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+ (1/3M') (Pr„y„—Pr„y„)—',y„y„-y,s„&*l, (A12)

These expressions can always be checked against the
similar expressions obtained by using traces and
projection operators. For example, in our case

where

z„t'=Cs(qg, . q,y—)+C4(q Prg„, q„P—&.)
+Cs(q P;g„qj—';,) . (A13)

It is probably worth mentioning that the method
using Eqs. (A10) and (A11) takes much less effort than
the one using Eq. (A12) unless the trace in the latter is
taken by computer. Ke have used all methods checking
both by hand calculations and by the computer
program of Hearn. '4

s4 A. C. Hearn, Commun. ACM 9, 573 (1966).See also "nznUcE
User's Manual, " Stanford Institute of Theoretical Physics Report
No. ITP-247 (unpublished).
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Free quantized massless 6eld theories of arbitrary spin I are investigated. The transverse potential in
the radiation gauge is shown to transform as a nonunitary inlnite-dimensional representation of the I.orentz
group: (L,1)Q+(L, —1) for integer spin and (L+-,', s)Q+(L+-', , ——,') for integer +2 spin (Gel'fand and
Shapiro s notation). Using Lorentz group theory, it is argued that free quantized massless Geld theories
of spin &1 do not possess a stress-energy tensor T».

L INTRODUCTION
' 'N a recent paper, ' Strocchi showed that the A poten-
t ~ tial in free-field quantum electrodynamics cannot
transform as a vector, as it does in the classical theory.
What, then, is its transformation law (if any), and is
it unique'

It is the main purpose of this paper to elucidate this
transformation law, not only for spin 1, but also for
spin L. In Sec. II, the assumptions of this paper will be
stated, and the radiation gauge will be pz'ecisely defined.
In Sec. III, this de6nition will be used to prove the
radiation gauge manifestly covariant; the transverse
fields will be shown to belong to infinite-dimensional,
nonunitary representations of the Lorentz group.

%ith this established, the simpler case of integer-spin
massless-fieM theories will be developed. Section IV
contains the derivation of the transformation law and
the Geld equations of these theories and some remarks
on the Geld strengths. Section V discusses some applica-
tions of the transformation law, such as the construction
of scalar and tensor bilinear forms. In Sec. VI (Conclu-
sions), the Lorentz invariance of the theory and the

*Supported in part by Air Force Once of Scienti6c Research
under Contract AF 49 (638)-1380.

t Supported by a National Science Foundation Predoctoral
Fellowship.

' F. Strocchi, Phys. Rev. 162, 1429 (1967).

question of the Lagrangian in massless-field theories are
discussed. It is concluded that canonically quantized
Lagrangian massless-fieM theories of spin L& 1 do not
possess a covariant stress-energy tensor TI'".

II. RADIATION GAUGE

Gauge invariance occurs in massless-field theories of
spin L& ~ because the field equations that are derived
from a Lagrangian do not completely determine the
fields. Gauge transformations leave invariant that part
of the field which is determined.

The fields in the radiation gauge are called transverse.
The radiation gauge is defined by stating the properties
of these transverse fields (Eq. (1)j.

For Bose-Einstein Geld theories of spin L& j.,
A (I.)~„...,z is a Hermitian, totally symmetric, traceless
tensor field, with u; being 3-space indices,

V'„A(L)z, ... ,=0, s=1, , L.

The superscript L indicates that A has L indices. The
L in parentheses indicates that A describes a spin-L
theory.

For Fermi-Dirac field theories of spin L+—,') ss,

p(L+-', ) „...,z is a Hermitian, totally symmetric,
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traceless tensor-spinor with the spinor index sup-
pressed,

'/. ,y(L+ ',)'.-, -..=v.A(L+ ')'.-,-'.=o,
i=1, , L (1b)

where a; are 3-space indices.
A count of the indices, using Eq. (1), reveals that A

and p contain just two degrees of freedom, which refer
to the two helicity states.

