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Phenomenological Analysis of the yNN* Foiixx Factors*
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The data on electroexcitation of N* in the momentum-transfer range —q'=0. 1—2.33 GeV' have been
analyzed phenomenologically, using an isobar model. Assuming only the M1 transition, we obtained a
phenomenological form factor for the yEE* vertex. This form factor is found to decrease much faster than
the elastic nucleon form factors. This implies that the E*has a larger spatial extension than the S.

1. IÃTRODUCTIOÃ

HE electroexcitation of the proton into N*(1236
MeV) has been investigated both experimen-

tally' ~ and theoretically' by many people. The purpose
of this paper is to analyze some' ' of these recent data
phenomenologically, using a very simple isobar model.
A simple parametrization of the problem as given in this
paper is desirable for many applications such as (i)
calculation of the radiative tail due to the 3-3 resonance
in order to extract information from second (1525 MeV)
and third (1688 MeV) resonances in the inelastic elec-
tron scattering; (ii) calculation of the contribution of
the 3-3 resonance to various pair-production experi-
ments; (iii) estimation of the contribution of the 3-3
resonance to various sum rules; and (iv) estimation of
the eGect of the 3-3 resonance on various other processes
in which the E* appears as a propagator in Feynman
diagrams (e.g. , Fig. 4). The usual analysis using dis-
persion techniques is not suited for this purpose because
the result is too complicated. The situation is very
similar to the analysis of elastic electron-proton scatter-
ing where phenomenological nucleon form factors are
often very useful even though no one can derive them
exactly from other known physical phenomena. The
major difFiculties in performing the phenomenological
analysis are the following:

(1) It is diKcult to estimate the nonresonance back-
ground in a model-independent way. From the promi-
nence of the resonance peak in the data, one expects that
the background should not exceed 10-25%%u~ of the curve
at the resonance peak. At the resonance peak, the 3-3
resonance amplitude is imaginary and the background
is expected to be mostly real. Hence the background
simply adds to the 3-3 cross section. The background
consists of (a) the tail of the second resonance, 1525
MeV; (b) the three Born diagrams shown in Fig. 1 with
the I= ~3, J= ~3 amplitudes subtracted from these dia-
grams; and (c) the small non-3-3 amplitudes generated

*Supported by the U. S. Atomic Energy Commission.
' H. L. Lynch, J. V. Allaby, and D. M. Ritson, Phys. Rev. 164,

1635 (1967). Earlier references on experimental papers can be
traced back from this paper.

'F. W Brasse, J. Engier, E. Ganssauge, and M. Schweizer,
DESY Report, No. 67/34, 1967 (unpublished).

3 N. Zagury, Phys. Rev. 145, 1112 (1966); 150, 1406 (1966).
Earlier references on theoretical papers can be traced back from
this reference,

by the imaginary part of the 3-3 amplitude due to dis-
persion relations and crossing. These statements are
model-dependent. The items (b) and (c) have been esti-
mated in great detail by Zagury. ' As can be seen from
Zagury's numerical curves, the estimates of the back-
ground terms depend greatly upon some uncertain
factors such as G~„.Hence we have chosen to estimate
the background directly from the data graphs them-
selves. This may cause a 10—15% error in the 3-3 cross
section at the peak. For most of the applications we
have in mind, such errors are tolerable.

(2) Even though the M1 amplitude is expected to
dominate4 the transition y+E-+ E*, one cannot tell
from the data of electroproduction exactly how much
the Q2 and E2 amplitudes contribute. We have written
a general expression for Ã* production including Q2 and
E2 in addition to M1 )see Eq. (2.16)],but the formula
contains too many parameters, and hence is impractical
for use in our analysis. We have therefore assumed that
only Mi contributes to the transition and obtained
Eq. (2.18). All we can say is that the data available do
not contradict the cross section expressed in this form.

Assuming that only Mi contributes to the transition,
we have obtained a phenomenological 6t to the transi-
tion form factor for y+tV-+ E* from the most recent
Stanford' and DKSY data. The result can be written as

LCs(q')M ]'= (2.05&0.04)s

&&expL 6 3( Ils) ts]L1+9 ()( tls)' '] (1 1)

This form factor seems to decrease much faster than the
nucleon form factors'

G„) G. )
— . (1.2)

2.79i —1.91i (1—q'/0. 71 GeV')4

The static theory of Fubini, Nambu, and Wataghin'
predicts that the form factor associated with y+X-+ Ã"
is proportional to G~y= G31„—G~„.But this statement
is very ambiguous, because in the static limit, a factor
such as 8;*+31„in the initial state of proton is auto-

4 R. H, Dalitz and D. G. Sutherland, Phys. Rev. 146, 1180
(1966).' See, for example, R. Taylor's report in the Proceedings of the
International Symposium on Electron and Photon Interactions at
High Energies at SLAC, 1967 (unpublished).

S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,329
(1958).
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FIG. 2. Klectroexcitation of the N*.

