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Current-Algebra Sum Rules for Arbitrary Spin and Mass*
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Fubini —Dashen —Gell-Mann sum rules are derived for targets of arbitrary spin and mass, and implications
concerning j-plane analyticity are pointed out.

I. INTRODUCTION AND SUMMARY
OF RESULTS

'N recent years the development of high-energy
~ ~ physics has stressed the importance of complications
due to spin. In particular, the presence of particles with
spin imposes definite constraints on the analytic struc-
ture in the complex angular momentum plane. For
spinless targets it has been shown by Bronzan, Gerstein,
Lee, and Low' and by Singh' that the Fubini —Dashen-
Gell-Mann' sum rules imply the presence of fixed poles
in the complex angular momentum plane for certain
g-channel helicity amplitudes. (In the t channel two
isovector currents create a particle-antiparticle pair. )
In this paper we deal with the question of what j-plane
analyticity emerges when current algebra is applied to
the scattering of currents on particles with arbitrary
spin.

In Sec. II, we derive Fubini —Dashen —Gell-Mann sum
rules by making use of mixed amplitudes, which carry
tensor indices for the currents and helicity indices for
the particles. The use of these "hybrid" amplitudes
allows us to extend a method developed by Fubini for
the spinless case to the arbitrary spin case.

Our final results are expressed in terms of parity-
conserving helicity amplitudes. ' These amplitudes are
well suited for investigating j-plane analyticity.

If we denote the helicity difference of the currents
and the particles by p, and ), respectively, and the
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product of the intrinsic parities of the currents by p, the
following results for tt= 2 are obtained: (1) The ampli-
tudes with parity (+r)) and

~
X~ (1 (nonsense-sense at

J=1) have a right signature fixed pole at J=1whose
residue can be expressed in terms of form factors. (2) All
t-channel parity-conserving amplitudes with parity
(—rt) and all t-channel parity-conserving helicity ampli-
tudes (both parities) with ~)

~

&2 (nonsense-nonsense
at 7= 1) superconvergence and hence there is no correct
signature fixed pole at J=1.

The special case of equal-mass, spin- —,'targets is con-
tained in a paper by Gerstein. ' Our sum rules agree
with his for this case. %e remark, however, that our
results do not agree with those derived by Bander, '
for arbitrary spin and mass.

Pote added irt proof. After the submission of this paper
an erratum of M. Bander appeared /Phys. Rev. (to
be published) j.The final sum rules given in this erratum
agree with those derived here.

II. DERIVATION OF SUM RULES AND
DISCUSSION

We consider the creation of a zero-baryon-number
system composed of two particles by means of two
isospin-one vector currents. (See Fig. 1.) We denote the
masses, momenta, spins, and helicities of the particles

„s„),

FIG. 1. The diagram con-
sidered in the derivation of
sum rules.

p, Sg, kg

S

'I. S. Gerstein, Phys. Rev. 161, 1631 (1967}, and (private
communication).

~M. Bander, Phys. Rev. 160, 1416 (1967); Phys. Rev. (to
be published).
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P„=(P1—P2)„; y=q .q;
t= (Pl+P,)'= (gl+q2)',
v=P (q2

—g,)=(S—23);

g
2 p 2 ~

q
2 p 2 ~

&=(q2—P2)'; N=(q2 —Pl)';
g—l P=-,'v 21—(m-12 m—,');
q2. P= -', v+2 (m12 —m22) .

by ml, m2, pl, p2, sl, s2, and X1,4, respectively. The
momenta and isospin indices of the vector currents
shall be denoted by gl, q2, n,p, respectively.

We first collect some kinematic relations:

l pl I
=

t
t2—2t(ml'+m2')+(ml' —m2')'j'"/2t'" (»)

Pt2 2t(tl 2+tl 2)+ (tl 2
t3 2) 2)1I2/2tl /2 (2b)

The T-matrix element for the process under con-
sideration is given by

I'„.;l,g„ t'= i(4plop20) "' d4x exp( i—gl x)8(xo)

X (P14P24
~ Lj„(*),j„s(0)1~0). (3)

The scattering angle in the t-channel c.m. system is
given by

We next expand this hybrid amplitude, which has
part helicity, and part tensor indices, in terms of the
three polar vectors I'„, q»„, and g2„, and an axial vector

(41 II I} (&)
lt" efne y

(m12 —m22) (p12—t322)
cosHg=

K„=e„„,.P"qlvq2 /L ~ q, ~
(sin8, )(t'")J.

where
~ p, )

and
~
g,

~

are the c.m. mornenta of the The coefficients will be functions of the helicities of the
particles and currents, respectively; particles, the masses, and the variables t and v. To wit:

=Al 1 P„P„+B131 Pvql +B21112 Pvq2„+B31112 qlvP„+B41112 q2 P„
+Clk132 qlvq2v+C23132 qovqlv+CN112 qlvqlv+C41112 q2vq2v+C63112 tvvv++lk112 Pv&++23112 +3Pv

++11112 +Vqlv++21112 Itpq2v++31glo qlV+v++4X132 q23+v ~

In contrast to the spinless case, the additional axial vector K„must occur in the expansion; this arises because of
the helicity-dependent factors appearing in our expansion. We further remark, in contrast to the spinless case, that
the coeScients are not yet free of kinematic singularities.