The fields in the radiation gauge (as opposed to the
Lorentz gauge, for example) are uniquely determined

by the gauge condition (1) and other field equations
that the 6elds obey. Thus, if the fields possess a trans-
formation law, it will be unique. The transformation
law of the transverse fields is assumed to be'

iI-—A(L)z„...,z,I'"j= (x~8'—x ~'~)A(L)zai az

L

+Z &.;A(L)'.i- —.;-'z'

(-j'A(L)z..-.,=0,

'„y"f(L+2) .. .,=0 ~

(3a)

(3b)

Equations (1), (2), and (3) constitute the assurnp-
tions of this paper. They will be used to explore the
mathematical structure of massless-field theories.

the commutation relations only in the radiation gauge.
(It is singular in all other gauges. ) Thus canonical
commutation relations only make sense for transverse
fields. (2) Furthermore, it is only in the radiation
gauge that the Hilbert space has a positive-definite
metric.

Equations (1) and (2) are generalizations to higher
spin of what has been proved in the spin-1, spin--'„and
spin-2 theories. In addition, it will be assumed that the
transverse fields obey the massless Klein-Gordori or the
massless Dirac Eqs. (3),

—'L4(L+2)'. - "~"j
= (x~'—x'~~)4(L+2)'. -.z+kV'V'&(L+k)'. -'z

L

+Z ~.,O(L+l)'.,-'-;-."' (2b)

The notation a; indicates that the index u; is missing.

The transformation law preserves transversality be-
cause Eq. (2) is consistent with Eq. (1). According to
Eq. (2), under Lorentz transformations the transverse
fields transform as the purely spatial parts of massive
fields of the same spin, but an additional term is
needed to restore transversality. This additional term
is nonlinear and nonlocal, and makes the transformation
laws of massless-field theories less clear mathematically
than those of the massive ones. For this reason it is
dificult to determine whether the fields in the radiation
gauge are manifestly covariant.

The simplest infinite-dimensional massless-field the-
ory is of spin 1 (electrodynamics). In this case, A(1)'
is just the transverse magnetic potential, and Eq. (2a)
is its well-known transformation law. For spin 2 (the
linearized gravitational theory), A(2) q is usually
written as h t„which is the deviation from the Rat-space
metric.

In other papers, Eqs. (1) and (2) have been derived
from a Lagrangian for the cases of spin 1, spin ~, and
spin 2.' In these cases, it was found that the radiation
gauge is absolutely fundamental because: (1) The
generator of field variations4 may be inverted to derive

III. REPRESENTATION OF
TRANSVERSE FIELDS

The notation used in this section is taken from
Gel'fand and Shapiro. 5 Their notation fully character-
izes all 6nite- and infinite-dimensional irreducible
representations of the Lorentz group. In their notation
a representation is labeled by a pair of numbers (lq, li).
The number lo is the lowest spin contained in the repre-
sentation. The number l~ is the highest spin plus one
if the representation has a highest-spin component
(the representation is finite-dimensional), and li is some
other complex number if the representation is infinite-
dimensional. For example, a scalar is represented by
(0,1), a vector is represented by (0,2), and a spinor is
represented by (2, 3~) O+(2, —~3).

Only the relative sign of lo and 1& can distinguish
between two representations having the same absolute
values of lq and li. This means that (lq, li) is the sameas
(—lp, —li), but different from (tq, —ti).

It will now be shown that for every spin, the trans-
verse fields belong to some infinite-dimensional repre-
sentation of the Lorentz group. Define new fields by

~(L) q&" &z=~nqnq&zA(L) qaq "az, y

L+1
A(L) '„....z+,—= Q X)„.A(L) „...—..

L+i
~(L)~'.. .„,—= Q n.,a(L)'.. .,....„„(4a)—.

q V~f(x) —=—(1/4n) J'dqx'(1/(x —x' )f(x'), and let S,—=BqV.V q

' For spin 1, see J.Schwinger, Brandeis Lectures, 1064 (Prentice-
HaB, Inc. , Engelwood Clips, N. J., 1965), p. 147. For spin ~3, see
C. Bender and B. McCoy, Phys. Rev. 148, 1375 (1966).For spin
2, see S. Deser, J. Trubatch, and S. Trubatch, Nuovo Cimento
39, 1159 (1965); S. J. Chang, thesis, Harvard University, 1967
(unpublished}.' J. Schwinger, Phys. Rev. 91, 713 {1953}.

where &(L)z, A(L)~+', and B(L) +' are totally sym-
met»c and traceless, and B(L)z is transverse. Also

~I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Repre-
sentations of the Rotation and Lorentz Groups end Their App/ica-
tions (The Macmillan Company, New York, 1963), pp. 188—197.
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define