FIG. 1. The Born diagrams which contribute to the background. p„ji PROTON

matically replaced by 2'~. The result is that a kine-
matical factor such as

E;*+M~ (M„+Mss)'
~
q'i

(1.3)
2M~ 4M„Mss (M„+Mss)'I

would be replaced by (1). (E;* is the energy of initial
proton in the rest system of the 1V*.) This factor is not
small compared with unity when

~
q'~ is 2.35 GeV', for

example. Therefore, the static model does not predict
the form factor for the pe* vertex at high momentum
transfer. From Eqs. (1.1) and (1.2), one is tempted to
conclude that the E* has a larger radius than S, in
agreement with the intuitive notion that an excited
state should have a looser structure than the ground
state. This observation is true even if Eq. (1.1) is multi-
plied by the square of the factor given by Eq. (1.3) and
then the product is compared with Eq. (1.2).

In the Appendix we present in detail how the multi-
pole analysis can be carried out, using the formalism of
Durand, DeCelles, and Marr (DDM). r This method
seems to be much more simple and straightforward
than the usual way of reducing the matrix elements
into a Chew-Goldberger-Low-Nambu type' ' ' of
decomposition.

into Q2, E2, and M1. We shall choose the gpss* coupling
to be the sum of three gauge-invariant amplitudes" ":

Hs=ieCsf„(x)y, y„q(x)F„„+H.c. , (2.1)

H4 eC4$—„—(—x)ps[8„rp(x) jF„„+Hc , . .(2.2)

Hs —eCsp——„(x)y,ip(x)8„F„„+H.c. , (2.3)

where p(x) is the proton field, F„„is the electromagnetic
field tensor F„„=8„A„8„A—„, and f„ is the spin--,' field
of Rarita and Schwinger, satisfying the subsidiary
conditions"

8„$„=0, y„Ib.=0,

fi(yp8p+y ~)—Mffib„(x) =0.
With this choice of couplings, II5 does not contribute to
the cross section when the photon is on the mass shell.

C3, C4, and C5 are for simplicity assumed to be functions
of q' alone (but not Mr') in momentum space. Cs(0)
and C4(0) can be obtained by comparison with photo-
production experiments. The experiments of Lynch
et al. ' and of the DESY' group detect only the energy
and angle of the final electrons; hence the cross section
can be written in the lab system as"

2. CALCULATIONS

In the isobar model, the relevant diagram is shown in

Fig. 2, which dehnes our notation. P~, P2, P;, and P~ are
the four-momenta of the incident electron, final electron,
initial proton, and E, respectively. q is the momentum
transfer. The final pion is denoted by P. Since the
initial proton has isospin —'„spin -'„and parity +, and
the X*has isospin —,', spin —,', and parity +, the transition
current for y+X~Ee must be isovector and has
multipolarities' Q2 (scalar quadrupole), E2 (transverse
electric quadrupole), and M1 (magnetic dipole). Instead
of decomposing the amplitude into M1, E2, and Q2, one
could also use the helicity amplitudes fp, f+ and f used

by Bjorken and Walecka'; however, since in the case of
E*(1236) both theoretical and experimental analyses
indicate that the M1 amplitude dominates the cross
section, 4 it is more natural to decompose the amplitude

L. Durand, P. DeCelles, and R. Marr, Phys. Rev. &26, 1882
(1962). In this reference, the multipole analysis is done in the
brick-wall system. Their results can easily be transformed into the
rest system of the N*.

G. F. Chew, M. L. Goldberger, F. K. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

P J. D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
(1966).

dQsdPs

where'4

4Esst Gs(q', Mrs) cos'(-', 8)

+20i(q' Mr') sill'(-'8) $, (2.4)

ro ——2.82X10 "cm, m, =0.51X10 ' GeV,

q = —4EiEs sin (z8),
Mp= (q+p;)'= q'+M„s+2qpM„, qp= Et—Es,

'P M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963);27,
309 (1963); Ph. Salin, ibid 32, 521 (196.4).

"J.Mathews, Phys. Rev. 137, B444 (1965).
"These subsidiary conditions merely tell us that the explicit

representation of p„ in the rest frame of the N* can be given in the
form shown in the Appendix Lsee Eqs. following (A1)g.

"Kewrite the cross section in terms of G1 and G2, anticipating
that our formula can be used for calculating many other things
such as the radiative tail due to the 3-3 resonance LY. S. Tsai, in
Nuclear Strlctlre, edited by R. Hofstadter and L. Schiff (Stanford
University Press, Stanford, Calif. , 1964), p. 221J or the contribu-
tion of the 3-3 resonance to pair production LS. D. Drell and J. D.
Walecka, Ann. Phys. (N. Y.) 28, 18 (1964)g. Note that the
normalization used for G& and G2 in this paper is slightly different
from that of the above two references.

