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The radiative corrections to symmetric pair production are calculated to a high degree of accuracy.
The matrix element squared for the hard-photon correction is expressed approximately in a simple form
which, for symmetric pair production, describes the corresponding radiative correction to better than 1%,.
This approximation improves on the often-used peaking approximation. The results are useful also for
calculating radiative corrections to bremsstrahlung and trident production.

INTRODUCTION

ECENT experiments on symmetric wide-angle pair
production have attempted to test quantum elec-
trodynamics at high energies.’~% Pair production at
symmetry is particularly well suited for such a purpose
because the cross section can be shown to be dominated
by purely electromagnetic effects, namely, the basic
Bethe-Heitler mechanism and its radiative correc-
tions.*® The Bethe-Heitler cross section is well known,
but a thorough calculation of the radiative corrections,
especially the hard-photon radiative correction, is
lacking.

The Feynman diagrams for pair production via the
Bethe-Heitler mechanism are given in Fig. 1. The cross
section corresponding to these diagrams was first calcu-
lated by the authors whose names are now associated
with it.5 Bjorken, Drell, and Frautschi extended the
original calculation by including nuclear recoil and
elastic form factors.® Drell and Walecka completed the
calculation by including the mass of the electron and
the general form factors.” In Sec. I of this paper we will
discuss the Bethe-Heitler cross section with particular
reference to its behavior in the region of experimental
interest.

The experiments on symmetric wide-angle pair
production have all been performed in approximately
the same manner. An incident bremsstrahlung beam
strikes a carbon target to produce, among other things,
electron-positron pairs. The four-momenta p_ and p,. of
the electron and positron are determined completely by

* This work was supported by the U. S. Atomic Energy Com-
mission under Contract AT (30-1)2752.

t This paper is based in part on material submitted to Harvard
University in partial fulfillment of the requirements for the
Doctor of Philosophy degree.

1R. B. Blumenthal, D. C. Ehn, W. L. Faissler, P. M. Joseph,
L. J. Lanzerotti, F. M. Pipkin, and D. G. Stairs, Phys. Rev. 144,
1199 (1966). .

2E. Eisenhandler, J. Feigenbaum, N. Mistry, P. Mostek,
D. Rust, A. Silverman, C. Sinclair, and R. Talman, Phys. Rev.
Letters 18, 425 (1967).

3J. G. Asbury, W. K. Bertram, U. Becker, P. Joos, M. Rohde,
A. J. S. Smith, S. Friedlander, C. Jordan, and C. C. Ting, Phys.
Rev. Letters 18, 65 (1967); Phys. Rev. 161, 1344 (1967).

4S. D. Drell, Ann. Phys. (N. Y.) 4, 75 (1958).

5 J. D. Bjorken, S. D. Drell, and S. C. Frautschi, Phys. Rev.
112, 1409 (1958).

6 H. Bethe and W. Heitler, Proc. Roy. Soc. (London) 146, 83
(1934).

7S. D. Drell and J. D. Walecka, Ann. Phys. (N. Y.) 28, 18
(1964).

168

two spectrometers located symmetrically, one on either
side of the forward direction defined as the direction of
the incoming photon beam. The center of acceptance of
the spectrometers is the point of complete symmetry
where the energies of the two particles and the angles
they make with the forward direction are equal. Know-
ing the momenta of the electron and positron and
assuming elastic scattering, one can calculate the energy
k of the photon producing the event. This energy is
taken typically to be 4/5 of the maximum energy Amax
of the photon spectrum, thereby limiting somewhat the
number of inelastic processes possible. Nonetheless, the
inelastic events are not negligible. In particular, for a
5-BeV bremsstrahlung beam it is possible to radiate an
undetected “hard” photon of energy up to 1 BeV. It is
this fact which necessitates a thorough treatment of
the radiative correction due to the emission of real
photons.

The Feynman diagrams for the radiative corrections
to order a* are given in Figs. 2 and 3. The radiative
corrections of Fig. 2 will be referred to as the “virtual
photon correction” and those of Fig. 3 as the “real
photon correction.” In addition, it is convenient to
divide the real photon correction into the “soft”-photon
and the “hard”-photon correction. The soft-photon
correction is due to the emission of photons of energy
less than 8, where 6<m (m is the mass of the electron),
and the hard-photon correction is then the remainder
of the real photon correction. The reason for this
division is that the soft-photon correction is infrared
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F16. 1. The Bethe-Heitler diagrams for pair production.
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TaBLE I. Definitions of symbols for pair production.