In analogy to the procedure developed by Fubini for spinless targets we also de6ne three expressions U„.z,z,
U„,&,z, ~, and Wz, &2 ~. They are constructed like T„„.&,&, & LEq. (3)], where one or both currents are replaced by
their divergences:

U„.„,l„~=—(4plop20)'I' d'x exp( igl x—)8(xo)(plhlp24~ LS (*),j„t'(0)j~0)

Pv+G1X112 qlv+G2X&2 q2 +14K

U„,.lg„ t'= —(4P10P20)"' d'x exp( —igl x)8(xo)(PP1P2) 2~ Lj„(x),n (0)]~0)

RtX2 Pv+~1X&12 qlv+t-vs&X2 ~q23+~X112 (6)

Wz,z, s= —i(4plop20)' 2 d x exp —(igl x)8(xo)(plhlp2X2( Lxv(x), x)s(0)g(0),

with

S (x)=8„jv (x).

Finally we introduce the equal-time commutators:

y„,~,1..~= —(4plop20)'" d'x exp( —igl x)(p14pd 2~ Ljo (*),j&'(0)jl0)&(xo)

P)F132 Pll+Slk&X2 qlv+S23&X2 q21v+Sokj32

(4plop20)' ' d x exp( —igl x)(plXlp24
~ $j„(x),jo~(0)) ~0)&(xo)

=PXiX3 Pv+Slliko ql +Soliko q2 +So), X E
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oPoo, o= o(4—PooPooP f4 x oxp( —o4o x)(PokoPP' IL'3O (I3,p"(x)31o)Io(xo&

3(4pipp23) d P3 exp( —iqi x) (piklp2Ã2
~ $jz (2),5)s(0))

~
0)(3(x3) ~

The vector commutators shall be assumed to satisfy the usual current-algebra commutation relations. To wit:

8(x3 y3)(j—3 (P3)j„~(y)j=ie,p„j„P(23)b'(x y)+—Schwinger terms.

On the basis of the fundamental relation (12) we can derive the Fubini —Dashen —Gell-Mann sum rules if we

make the following two additional assumptions: (I) All amplitudes Al,&2 &, Bg„i, ~, , $1,&2
& which are defined

by Eqs. (3)—(11) are bounded by cv3, where fP is less than one. (II) No Schwinger terms contribute to Fq,&3"~ Lthe
coefllcient of P„ in the equal-time commutator defined by Eq. (8)J.

We now proceed in four steps. First, we obtain several identities which give relations among the amplitudes

A3,33 4', Big,&„ t', ~ etc. ; next the amplitudes A3,32
s and (Ei»13~t'+E23,12 &), which have simple connections with

t-channel helicity amplitudes are singled out; then we take the limit v —+ ~; and finally the sum rules emerge after
removing kinematical singularities and writing dispersion relations in s.

It can be easily seen, by using partial integration that the following relations hold:

qi"&„„ig„'=Lr.;)„3,'+0', l,l,',
g2 ~ PV;)IXg ~P;AIRED I ~P;AI) g

qi" U, ;3,)„s=I4'»)„'+A gi,"',
q2" U,;)„)„s=IIP')„3, ~+4'l,l, s

By comparing the coeKcients of the vector P„, qi„, q2„, and E„ in Eqs. (13) we obtain the following identities:

A~,)„&qi P+Bg„)., &p12+B43,)„&y=Hg,l,"&+F»3, ~,

Bg,g„&qi P+Cng„~131'+C3„)„sy+Cg„)„&=Gl»33s+S13,13

B23,32'qi. P+C2)„32'pi'+C43,)„'y=G23,33'+S2x,),,',
Elk x ql'P+R31 3 pl +R43 3 y Ix 1 +S33 3

(14)

A,)„'3P q2+Bu„l, sy+Bn„i,"sI32'=II3,)„"P'+R,,l,"3,

Bg„)„Pq2+Cil, &„y+C,g,33 p2' ——Gg g„+Sg„l„
B41132 P ' q2+C3Ã133 y+ C4Xy32 g2 +C531'k3 G2X)X3 +S23312 o

E2$1$3 P ' q2+R11133 y+R21333 p2 = IX~32 +S3»13

H3,3, &P q2+Gg„)„~y+G2g,)„~132'=Wz,)„~+$3,3,

8&„i„~qi.P+Gi~,i, ~@12+&23,1, ~y= II'l, l, ~+4~,1, ~

Equations (14)-(16)are used to express the amplitudes A3,32
"t' and Eil, & 3

"&+E23,33 & in terms of other amplitudes,

V1Z.)