'4The metric used in this paper is such that P1 P2=EIE2
—PI.P2. The units used are A=c=1 and e'/471-=of. Bosons are
normalized such that there are 2E particles/cm~ and the fermions
are normalized such that there are E/M particles/cm', where E is
the energy of the particle and M is its mass.



168 yNN~ FORM FACTORS i803

and the functions G~ and G2 are dined by

(2s)s
2 Z(fl J.(O) I

s&*(fI J.(0) Is)8'(q+P' —Pr)
g2 s f

the propagator" of the S*:
I'&33m '

8(MP —Msss) —+ (2.11)
(Mgs —Ms s)s+I"Mss'

Q
G (q', Mr') = T„

M 2Q04 qs )
(2.7)

=Gt(q™f')(q.q.q
' g")—

+Gs(q', MP)M -'I P;„—q„(P; q)q-')

X I P;.—q, (P; q)q-'], (2.5)

where Ii) and
I f) represent the initial proton state and

6nal pion nucleon system, respectively. Choosing the
direction of the three-dimensional momentum transfer
Q* in the rest frame of Ã* as the s axis, we have from
Eq. (2.5)

Gt(q', Mfs) = Tzz= Tvv = T+~= T = Tr (26)

The width I' is the transition probability of S*—+ s.+E,
and since the s-+S system is in the p state, we expect"

p ~p+3

where I'* is the momentum of decaying pion in the rest
system of the E*, and can be written as

Pf 2 M 2+~2)2
~2

2M'

where p=0.14 GeV.
I' ~ P*' if we take into account only the P-wave phase

space of the decaying pions and ignore the form factor
associated with the X*—& X+x vertex.

We have tried two expressions for I'(Mfs):

Since G& is invariant, T& can be evaluated in any
Lorentz frame. " Tpp is evaluated in the rest frame of
the N*. The three-dimensional momentum transfer Q*
in the rest system of the E*is related to the correspond-
ing quantity in the lab system by

and4

r(MP) =0.12 GeV(P*/Pg*)' (2.12)

(0.85P*/p) s

I'(MP) =0.1293GeV, (2.13)
1+(0.85P*/fs)'

Mg'Q*'= M~'Q'. (2.8)

Mf
T&0 8(Mf M»') 2 la ~l Js(0) I &')I',

g2 'Af Xs

(2.9)

Nf
T,= 8(Mg' —Mss') p I() pl J~(0) I X;))s, (2.10)

g2 Xfhs

where Xf and P; are the helicity states of the E*and I';,
respectively. In order to take care of the 6nite width of
the Ã*, the 8 function in Eqs. (2.9) and (2.10) is re-
placed by the absolute square of the denominator of

Integrating over the phase space of the E*, and
ignoring its width, we obtain from Eq. (2.5)

where I'g* is the value of I'* at the resonance; i.e., we

let Mf ——M3~——1.236 GeV.
The matrix elements in Eq. (2.9) and (2.10) can be

written in terms of Q2, M1, and E2 as'

Z l(~ I Jo(o) I)')I'=l(Q2)' (2.14)
)fhs

Q I ()If I Jp (0) I
X ') p = -', (M 1)'+ -,' (E2)' . (2.15)

In the Appendix we compute the Q2, M1, and E2 ampli-

tudes explicitly in terms of Cs, C4, and Cs Lsee Eqs.
(A5), (A6), and (A7)j.

Substituting Eqs. (A5)—(A7) and (2.5)—(2.15) into

Eq. (2.4), we obtain

MfN33I'm 'fp me
4jV,2

dQsdPs t,b q' (Mfs Msss)s+I'sMsss 2—M„(E;*+M,)

X [(M„'/Mrs)q'X-'sL —Cs+C4Mg+Csqs*f'qs cos'(-', 8)+Q*'(tsl (2E;*+2M„+qs*)Cs—C4Myqs* —Csq'j'srt

+ I q&*Cs—C4Mgqs* —Csq'g'zs} L2 sin'('s8) —(q'/Q') cos'(rs8) g]. (2.16)

15 G&= Tz as long as P; does not have any transverse components. This is true in the laboratory system, in the rest system of
E*,or in the brick-vill system.

"The numerator on the right-hand side of Eq. (2.11) is determined by requiring that the integration with respect to 3Ey' gives unity.
't If we assume the matrix element for E~~p+ +to she gM~ 'y(pr —p)p„P„(pr), we obtain

1 E'+~n g'
12m Mf M„'

where E* is the energy of the decayed proton. If I' =0.12 GeV atresonance, we , obtain g'/4~ = 16.4, which is very close to the pion-
nucleon coupling constant g'/4m = 14.7.
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TABLE I. Estimates of background and errors.

g2

(GeV')

0.1
0.3
0.5
0.79
1.57
2.35

Background

peak

0.15&0.05
0.15+0.06
0.15%0.06
0.17+0.07
0.18+0.07
0.20+0.10

Expt
error
(%)
~5
~5
~5
~10
~10
~10

(~~2/&2) exit
(%)
&8
+9
~9
+13
~13
~15

QPr2 —
q

Pr2 q2

If Q2=0 and E2=0, we obtain from Eq. (2.16)

