
set all 3f;,'=4m ', consistent with our threshold ap-
proximation for the m.-x scattering amplitudes.

Near threshold, we know the entire 244 amplitude,
from the graph of Fig. 6, in the I=O s-wave channel.
Ordinary nonrelativistic scattering theory gives

(2m)'b(py —p,)(2m ) 'A44

d3*(4~,
~
v~~)(~[ v~4~,}

(53)

p'= ~s—4m»'

g =4$—m~
(58)

(it will be recalled that, after doing the angular integra-
tions, we are to set all M;P= 4m„2). Equations (40) and
(41) reduce to purely algebraic ones (N44 N44, ——
D44 D44) wh—i—ch we write for 2X2 matrices:

ApD=N,
ImD=-,'pN,

(59)

where the diagonal matrix p is the total phase-space
matrix. The D equations are integrated with cutoffs in
the range 50—150m ', for D4~. With the approximation of
an energy-independent p-exchange potential, D» needs
no cutoff, and with Eq. (57) for ¹4,neither does D24.

All that we need to calculate the mass and width of
the physical 0 is the determinant of the matrix D. The
real part of this determinant vanishes at s= sp, where sp
is the real part of the physical |T mass. We make the
approximation D44(s) R($ $+) sii~16m„', and find

D42 ReD24
So—spy~

R (ReD22),=„
(60)

If sp is not too far above s~, D4~ can be considered as
real. The width is given by

I111D2p ImD24
soi"I'= (so—sii)

ReDg2 ReD24 g—gp

(61)

Observe that all components of N are negative (attrac-
tive). It is easy to check, under these circumstances,
that R and D42 are negative and ReD2~ is positive. As
for D,4, we have [as usual, anomalous cuts are ignored
in evaluating (60)):

P oo

ReD, 4(sp) =+-
4m '

~2($')N~4($')
ds

s —sp
(62)

Although p2N, 4&0 [see (57)), the sign of ReD, 4 is
indeterminate since sp is above the 2x threshold. If the
2x channel were above the 4x channe1. , then ReD24
would be negative; as it is, the integral (62) turns out to
give a positive ReD24, since the low-energy region domi-
nates. This statement should be fairly trustworthy,
since no cutoffs are needed in D24. We then see that
sp —s~&0, so that the r mass is raised,

The rest of the calculation is routine. The s-wave
parts of Sand D matrices are gotten by integrating over
all angular variables and dividing by the total angular
phase space. We denote by overbars all such s-wave
projections; thus,

¹4——¹2———24(16~am.)'

1 p'+q'+2pq+m ')
X ln i, (57)

4pq p'+q' 2pq+—m 'l
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With cutoffs in D44 and D4p in the range 50-150m ', where the potential vanishes as s ~ + pp. Instead of
we 6nd using the equation

sp —s~~(2-6)m ',
I'=(0.5-1.5)m. . (63)

Presumably, s&~16m 2. It might be reasonable to say
that our calculations indicate the possibility of a 0- of
mass ~650 MeV, width ~i20 MeV. Of course, these
numbers should not be taken very literally.

4. DISCUSSION

The authors, of course, would be much more com-
fortable if there were unambiguous experimental evi-
dence for a resonance in the I=J=O 2x channel.
Unfortunately, the evidence is vague and confusing, but
there appears to be no doubt that the relevant phase
shift is large and possibly resonant somewhere between
600 and 800 MeV (see, e.g. , Ref. 14, which contains
further references). This energy range is somewhat
higher than we predict; if there turns out to be a reso-
nance at about the p mass, one should probably take
channels like 6z or EK into account, which would
complicate the theory enormously. In any event, the
calculations do not lead us to expect a 0 meson around
400 MeV, as proposed by Brown and Singer, ' but this
is just as well, in view of experimental data on E,4

spectra' which make such a low-lying state most
unlikely. If it turns out that there is no 0 meson, a likely
explanation would be that repulsive forces are too
strong to allow a 4m bound state or low-lying resonance.
We note that repulsive forces must be present in
substantial amounts to account for the absence of cer-
tain multipion bound states, and that our knowledge of
the exact strength of this repulsion is very uncertain.

APPENDIX: N/D EQUATIONS WITH
ESSENTIAL SINGULARITIES

Here we describe an approximate, practical method of
using the N/D formalism for potentials like a square
well or Gaussian, whose partial waves have essential
singularities as

~

s ~~ pp, but the potentials vanish in one
of the limits s —+ &~. We describe the Gaussian case,

~4K. Malamud and P. Schlein, Phys, Rev, l,etters 19, 1056
(1967).
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i
Ni(s) = tP (s)+- ds'N((s')

Lt( (s)—tP(s') lpga(s')
X

s —s
(A2)

The integral is over the unitarity cut, on which
tP (s) is well behaved for a Gaussian potential
V(r) exp( —r'M'):

«'( )=-(1/V')9 — p(—0'/~') j (A3)

where s=4(q'+m '). The D function is given by the
usual expression:

1 p((s')N ((s')
D((s) = 1—— ds'

s —s
(A4)

(we assume that no subtractions are necessary). Of
course, (A2) and (A4) may be used for a potential which
is the sum of a Gaussian and a well-behaved potential
such as a Yukawa potential.

We have checked the accuracy of (A2) and (A4) in
nonrelativistic scattering, by using an attractive Gauss-
ian potential in m-x scattering, with 3P= M, . In the s
wave, computer calculations show that the coupling
constant needed to give a zero-energy bound state, as
computed in our N/D method, is about twice the exact
value. This relative accuracy is as good as the same
equations when used with a Yukawa potential.

We calculated ~-x s-wave S and D functions, for use
in Sec. 3, by this method, using the p-exchange potential
and Pomeranchuk repulsion of Eqs. (1) and (2). Energy
dependence of the p potential was ignored. The result
was a scattering length a=0.5m ', which is used in
Sec. 3. As a further check, we calculated the p-wave
scattering amplitude. This amplitude resonates in the p
region (s~30m '), with an output width comparable to
the input width (i.e., strength of the p potential). This
bears out Chew's' contention that the p might bootstrap
itself given some repulsion to narrow the output width.
The s-wave scattering amplitude had no resonances,
ghosts, or bound states.

ImlVg(s)=D/(s) Imt/(s) (Ai)
on the left-hand cut, which cannot be integrated in the
determinantal approximation (D~= 1, t~= tP =Born ap-
proximation), we use the well-known integral equation
for N~, with t~(s) set equal to tP(s):