~XIXg 1
(~31Ã2 +4133 G13133 y G211X2 I32

qi P (qi P)(q2 P)

Pl (~13&32 +Slloilo3 C13133 y C2XA3 P2 )

—y(G2»32 ~+S23g„&—Cg,a„~y—C4)„13 ~y22)], (17)

L(I»&„&+Sg„)„s—Riig„~y —R2)„„,'p2') P q,
(qi P)(q'P)

+(IZ &, ~&+SZ„&3 &—Rp„&2 &@12—R4&,&3 &y)P. q2J. (18)
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Using the key assumption (I) stated above, one ob- The coefficients c' can be easily computed to be
tains from Eqs. (17) and (18) in the limit as v goes to
infinity the following results:

limPvA/i„~~(v, t,/ig, p22) —Fy,i„~(v,t) }=0, (19)
P ~QQ

lun(E»ii„~(v, &,/t'ai', /ii')+Ei/, ~, ~(v, ~,/ii', /t'ai') }=0. (20)
jl ~00

c'= cos8&/(2(sin8&) I p, I ),
c'= 0
e'= (m2' —mi')/I (2mi'+ 2mi2 —t) '"2

I p& I
t' 'j.

Combining (8) and (24)-(27) we obtain

(27)

These Eqs. (19) and (20) contain implicitly all sum
rules which we can derive.

Next we express the amplitudes A)„z, ~, E»,&, ~

+E&i,i„~// and Fq,&„~// in more familiar terms. We relate

Ai,i,~~ and E»,i, ~+E»„q, ~ to t-channel helicity ampli-
tudes. Because of the transversality and orthogonality
of the current helicity vectors e„+', the t-channel helicity
amplitudes,

aP ~+ Ip~+1vT CXP+1, 1'XI) g pv;XiXg y (21)

will only involve the amplitudes A),,)„ t', E»,&, t', and

E~q,)„&. Taking suitable linear combinations one
obtains

~+i,—i;i,/, +~—i,+i;&,i, «=4I pal' »n'«Ai, i, e, (22)

iM+i, —i;x X ~—i,+i;i i — 4i
I pi I

sin8g

X (E»,i, «+E~)„/„e) . (23)

The amplitude F)„q, t' is now expressed in terms of
s-channel Breit-system form factors. This is done in
two steps. First, we cross the amplitude p„.,z,/„~ by
replacing the outgoing antiparticle with momentum pi
by an incoming particle with momentum pi ———pi.
This yields the relation

Fii/, ~e(v)&) = (—1)'* "~e.ei, (2mi'+2m '—3) '/'

X ~/I, —$2 ' $ Ig
2I pal

t'/'

cosHg

+ I'~, , i,""(&)
l

(28)
sin8i2

I y, I

As a final step we express the usual helicity ampli-
tudes, as defined in Eq. (21), by parity-conserving
helicity amplitudes 8'+&, &,&,),,+.' Using the definition
given in Ref. 5, one obtains for the expressions which
enter Kqs. (22) and (23):

~+1,—1;XjX&+~—y,+y,)„y~

«W+1 1+,/ i, ((I+«)t2+il/2(1 «)12—il/2

~ (—1)i+A~(1+«) i2—i i /2(1 «)

12+Xi�

/2}

+«(—1)"+".W~i, i;~ /, {(1+«)i'+"i"(1—«)i'—"i/2

+(—I)"+"~(1+«)li "I /2(1 —«) I&+&l/2} (29)

where « =cos8, X=Xi—X2, and )I, =max(2, )i) .
There is a natural division into the following three

cases: X=O, )I = +1, and IXI) 1, which we now discuss
separately.

(v,t)=(—1)' "'y„,„(,t), (24)
A. X= (Xi—Xi)=0

i,"e is the corresponding s-channel ampli-
tude. Secondly, we expand P„.,i, , z, ~ in terms of an
orthonormal basis X„(", i=0, 2 .3, which has the
following properties: in the s-channel Breit frame
(specified by P=O, pi, ——pi„——0) the ith component of
the vector X„("is one and the other three components
are zero. Thus the coefficients I'ii, /„"&(t) in the
expansion

Inserting Kqs. (29), (22), and (23) in Eqs. (19) and
(20) yields the following results:

limPi2vW+i i,i,)„+' e(v, ],/aim /i22)
p ~co

(41

pal�

') —F~,~ '(v, &) }=0 (30)

lim(W+i, i.)„g,
—' (v, t, /ii', /ig') sin8i/

(—4i
I y I

') }=0. (31)
, //(v, t)=Q, ,I', ," X„&'i (25)

are the usual Breit-system form factors. ' Ke can dis-
regard the Schwinger terms since by assumption (II)
they do not contribute to F/„&, &(v,t).