C5=0, C4=C3Mf '.
In this case, Eq. (2.16) can be simplified into

(2.17)

The subscripts Q2, M1, and. E2 at the right-hand side
of each square bracket identify the contributions of
each multipole to the cross section. The stars represent
the quantities in the rest frame of the S*;they can be
written in terms of invariant quantities as follows:

E;*=(M„2+Mrp —q')(2Mf) ',
qp* ——(Mf2 M„'+—q') (2Mf) ',

F(q') from the experimental data. '' The procedure
used is as follows:

(i) Let F'(q') =exp[»2( q')'I'][1+b( q2)'t']& and
adjust a and b until Eq. (2.18) reproduces the experi-
mental cross sections at the peak as closely as possible.

(ii) The experimental curves will, in general, be
higher than the curves obtained above on both sides of
the peak. We assume that the background consists of a
Rat part plus the tail of the second resonance. The Qat
part is estimated by the difference between the curve
obtained in (i) and the experimental curve midway
between the threshold and the peak. The tail of the
second resonance at the 3-3 peak is estimated by draw-
ing a reasonable resonance curve. The fraction of back-
ground at the peak is estimated together with rather
generous error assignments, and these are given in
column 2 of Table I.

(iii) The experimental form factor squared, F2(q2), ,»

shown in column 3 of Table II, is then obtained by sub-
tracting the fraction of background from F'(q') in
step (i).

(iv) The error in the experimental form factor is
estimated by taking the root mean square of the errors
due to estimates of background, experimental cross
sections, and the coefFicient A:

d'0 ro'me' E2 M,~2—[Q'+ (Ei+E2)']
d~2dp2 lab q Ei Mf1

qp+M~+Mf 2FMfM3gr '
X C'(q'), (2.18)

3My (MP —M222)2+1'2M222

(
bF') (b(bacbgrorrcrP)'

F )..„5 peak

~

(~A)»12
+ +4l

o A
(2.21)

where
E& is the incident electron energy;

E& is the outgoing electron energy;

6(background)/peak is given by the + error in column
2 of Table I; the errors in experimental cross sections,
ho/o, are given in column 3; and AA/A =0.02, as given
by Eq. (2.20). Finally, (AF2/F2), „„»is given in column 4

qo= Ei—E2,.
q'= —4E»E2 sin2(-2't));

Q=qo —q'
M~= 0.938 GeV;

and

M» ——i.236 GeV;
Mf (q'+M '+2——M qp)'".

m, =0.51&i0 ' GeV;
ro ——2.82&i0 "cm;

Cp(qp)Mp= AF(q'),

where F(0)= 1 and

A =Cp (0)M„=2.05&0.04

(2.19)

(2.20)

from the Dalitz and Sutherland analysis of photopro-
duction experiments (see Sec. 3). We then determine

'8 See (6) of the next section.

I' is defined in Eqs. (2.12) and (2.13).

Equation (2.16) has too many parameters, and hence
it is impractical to use it for our purpose. " We shall
assume that only Mi contributes to the cross section
and use Eq. (2.18). Let us write the unknown function
Cp(q') as

of Table I.
For comparison, we give numerical values of several

functions of the form (1—q28-')" and a function
exp[—6.3(—q')'"][1+9.0(—q2)'~'] in Table II. It is
seen that F2(q2),„p» goes down much faster than the
elastic proton form factor which is given in column 4
(8=0.71 GeU2 and 22= —4). F'(q'),„,» seems to decrease
faster than the —fourth power but slower than the
—fifth with increasing

I
q'

I
. The exponential form seems

to fit rather nicely. Figure 3 shows the comparison of
the data with Eq. (2.18), using

C22(qp) M,'= (2.05)'
X exp[—6.3(—q2)»&2][1+9(—qp)»&2] (2.22)

and I' given by Eqs. (2.12) and (2.13). Figures 3a—3c
represent the data of Lynch et al. , which are given in
terms of

d'o o» K Ep t' cot'(-'9) i--'—
I
2+

I
(2.23)

dnpdpp-4 2 Iq'I Ei( 1 qpp/q2&—
versus K=—(Mfp —Mpp)/(2M„) for fixed q' and E2.
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TABIE II. Experimental form factor and various Gts.