2L+3 L
X(L+2) al e~L +2qllqaA'(L+ 2) qaq ~ aL 7 79ql&qal 4 (L+2) qeq aI, &

3L+3 3L+3

2L+3 L+l
0 (L+2) al"'eL+I 2 +e8 (I+2) el"'ei'' aI+1+ ZYei4 (L+2) e"l' ei "e'L+ll

2I.+2 ~'=I 2L+2 '=l

2L+3 L+l L+1
&(L+2)"'.-'L+ = E &.,&(L+2)'.l-'-;- "+l+ Yes'(L+2) al" ~ a;" aL+l l

2L+2 ~=I 2L+2 s.=l

(4b)

where X(L+2)L, f(L+—', )L+', and X(L+—,') +' are totally symmetric and traceless, and X(L+—',)L is transverse.
Then Eq. (2) becomes

1 I L—i[~ (L)'.l"'L,J'"]=(»~'—*'~~)~ (L)'.l -.L+ Z ";~qB(L)'.l"'-,'-"q+ ~ (L)'+'.,-'L~, (Sa)

3 2L
Z~(L+-,) .. .,-I "]=(*.~ *~.)~«-+ ',)'.,- ..+-~".~«+ ', ) .. .+-~(L+-;)~.. ..4L+6 2L+3

3 I
+ Z ";~q&(L+2)'."'-;- "q (3b)

2L+3 i 1=
Equation (3) is not surprising, because this is just a change of notation. But Eq. (6) is most remarkable, because
it suggests a closed-group representation that is not the result of any notational tricks.

1 L L—i[B(L)'.. .„J'"]=(x,a' x'V,)B(I)'.. —., P.,„a—(L)'.. .,....„y B(L—.)~.. .,„, (6a)

—i[&(L+2)'., -.L.I'"]=(»~'—*'~~)&(L+2)'.-."+ V'V~&(L+2)'. , -.,+ &(L+ ', )'+'.. .;-
4L+6 2L+3

3 L

'&A'( +2)~ l" . " Iq ( )
2L+3 '=l

Equations (5) and (6) may be simpliled, using a decomposition:

C(L)L=A(L)L+2B(L)L C(I)'+I=A(I)L+I+.B(L)L+l-

C(L) *=A(L)L—iB(L,)L, C—(L) +'*=A(L) +' iB(L)L+'—
&'—= l (&+iv )[4 (L+ l)'+ix(L+ l)'] ~'+'=-'(~+iv )[&(L+l)'+'+ix(L+ l)'+']

~L*=——;(&—iraq) [f(L+l2) L—ix(L+2')L], ~~'*=——:(1—i&5)[4 (L+ l2) L+'—'X(L+l) L+'],

where yq
—pe'yqyq, y5 is real, and (ys)2= ——1.

Then Eqs. (5) and (6) become

L L
2[C(L) —IIl' ' 'ILLl& "]=(»~ 2' ~&)C(L) el "aL+ Z qa'&qC(L) el ""eIq+ "C(L) + al" ~ aLq ii(L+1) ~=I L 1

(7a)

(7b)

(Sa)

i[A lL& —.ILLlI ] (2:k~ +~e)~ el" eI.+ 7'7& a"'eL
4L+6

2L 3 L

+ & + al eLe+ P qa aqua el" ~ e ' ~ ~ eLq l (Sb)'
2I,+3 i(2L+3) ~=I

and the Hermitian-conjugate equations.
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By induction, it may be shown that Eq. (8) is the
first of an infinite set of transformation laws. That is,
repeated commutation with J'~, the generator of pure
Lorentz transformations, generates a sequence of fields
fc~ C~+' C~+' andH. c.}and(A~ A+' A~+' ~ ~ ~

and H.c.}, which transform among themselves under
a Lorentz transformation. (This sequence is derived
explicitly for integer-spin fields in Sec. IV.) Further-
more, each element of the sequence is a unique spin
component. Therefore C and A are infinite-dimen-
sional, irreducible representations of the Lorentz group
whose lowest spin component lp Lan——d L+q, respec-
tively.

Knowing Eq. (8) is sufficient to identify li. Then,

C(L) transforms as (L,1),
C(L)* transforms as (L, —1),

A transforms as (L+q, $),
A~ transforms as (L+q, —&),

(9a)

(9b)

where C(L) and C(L)*, A and A* are helicity repre-
sentations. Under a parity transformation, the above
representations (lp, li) become the conjugate representa-
tions (lp, —li). This indicates that C and C*, A and A~

represent opposite handedness.