The basis vectors X„"'can be expressed in terms of
the vectors P„, qi„, q2„, and E„,viz:

B. 3 = (Xi—Xg)=&1

Here we obtain the equations

lim — —
I &W+i, i,.i, ,i,pi+'~e(v, t,/tii2, /ti2~) cos8/" " 8lyil'sin8i

I„'&=c'F +d'qi +e'q2 +f'E . (26)
—W+i, i.,g, ,i„~i ' (v, t,pi')/i«') j

8 I.. Durand III, P. C. DeCelles, and R. B. Marr, Phys. Rev.
126, i882 (1962).

—F/„,)„pi e(v, t) =0 (32)
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and convergence relations:

1
lim t [W+I,-I.I„,,„~I+'. (v, t,t, ',t, )" "I4i(P1['

dV IV+I,—I;)a4 ' (V)t)PI ytl& )

+W+I I;.1—, 1,p, l ' (v, t,tel', pl ) coselj =0. (33)

Combining Eqs. (32) and (33), we note that the term

W+1, l., l, ,l,pl in Kq. (32) and the term W~l, l,l, ,l„pl+ in

Kq. (33) can be neglected, and so we are led to the
results

m2 Sgg

X &)„, 1,""(t)+ I'1, , I„'&(t)

+2v2 lp I
[1'1 .-1+"(t)+1"»,-1 "(t)j, (38)

where

r)„l,+(t) = W [r)„1,'(t) ~ir„,l,'(t)]/v2

~v cos8q
llII1 W+1, I;11,1&T1 ' (v)t)tel )t12 )""" 8(p, ~' sine, Iv+1,—I;1)12 '

(vent)Ill ptl'1 )dv= 0 ~ (39)

and

—Fl, ,l,~i s(v, t) =0 (34) Using the properties of the Breit-system form factors'

r)„)„''(t) = 8)„, l,rl, l,"(t)
hmW+1, I,)„1,+I (v, t,pl', t12 ) costt1=0 (35) f ll, lg (t) '41,—) g+lf 1g12 )

[&/= f&i—Xm/&1

Ily similar considerations to those in case (ll), we
obtain

v(sin81)~"~ '
lim

8[p, f2
~+1,—1;Xl~h1—X

'
KVy~ygl )P2 l+ aP( 2 2b

—Fl, , 1,+1 S(v,t) =0 (36)

nd

lim{ W~I, I,I„,&„1 ' I'(v, t,t'ai', t12')(sine') ~" ~ '}=0. (37)
p -+00

The results (30), (31), and (34)-(37) obtained above
can be transformed into sum rules in the usual way,
by dispersing the parity-conserving amplitudes which
are free of singularities in V. As the amplitudes
W+1, 1.,1,1,+(v, t, tel', pl') vanish as v goes to infinity, one
can write an unsubtracted dispersion relation,

~+I-I'114 ' (" ~t~PI ~tl& )
dv

I
QQ v v

where zv+~, ~.y,),+' t' is the absorptive part of
S"+~, ~-, p„),+' . Inserting the dispersion integral into
Eqs. (30), (31), and (34)—(37) and expressing F&„I„ t'

by Kq. (28) yields the following sum rules and super-

it is apparent that Fl,&„~(v,t)—=0 when ~XI—4~ &1.
Thus it follows that the amplitudes m+~, ~.,g,)„+ with

~
i%I

—4~ &1 are superconvergent, viE. ,

v ~+I;I;Il,kl (v)t)pl qua )ltv= 0,
/=0, 1, , ~P,

~

—1. {40)

The amplitudes W+&, j,&,),+ may be expanded in
partial wave amplitudes which can be continued into
the complex angular momentum plane as discussed in
Ref. 5. In complete analogy with Sronzan, Gerstein,
I.ee, and Low' and Singh, ' the nonvanishing right-hand
side of Eq. (38) implies the presence of a fixed pole at
J=1.This leads immediately to the conclusions stated
in Sec. 1.

TiO now we have considered only vector-vector com-
mutation relations; however, we can easily generalize
our results for the case of the full SU(2)XSU(2)
algebra. If we consider the creation of a baryon-number-
zero two-particle system by means of an axial-vector
and a vector current, the following changes must occur.
First, the positive and negative parity-conserving
helicity amplitudes change their roles, because of the
de6nition of these amplitudes. Secondly, the vector
form factors become axial-vector form factors. No
changes occur for the case where the two particles are
created by two axial-vector currents.
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