1805

QR

(GeV')

0.1
03
0.5
0.79
1,57
2.35

v'( —q')
(GeV)

0.316
0.547
0.706
0.89
1.25
1.53

&(q').*pe

(5.18~0 42) X10 '
(1 78&0.16)X10 '
(7.87+0.71)X10~
(2.97~039)X10~
(4.50+0.59) X10-s
(0.96~0.14)X10-3

(1—qs/0. 71) 4

0.59
0.244
0.119
0.0498
0.00934
0.00292

(1—q'/0. 59) 4

0.535
0.193
0.0858
0.0331
0.00553
0.00164

(1—q'/0 54) '
0.507
0.171
0.0727
0.0269
0.00426
0.00123

(1—q'/0. 77) '

0.543
0.193
0.0819
0.029
0.00383
0.000924

(1—q'/0. 75) '

0.535
0.186
0.0778
0.0271
0.00350
0.000837

expL —6.3 (—q') '~'1
XL1+9 (—q')'"j

0.524
0.188
0.0856
0.0332
0.00454
0.00095

Figures 3(d)—3(f) represent DESY data which are
given in terms of d'&r/dQsdps versus I's for fixed t) and
E&. These curves are not only the over-all fit of our
formulas and parameters but also give some idea about
the shape of the background.

3. DISCUSSIONS

(1) The position of a resonance peak and the shape
of the resonance curve are somewhat sensitive to the
form of the width function F (Mrs) chosen. If a constant
F=0.12 GeV were used, the resonance peak would
occur at My ——1.236 GeV which contradicts the data;
the experimental peaks occur at Mj j. 220 GeV Of
course, a constant F gives a completely wrong behavior
near the s-E threshold. The forms of F(Mrs) given by
Eqs. (2.12) and (2.13) give a theoretically correct
E-wave threshold behavior but give somewhat lower
values than the experimental curves near threshold.
This simply means that near threshold other mecha-
nisms such as S-wave pion electroproduction are signifi-
cant. Because of large uncertainty in the background,
and because of experimental uncertainties, it is im-
possible to judge whether Eq. (2.12) or Eq. (2.13) is
better from our curves.

(2) Comparisons of fits to the data of Lynch e1 al.
(—q'=0. 1 to 0.5 GeV') and DESY' data (—qt, ssss=0. 79
to 2.35 GeV') show that the experimental peaks of the
data of Lynch et al. occur at slightly lower Mj' than our
peaks, whereas the DESY data occur at slightly higher
My' than our peaks. The experimental peak positions are
affected by the background. In particular, the tail of
the second resonance tends to shift the peak to the high
My2 side and a large S-wave contribution near threshold
tends to shift the peak to the low M j2 side. The observed
difference in the positions of the peaks between the two
experimental groups may be due to the difference in the
importance of the background at different q'.

(3) The static theory of Fubini, Narnbu, and
Wataghin (FNW)' and the quark model' predict the
form factor for the vertex pe* to be proportional to
the isovector part of the nucleon form factor. As men-
tioned in the Introduction, this is a very ambiguous
statement because the q' dependence of the propor-
tionality constant is not specified in these theories. This
seems to have caused some confusion in the literature,
For example, Ash et al."and Geshkenbein'0 made their

' W. W. Ash, K. Berkelman, C. A. Lichtenstein, A. Rama-
nauskas, and R. H. Siemann, Phys. Letters 24B, 165 (1967}."B.V. Geshkenbein, Phys. Letters 11, 323 (1965).

comparisons with experiment using the relation

t Iq
I 1+

(My+M, )s/
(3.1)

Bjorken and %alecka' inferred from the FN%' result

1+ ~Cs(qs) ~ Gsrv(q')
(Mr+M~)s/

(3.2)

and Salam, Delbourgo, and Strathdee predicted on the
basis of U(6,6) that

C (q') G (q') . (3.3)

F.= (Q*/4 )Es(MI)'+ s (&2)'].

Setting E2=0, we have from Eqs. (A6) and (A7)

F„=trCss(0)ssQ*'(E,~+M~)/Mss.

Equating Eq. (3.6) to Eq. (3.4), we obtain'

(3.5)

(3.6)

Cs(0)M =2.05&0.04. (3.7)

(c) SU (6) predicts4 that the number 1.28 in Eq. (3.4)

Our analysis of the data shows that Eq. (3.2) is closer
to the truth, but Cs(q') still goes down faster with
increasing ~q ~

than Eq. (3.2). Intuitively, this may
be just a manifestation of the fact that an excited state
such as S*has a looser structure than the ground state
such as p. In quark language, this implies that there is
a spin-spin coupling between two quarks ce& e2 with a
positive c, so that when two quark spins are parallel
they repel each other and when they are antiparallel
they attract.

(4) Various estimates have been made for the con-
stant 2 =Cs(0)M„ from photoproduction experiments.

(a) Gourdin and Salin" and later Mathews" ob-
tained, respectively,

Cs(0)M„=2.49,
Cs(0)Mv= 2.0.