Finally, the representation of the Hermitian fields

A(L) and P(L+ ', ) is-:

A(L) transforms as (L,,1)Q+(L, —1), (10a)

iP(L+ iq) transforms as (L+2, Pq) Q+ (I-+p, —2) ~ (10b)
Although Eq. (10) was derived only for L&1, it is

most gratifying to find that it is also true for L=o. If
I.=O, f(q) transforms as the finite-dimensional spinor
representation (-,' pq)Q+(-,', —-', ). Note that this is the
representation for neutrinos. The A(0) transforms as
(0,1)Q+ (0, —1), which simplifies to (0,1) (because the
relative signs of lo and l1 in these representations are
the same). So, for spin 0 the two helicity states combine,
and the usual finite-dimensional scalar representation
emerges. Hence Eq. (10) is universal, and holds for
massless fields of aly splqb.

IV. INTEGER-SPIN FIELD EQUATIONS AND
TRANSFORMATION LAWS

The complete massless field theory will be exhibited
for integer spin only. The additional complexities of
the matrix algebra associated with half-odd-integer
spin seem to provide no new insights or techniques,
although the results are analogous.

A. Field Equations

A full set of field equations may be derived by induc-
tion on Eqs. (1), (3), and (8):

CPC(L) ~ -'~= o

Va„c(L) a,...a~ ——Bpc(L) 'ai ~ .aiq —,)

L
Vbqbacc(L) aap" aN 180~(L) cap "a~+ ( /1V)80 Q qa;qcC(L) qaa a; aN y"~

iV i=2

(1+N)'—L' N

V,C(L)".. .„= Doc(L) +'.. . 8, —'
baiq ( ) qaI"'ai'"aN

(21V+1)(1V+1) N(N+1) '=i

(11)

(12)

(13)

231—1 N

&o Q 8a;bc(L)
1V(2N+ 1)

1 N

&o Q b...,c(L)"-'.,
N(2N+1)

iyEj

and the H.c. equations. These equations are true for N& L.Remember that C (L)~ for N(L does not exist (is zero) .
Commutating the fields with J", we find that these field equations constitute a manifestly covariant, infinite-

dimensional set. Thus, contrary to popular opinion, the radiation gauge is manifestly covariant.
Fquations (14) and (11) or Eqs. (14) and (12) are sufficient to imply the other field equations. These are a full

set of equations because all of the higher fields C(L)~+', C(L)~+', C(L)~+', , are determined in terms of the
lowest field C(L)~. This is a peculiar field theory, because there are an infinite number of fields with an infinite
number of constraint equations. This leaves only a finite number (two) of independent degrees of freedom.

Equations (13) and (14) may be made totally symmetric and traceless LEqs. (11) and (12) already are):
N

Vy&yqa;C(L) ay" ~ a;"~ aiqq qL~OC(L) az "ab' y
i~1

(1V+1)'—L'N+1 1 N+1

p V.,C(L) ., "-.;"'~+— P V,S....C(L),.. .—,...—.

i=1 2N+1 c.i=ii' 2N+1

This new set of field equations contains no less information than the previous set.

(13')

Doc�(L)

~+'„...,„,. (14')
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B. Transformation Lair

The transformation law for the fields is explicitly

(S+1)'—L'
'L ( ) s" X "3=(* 0) ( ) ~v" nr+ ( ) +m "ab&

(S+1)(2S+1)

I N S+1
g qa„0qC(L) ag" ~ a; "a~q+ ~a,aIC(L) ag "a,' ~ a& apeak"

iS($+1) '-i S(2S+1)s. g. =i
iwj

(S+1)(2S—1) iq

Q ti.,bC (L)" '., ;, .„...(15.)
S(2S+1)

From Eqs. (14) and (15) the transformation law for the Pth time derivative of the C(L) field (Eq. (16)j may be
computed:

(S—P)L (S+1)'—L'j
qDgo)—PC(L)~., „,I"$=(x'8' x'V )(8—0) C(I) .. .„+ (~0)'C(L)"+'-, -.~b

(2S+1)(S+1)

(S+1+P) 2 ~.;;(~0)'C(L)" '. -.-.'--;"-.~b
S(2S+1) ', i=i

iwj

(2S—1)(S+1+P) &
— Q 8„. (8o) C(L)" '., -„... . (16)

S(2S+1)
From this equation it may be determined that

(80) C(L) transforms as (L, 1+P), (80)~C(L)* transforms as (L, —1—P).