(b) Dalitz and Sutherland' made a detailed analysis
of the M1 excitation of the X* from photoproduction,
and they obtained for the radiative decay width
X+*-+p+y

F~=txQ*s(2M~Mss) 'L(1.28+0.02) ssV2p~j, (3.4)

where p,„=2.79. For comparison, we can use our matrix
element to calculate this same width as
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FIG. 3. Comparison of
the fits using Eqs. (2.18),
(2.22), and the experi-
mental data: (a), (b),
and (c) are the data
of Lynch et al. which
are given in terms of
Eq. (2.26) versus
X= (2d' f' 3f ')/'(2—3E )
for Gxed g' and Eg, (d),
(e), and (f) represent
the data of Brasse et al.
which are given in terms
of d'rr/dfisdps versus ps
for 6xed 8 and EI. Two
forms of the width func-
tion F are illustrated.
The dashed lines are ob-
tained by using Eq.
(2.12) in the cross sec-
tion (2.18), and the solid
lines are from Eq. (2.13).
The arrow on each ab-
scissa indicates the posi-
tion of the fir~(1.236)
resonance. In (e), an
example is given of
the radiative corrections
which have been applied
by Brasse et al. to the
data of (e), (f), and (g).
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should be replaced by 1, hence LSU(6) prediction)

Cs(0)M, = 1.61.
(d) It is also interesting to point out that we can

obtain Cs(0)M„ from Chew-Low static theory. " The
relevant formula from static theory is

IrQ*) V'~) (fry fr )Is—
~(V+p- w'+p) =

IIP*/ fs) I 4M, /

X ('+p '+p), (3.8)
"G. F. Chew and F. K. Low, Phys. Rev. 101, 1579 (1956),

Kq. (51).The units used for e' and f' are extremely confusing in
this paper. One is never sure whether e'=n or e/kr=a and
whether f'= 0 08 or f'/4rr= 0.08 or .f'/p'= 0.08. The same criticism
can be applied to Ref. 6.

2M' 8Irp„—p„)'
C"(0)-

Z,*+M„3& 4M„&
(3.11)

where f'=0.08 and or = 1/137. This formula is supposed
to be correct near the s-e+p threshold. In order to
obtain C3 from this relation, we compute the cross
sections of both sides, using the isobar model

o (y+P —+ s.s+P) = (Mr/M~)16s' —'Q*n(E *+M )
XCss(0)$(MP —M s) (3 9)

o (a'+p —+ s'+p) = (Mf'/M„)32rr' ,'P* 'I'-
X 8(MP —Msss) (3.10)

where 1'= (8/3)(fs/ps)P*s near threshold, according to
static theory. Hence
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Now if the 8 functions in Eqs. (3.9) and (3.10) are
replaced by a Breit-Wigner formula, then they are
also usable near threshold. Since Eq. (3.8) is more
correct near threshold, we let My —IJ,=E;*=M„ in
Eq. (3.11) and finally obtain (Chew-Low static theory)

e+ e

N

N

Jt

Cs(0)3f„=2.2. (3.12)

(5) Dalitz and Sutherland' obtained a formula for
d'&x/dQsdPs from the result of Dalitz and Yennie. ~ Our
Kq. (2.18) differs somewhat from their Kqs. (2.16) and
(2.16'). There is an error of a factor 4rr in their Eqs.
(2.16) and (2.16')." The forms of the Breit-Wigner
formula used are diferent, but this is just a matter of
taste.

From their Eq. (2.14) and our Eq. (3.5), the expres-
sion BR in Dalitz and Sutherland is related to our Cs(qs)
by

i
an't

i

'= -', rrrrL(E, *+cV,)/3f, ]C '(q') . (3.13)

Substituting Kq. (3.13) into their Eq. (2.16), we see
that our Eq. (2.18) is equal to their Eq. (2.16) at
Mf = %33 except for a factor of 4'r. According to Dalitz
and Sutherland, their Eq. (2.16') is better than their
Eq. (2.16) because the former has an extra factor
E,*/M~ which comes from the transformation from the
rest system of the S* to the lab system. This factor is a
mystery to us because according to the way we com-
puted the cross section, G~ ——T& is invariant and hence
no extra factor needs to be multiplied when we go from
the 2V* rest system to the lab system. However, this
factor has a numerical value of 0.972/0. 938 at the
resonance, and hence is insigni6cant numerically.

(6) We have completely ignored the possible con-
tributions froin Q2 and E2 in our analysis. Inspection
of Eq. (2.16) shows that this is an experimentally
impossible task unless one has some model to tell him
the qs dependence of Cs(q'), C4(qs), and Cs(q'). If the
decayed pion is detected in coincidence with the elec-
tron, one may be able to untangle this, but the theo-
retical details have to be worked out before one can say
whether this is feasible or not. If C3, C4, and C5 have
roughly the same q' dependence, then we can conclude
from our analysis and our Eq. (2.16) the following:

(A) The Q2 amplitude cannot be large because it has
an extra factor of q' in its expression. If the Q2 amplitude
were signi6cant, the form factors for the C's must
decrease much faster than the one discussed in this
paper and this seems unlikely.

(B) The value of Cs(q') must be small because it is
multiplied by q2 in 3fj and E2, and our analysis shows
that the cross section goes down rather rapidly with
increasing

~
q'~.

(7) In conclusion, if E2=0 and Q2=0, then Gi and

"R.H. Dalitz and D. R. Yennie, Phys. Rev. 105, 1598 (1957).
"prom their Eqs. (2.13) and (2.14) their unit of e~ must be

z'/4z. =o. If this is so, their Eqs. (2.16) and (2.16') are both wrong
by a factor of 4n.

FIG. 4. Examples of Feynman diagrams which can be calculated
more easily in terms of C&, C4, and Cs thanin terms of 6& and 62.

Gs of Eq. (2.4) can be written as

FMssMrs ' (E *+M )
Q022C 2(q2)

(~ s ~ 2)2+F23II 2 33'
(3.14)

Our best 6t for Cs(qs) is given by Eq. (1.1). This
formula is sufhcient for calculating most of the applica-
tions we have in mind, as mentioned in the Introduction.
At this stage it is natural for the reader to ask why we
went through all the trouble of decomposing II3, H4, and
B& into multipoles instead of directly obtaining some
analytical expression for G& by htting the data. The
reason is that there are many kinds of application of the
isobar model in which it is more convenient to write
expressions in terms of C3, C4, and C5 than G& and G2.
For example, one may wish to evaluate diagrams such
as are given in Fig. 4.

(8) Finally, one is tempted to ask whether form
factors associated with the second resonance (1525
MeV; I, J = sr, ss ) and the third resonance (1688MeV;
I, J = s, s+) can be analyzed in the same fashion. In-
spection of the DESY' data shows that it is hopeless to
isolate the higher resonance contributions from the
background and estimate their cross sections to within
20%%uo accuracy. However, for many purposes a cross
section known to within 20% or even 30% can be very
valuable. If one wishes to do better than this, the final
states of the target system must be detected in addition
to the scattered electrons.

APPENDIX: MULTIPOLE ANALYSIS OF
FEYNMAN DIAGRAMS

In this Appendix we illustrate how to extract multi-
pole moments, as defined covariantly by Durand et al. ,

~

when a relativistic vertex function is given. If the target
particle has spin 2 and the Anal particle has spin 5, then
angular momentum conservation tells us that there are
at inost six multipole moments Q(S&-',), M(S&-,'), and
E(S&rz). Parity conservation eliminates three of the
six amplitudes. For iVe(1236), the relative parity be-
tween the nucleon and N* is +;hence we have Q2, M1,
and E2. Let us consider helicity amplitudes given by
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the Hamiltonian of Eqs. (2.1)—(2.3):

I"~,.~, '")= (Px) r I i.l p') ')
=4.(pr4h p!:Cp(qg"—q v.)

+C4(q'pfg~) q~pr))

+Cp(q P'g" qP—'.)j~(p'~') (A1)

I'), ),
& ')=! !(M1)

A) —1

where

!(E2), (A4)

0 1 0
Qs Yo ) Y

0 0 —1 —c 0

Then

Since the spin--, particle is more complicated than
the spin--', particle, we shall evaluate everything in
the rest frame of the S*. Let us use the explicit
representation

!

(Sy 1
S~)

~Incr p

is Wigner's 3J symbol. Ke may arbitrarily let X,=-2',
remembering ) r———()1+)1,), and solve for Q2, M1, and
E2. The results are

20' eQ*'
Q2 = —(+10)I';,;1') =!

3 J N"'(E;*+M~)
X (—Cp+C4Mr+Cpqp*), (AS)

where

and

v (p'~') =

X—1/2

+'pi &); )

.E;+M„,

0

0

M1=-', (v31'. , *,
& )—31' I;1+))=-

lV'IP (E,*+M )
X jL2 (E '*+M~)+qp*]Cp —C4Mrqp* —Cpq } (A6)

e(+5)Q*
(~pl, , 1

—)+I, ,&+))—
N')'(E)*+M, )

X (qp*Cp —C4Myqp* —Cpq') . (A7)

From these expressions we observe the following:

In the rest frame of the N*, )p. (pyI1y) can be written
(because of the subsidiary conditions) as

O, (0,) )=I,—')
Hence

(1) Our expressions for the multipoles have the correct
threshold behavior, namely, Q2~Q*', M1~Q*, and
E2 ~ Q*.

(2) When the photon is real, Cp does not contribute to
the cross section.

(3) Since for real photons (qp*' —Q'=q'=0), E2 is
known to be at most a few percent of M1. Setting
82=0 we have

A(0,—,)= e~,
0

Hence
C4(0) =Cp(0)/Mr.

)P„(0,p)= ((gp)e.P+(gs)e aj,
0

e,(0, —;)= ! (dl)'.~+(4-:)' j,
0

~,(0, -l)=
0

e+n.