The smallest integer P for which the representation (L, 1+P) becomes finite-dimensional is L. For L=P, the
transformation law LEq. (16)J for the lowest spin component S=L is simply

L
—if(8 ) C(L),..., ,J'"j= (x"8'—x'V )(8o) C(L) „,+1/i p..... .(Ljo) C(L) „...,—,..., (18)

This implies that the Hermitian fields (80)LA L(L), (80)LBL(L) belong to the finite-dimensional tensor representa-
tion (L, L+1)Q+(I., L 1).This tensor w—ill —be called a field strength, and is written as p»"&»"q»"~

tensor F is antisymmetric under exchange of any p, and w;, symmetric under interchange of any pair p, t; and p,,v;,
and traceless under summation of any two indices. Explicitly,

Pqal 0a2 0a3 ' ' ' 0aL ——(Q )LA (L)L

pqa&, 0a0,0as, ~,Oat. gnm (g )Lqg3(L) I, — ,

Fqa&oo8~ ~ ~o, I, , n, , nq , (g—)Lqq,g(L)L,
The field-strength tensor is gauge invariant. It obeys Maxwell's equations, which are

FPlr l i
' ' ' ~FL~L —0 (2o)

For spin 1 (electrodynamics), the field-strength tensor is the usual P»". For spin 2 (linearized gravitational field),
F»"1»"& is the Riemann-curvature tensor. The contracted Riemann tensor Fl'" vanishes as expected, because there
is no coupling to an external energy density. Although F»"' »"' generally contains 20 independent quantities,
there are only 10 in this case, because the contracted tensor F"' is 0. These ten quantities are just the 6ve com-

ponents of the A (2)',b and of the B(2)',b fields.
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Equations (16) and (17) are the transformation law for multiple-time derivatives of the fields. It is also possible
to construct the time-integral fields and their transformation laws. Since all fields obey the massless Klein-Gordon
equation, QOV' ' is electively a time-integral operator which contains its own boundary conditions. Formally,

(~p) 'C(L)= (~p/~')'C(L) . (21)

Now, Eqs. (16) and (17) are true for multiple-time integrals of the fields when P ~ P. Fo—r example, the first
time integral of the fields (Bp) L transforms as (L,,O), and so does its Hermitian conjugate. The first time integral
of the fields is interesting because it is the only case in which there is a real transformation law (no imaginary
coeKcients):

(~p) 'C(L)"+'.,"..~2
2K+ 1

(N+1 '—L'
—2[(ap)-'C(L)" .,- I'"]=(x"8'—x'V'2) (8 )-'C(L) .. .~+ (22)

N

+ 2 &.;;(~p) 'C(L)
2X+1~g i, =i'

2Ã —1 N

Q b.,2(Bp) 'C(L) —'„...-„....,„.
2K+1 '=i

V. BILINEAR FORMS

It has been established that the C(L) and C(L)* fields are irreducible representations of the Lorentz group.
hat, if any, simple Hermitian-covariant objects can be constructed out of bilinear forms of these fields? That
is, what, are the first few terms in the Clebsch-Gordon series? The answer to this problem can be obtained by
the application of difference equations to Eqs. (11)—(15):

(L,1)Qx(L,1)Q+(L, —1)Qx(L, —1)= (0,1) (a Hermitian scalar S)
Q+(0,3) (a Hermitian traceless symmetric tensor E&") (23)

(L,1)Qx(I., —1)Q+(L, —1)Qx(L,1)= (0,3) (a Hermitian traceless symmetric tensory Q&")

~ ~ ~ (24)

The higher terms in these series are many-index tensors and perhaps new in6nite-dimensional representations.
The structure of Q~", Z&", and S is as follows. Let

(X+2)'—L'
D(%+1)= D(Ã),

(2E+1)(X+3)
(25)

where D(L) is an undetermined constant. Then

(&+2)(2/+1)L
S= g D(N) [C(L) „...,„C(L) „...,„+H.c.],

~=z, $[(i2I+1)2—I.'] (26)

(2X+1)(E+2) (X+1)
Q"= Q D(X) [C(L)N C(L)K8

~=z, L[($+1)'—L']

@+2)
Q'-= F D(&) [C(L) + „.. ...C(I) *.. .„+H.c.