3
2

, (+1)
t'2

1

(Q2) (A2)
0 X;

l(M1) —
I ! (»), (A3)

1 I1,J i)1r 1 I)„.)

In the rest frame of the N*, we have Q*= —P;*=e.Q
and we may evaluate the helicity amplitudes Fzzz,.(» for
any combination of p, , X~, and X; immediately from these
formulas. Now, using Eqs. (109), (119), and (120) of
(DDM), ' we have

M1(q'=0) = (2Q*e/QN)Cp(q'=0) . (A9)

(4) The procedure of multipole decomposition de-
scribed above can be applied to higher resonances. As
long as the target particle has spin 2, we have at most
three multipoles no matter what the spin of the excited
state may be. When the target particle has spin greater
than 2, 5;)—'„we have more multipoles than three; but
we will have more X; to choose from and hence will
always have enough equations like (A2), (A3), and
(A4) to determine all the rnultipoles.

The matrix element squared summed over X; and ) y
can then be written using Eq. (135.1) and Eq. (135.2)
of DDM. ln our example, we have

E ll".~1 ")I'= p(Q2)', (A10)
X&Xy

2 II'. ; "'l'= 2 li'» ' I'= 2 II'
) &Ay XyXs ) y)), &

=Q l
I')„)„&&)

l

'= —',(M1)'+ ,' (E2)' (A11)-
) Jl)) &
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P~+Ms Pr+Mf 2 I'y„I'g„

+ (1/3M') (Pr„y„—Pr„y„)—',y„y„-y,s„&*l, (A12)

These expressions can always be checked against the
similar expressions obtained by using traces and
projection operators. For example, in our case

where

z„t'=Cs(qg, . q,y—)+C4(q Prg„, q„P—&.)
+Cs(q P;g„qj—';,) . (A13)

It is probably worth mentioning that the method
using Eqs. (A10) and (A11) takes much less effort than
the one using Eq. (A12) unless the trace in the latter is
taken by computer. Ke have used all methods checking
both by hand calculations and by the computer
program of Hearn. '4

s4 A. C. Hearn, Commun. ACM 9, 573 (1966).See also "nznUcE
User's Manual, " Stanford Institute of Theoretical Physics Report
No. ITP-247 (unpublished).
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Free Massless Fields as Infinite-Dimensional Representations
of the Lorentz Group*
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Free quantized massless 6eld theories of arbitrary spin I are investigated. The transverse potential in
the radiation gauge is shown to transform as a nonunitary inlnite-dimensional representation of the I.orentz
group: (L,1)Q+(L, —1) for integer spin and (L+-,', s)Q+(L+-', , ——,') for integer +2 spin (Gel'fand and
Shapiro s notation). Using Lorentz group theory, it is argued that free quantized massless Geld theories
of spin &1 do not possess a stress-energy tensor T».

L INTRODUCTION
' 'N a recent paper, ' Strocchi showed that the A poten-
t ~ tial in free-field quantum electrodynamics cannot
transform as a vector, as it does in the classical theory.
What, then, is its transformation law (if any), and is
it unique'

It is the main purpose of this paper to elucidate this
transformation law, not only for spin 1, but also for
spin L. In Sec. II, the assumptions of this paper will be
stated, and the radiation gauge will be pz'ecisely defined.
In Sec. III, this de6nition will be used to prove the
radiation gauge manifestly covariant; the transverse
fields will be shown to belong to infinite-dimensional,
nonunitary representations of the Lorentz group.

%ith this established, the simpler case of integer-spin
massless-fieM theories will be developed. Section IV
contains the derivation of the transformation law and
the Geld equations of these theories and some remarks
on the Geld strengths. Section V discusses some applica-
tions of the transformation law, such as the construction
of scalar and tensor bilinear forms. In Sec. VI (Conclu-
sions), the Lorentz invariance of the theory and the

*Supported in part by Air Force Once of Scienti6c Research
under Contract AF 49 (638)-1380.

t Supported by a National Science Foundation Predoctoral
Fellowship.

' F. Strocchi, Phys. Rev. 162, 1429 (1967).

question of the Lagrangian in massless-field theories are
discussed. It is concluded that canonically quantized
Lagrangian massless-fieM theories of spin L& 1 do not
possess a covariant stress-energy tensor TI'".

II. RADIATION GAUGE

Gauge invariance occurs in massless-field theories of
spin L& ~ because the field equations that are derived
from a Lagrangian do not completely determine the
fields. Gauge transformations leave invariant that part
of the field which is determined.

The fields in the radiation gauge are called transverse.
The radiation gauge is defined by stating the properties
of these transverse fields (Eq. (1)j.

For Bose-Einstein Geld theories of spin L& j.,
A (I.)~„...,z is a Hermitian, totally symmetric, traceless
tensor field, with u; being 3-space indices,

V'„A(L)z, ... ,=0, s=1, , L.

The superscript L indicates that A has L indices. The
L in parentheses indicates that A describes a spin-L
theory.

For Fermi-Dirac field theories of spin L+—,') ss,

p(L+-', ) „...,z is a Hermitian, totally symmetric,