N=L L

(2/+ 1)(/+ 2)
+ g — ( ) A ~[Cii(L) ~,... ~,g.CN(L) *„...,~,ii], (27)=L (g+ 1)2'L2
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(1V+2) (21V+1)(1V+1+2L')
Q-= P ~..D(1V) [C(L) .. .„.C(I.) *.. . ]

L (21V+3)[(1V+1)'—L']

(1V+2) (21V+1)(1V'+1V—3L')
+Z D(1V) [C(L)~.. . , .C(L)"*.. . , +H.c.]

B=L L (21V+3)[(1V+1)'—L']

(1V+2)'—L'
+ P D(1V) [C(L)"".-' -C(L) *.-' +H c ]

L(21V+3)

D(1V) I oAB [ic(L)"+'.. .B,A„.C(L)"*.. .B,B+H.c.]
+o,iB„fic(L)"+'......„,A .C(L)"*.. .„,+BH.c.]},

(21V+ 1)(1V+2) (21V'+ 21V—L')
RM= P -D(1V) [C(L) „..., C(L) „...,„+H.c.],

2L1V[(1V+1)'—L']N=L

2 (1V+2)
R "= Z D(1V) [C(L) + vv~i" ~B C(L) i" B+H C ]v

N=L I.

L1V(21V+3) (1V+1)[(1V+1)'—L']
—D(1V)2(21V+1)(1V+2)[1V'(1V+1)'+I.'(1V'+1V—3)]

C(L)". 'N C L "."'B, +Hc.
L1V (r+ 1)(21V+3)[(1V+1)'—L']

2[(1V+2)'—L']
+ P —D(1V) [C(L)"+'., „.C(L) .. .„+H.c.]

L(21V+3)

00 2
+ p D(1V) —

I GABtn['Ec(L) +'„...,B,A„.C(L) g, ...NB gB+H.c.]B-I. 1V+1
+oAB„[oc(L)"+'g,....B,Ant. c(L) ~~...gB gB+H.c.]}~ (28)

The dot on the line indicates Bose operator symmetrization.
The properties of Q"", R&", and S may be obtained by using the field equations (11)—(14):

(21V+1)(1V+2)[L'(21V'+ 31V—3)—21V (1V+1)']
R "= Q 8 D(1V) [C(L) .-'Bc(L)". -.B+H c ]

a„Q""=0

B„R""g0,

l98R = S)
g2Qpv 0

2&[P~—L&][(P—1)~—Lo] ~ ~ [1—Lo]
(p') S= P

(1V+P+1)(1V+P) (1V+2) (1V—P) (1V—P+1) (1V—1)

(3O)

(31)

(32)

D (1V) (1V+2) (21V+ 1)L
X [(&o) L".,"'B(~o)'L"..- . +H.c.] . (33)

1V[(1V+1)'—L']

In Eq. (33), if P=L, then all terms in the infinite
series vanish except for the first term (1V=L) because
of the factors (P' —L') in the numerator and (1V P)—
in the denominator. Thus (g')~S is the unique simple
(no longer an infinite series, but a single term) scalar.
It is constructed from elements of the field-strength
tensor. In fact, it is the square of the tensor. In electro-

magnetic theory this unique simple scalar is E'—H'.
There is a similar construction for the pseudoscalar
E.II.

VI. CONCLUSION'S

Although the selection of the radiation gauge was
motivated by quantum mechanics, the infinite-dimen-
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sional fields have been treated classically. That is, only
their field equations and transformation laws have been
used. Is it possible to quantize these fields?

The most general Hermitian scalar Lagrangian is of
the form

2= aB»SB"+bB»R""8„+cB»Q""8,
&

(34)

where a, b, and c are adjustable coefIicients, and 8 oper-
ates on the first field and 8 on the second field in each
term of the bilinear forms Q, R, and S. Varying this
I.agrangian gives the correct field equations for every
choice of a, b, and c. However, there are some field
equations missing; that is, there is additional gauge
freedom. ' The radiation gauge again must be chosen
by restating the condition [Eq. (1)j. This elimina, tes
all gauge ambiguity.

To compute the canonical stress tensor T&", space-
time variations of the Lagrangian are performed. 4 For
arbitrary choice of u, b, and c, the symmetric, traceless,
divergenceless Tf"" is a bilinear form in the Clebsch-
Gordan expansion of (I,2)g (L,2) Q+ (I., —2) (I., —2).
But when the total energy I' is computed from a 3-
space integral of T~, it is found not to be positive defi-
nite. (It can be written as a difference of squares. ) For
this reason the Lagrangian [Eq. (34)$ is unacceptable.

If it were possible to find a symmetric traceless tensor
in the Clebsch-Gordan expansion of (L,2)(L, —2)
Q+ (L, —2) (L,2), the associated P' might be positive
definite (sum of squares). But there is no symmetric
tensor in this expansion except for the case of spin 1
(electrodynamics), where T = o(E'+II'). This tensor
exists for spin 1 because (L, +2) for spin 1 is (1, +2),
which is the finite-dimensional field-strength tensor. '
However, this tensor cannot be derived from the
infinite-dimensional spin-1 theory.

It is most important to note that a co~ariaeI, energy-
density tensor for conventional massless field theories of
spin greater than 1 does not exist. (If it did exist, it
would appear in the Clebsch-Gordan expansion. ) This
is the reason for the remarkable anomalies of gauge
invariance and noncausality in massless spin-2 and
spin-2 theories. ' There, "pseudo" (noncovariant) energy
densities were substituted for the unavailable covariant
energy densities. '

6 It was originally hoped that in this in6nite-dimensional 6eld
theory the whole concept of gauge invariance would be eliminated.
However, gauge invariance seems to be fundamentally connected
with masslessness and cannot be suppressed even in this in6nite-
dimensional framework. Lagrange functions with only first deriva-
tives, but with auxiliary 6elds, were also tested. These Lagrangians
yield results identical to those obtained from the Lagrangian (34).

"The quantization of electrodynamics is successful because the
6eld-strength tensor is the first time derivative of the transverse
potential. No other massless-field theory has this advantage.

'These pseudotensors are called noncovariant because they do
not transform as 6nite-dimensional representations of the Lorentz
group. However, they might transform as covariant infinite-
dimensional tensors. The possibility that the stress-energy tensor
of massless 6eld theories is in6nite-dimensional is not considered
in this paper.

Although a covariant field-theoretic energy density
cannot exist, there is nothing preventing the existence
of a Lorentz-invariarit theory describing massless par-
ticles of arbitrary spin traveling through empty space.
In mathematical terms, covariant generators I'I", J&",
which have the correct positiveness and commutation
properties of the Lorentz group, may be constructed
using a noncovariant pseudo-stress-tensor "T":

"T~"=-',[(8 AO)'+ (BOB)'j,
"T""= 0;—,kitpA(L)~. . ., „BOB(L)~.. (3S)

I = de T

Jok J g (xp&&TPk» xk&&TOO»)

(37)

Jik d, g (gi&&Tpk» gk&&TOi»)

When the 3-space integrals are performed, these global
operators become covariant and induce the correct
transformations on the fields. Hence the noncovariance
problems in massless field theories occur only for opera-
tor densities such as the stress tensor.

An interesting open question is whether the experi-
mental nonexistence of massless particles of spin&1 is
a direct consequence of the nonexistence of a covariant
stress tensor for conventionally quantized fundamental
massless field theories of higher spin. "
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' For an arbitrary 3-tensor test function F with no symmetry
properties, the generalized transverse 8 function is defined byJd&+ +&&& ~ 0&&'

*'
t S (& x )0&&&&&&

''
4&&&»&') ='F a&" &»& (gl &

where
F~ is defined in Eq. (1), and is totally symmetric and traceless.

"These arguments have been given for flat Minkowski space.
Hence the existence of the graviton (spin 2) necessarily requires
an additional physical idea such as the curvature of space; that
is, the possibility of performing unobservable general coordinate
transformstions. By performing unobservable coordinate trans-
formations, the noncovariant stress tensor "TI'"" becomes co-
variant (the noncovariant part of "TI""" may be transformed
away), and M satisfies the Schwinger energy-density commuta-
tion relations. Apparently, for 4-space to support a fundamental
spin-2 quantized Geld, the new physical concept of curvature is
required. See J. Schwinger, Phys. Rev. 130, 800 (1963);130, 1253
(1963};132, 1317 (1963).

where 2 obeys the canonical commutation relations'

[A (L)~„...,k(x),8OA (L)~„...,k (x')),o=,&'

=i,["00(x x')b.„—, b...;]~. (36)
Then,