SYMMETRIC PAIR PRODUCTION

p+= (E4,p4) =four-momentum of positron.
p—=(E_,p-) =four-momentum of electron.
k= (k,k) =four-momentum of incident photon.
kmax=maximum photon energy of bremsstrahlung beam.
AE=kpox—E,—F_.
e=polarization vector of incident photon.
1= (ly,]) = four-momentum of radiated photon.
er=polarization vector of radiated photon.
P;=(E;,P;)=four-momentum of initial nucleus.
P;=(E;,P;)={four-momentum of final nuclear state.
¢=k—p.—p_=momentum transfer to the nucleus.
R=P;+P,.
A=p_—ps
Q=p_~+p+; Qs the mass of the electron-positron final state.
6,=angle between p; and k.
6_=angle between p_ and k.
p=angle between the (p;,k) plane and the (p_,k) plane.
= | P;2|1/2=mass of initial nucleus.
M ;= |Ps2|12=mass of final nuclear state.
m=mass of electron.
Be=2k-pi; 1p=2l-p,.
0=30++0-); E=3(L+E-).

a=(04—0-)/(04+06-); e=(E,—E)/(E++E).

divergent. To deal with this problem we follow Yennie,
Frautschi, and Suura.® We give the photon a small
mass A and show that the terms divergent as A —0
cancel against similar terms in the virtual photon
correction.

Bjorken, Drell, and Frautschi® have calculated
approximately the radiative correction to symmetric
pair production. Their result is

13
dosa(BDF) =— In Kads [ i

T m?

AE)?
( 2) :IdaBH, )

where AE=Fkyux—2E, E=E,=FE_, and dopn is the
Bethe-Heitler differential cross section. (Definitions of
symbols are given also in Table I.) In this calculation
only the leading logarithmic terms were considered and,
more seriously, of the real photon correction only the
soft-photon correction was included. (That is, §=AE
even though the calculation is performed assuming the
emitted photon to be soft.) The calculation has been
verified by others to this approximation.®® An attempt
has been made to calculate the hard-photon correction
exactly, but the result is so complicated that it is not
useful to experimentalists without further extensive
numerical calculations.! Others have attempted to
calculate roughly the dominant contribution from the
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Fr16. 2. Feynman diagrams for the virtual photon correction.
Each even-numbered diagram (not shown) can be obtained by
exchanging p, and p_ on the preceding odd-numbered diagram.

hard-photon correction, but, aside from demonstrating
the unreliability of the soft-photon approximation, the
results have been inconclusive.!?13 The virtual correc-
tion to bremsstrahlung, which is closely related to pair
production, has been calculated in great detail, but for
configurations not applicable to our case.
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F16. 3. Feynman dlagrams for the real photon correction.
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Fic. 4. (a) General Bethe-Heitler-type diagram.
(b) General Compton-type diagram.

Both the virtual and real photon corrections have
been calculated here, assuming only that the mass of
the electron is small compared to other invariants in
the problem. The general result for the virtual photon
correction is somewhat unwieldy, but when we specialize
to the case of symmetric pair production the answer
becomes quite simple. The general result for the real
photon correction can, on the other hand, be expressed
in a surprisingly simple form. This result is the most
interesting contribution of this paper and encourages
the hope that similarly simple answers may be derived
for other scattering problems. In Sec. IT of the paper
we discuss the virtual photon correction and in Sec. III
the real photon correction. In the final section we give
the total result with a discussion of its behavior.

As mentioned above, pair production at symmetry is
particularly well suited for testing quantum electro-
dynamics. In order to test the theory, it is necessary to
separate electromagnetic and strong-interaction effects
since at present there is no adequate theory of strong
interactions. In the Bethe-Heitler diagrams the one-
photon exchange with the nucleus ensures that the
strong-interaction effects can be included in form factors
depending only on the momentum transfer to the
nucleus ¢,.” (More exactly on ¢* and go.) These form
factors can be measured experimentally from electron-
nucleus scattering. In addition, pair production at sym-
metry minimizes the momentum transfer to the nucleus
and hence the effect of form factors.

For pairs produced via the other basic process, the
Compton mechanism of Fig. 4(b), no similar separa-
bility of electromagnetic and strong interactions is
possible. However, by an argument first used by
Bjorken, Drell, and Frautschi,® it can be shown that
the interference of the Compton-type diagram with
the Bethe-Heitler diagrams does not contribute to
symmetric pair production. Consider first the photon-
electron-positron vertex of the Compton-type diagram
Fig. 4(b). Applying charge conjugation to the vertex
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interchanges the electron and positron, or p, <> p_,
while the photon goes into minus itself. Hence the
amplitude for electron-positron pairs produced via the
Compton mechanism must be antisymmetric under
the exchange p, <> p_. Now consider the diagram
Fig. 4(a) which includes the Bethe-Heitler diagrams
and all the virtual photon radiative corrections involv-
ing a one-photon exchange with the nucleus. The
relevant vertex is now a photon-photon—electron-
positron vertex and hence the amplitude for pairs
produced via this process is symmetric under the ex-
change p,<> p_. The interference between the two
amplitudes is then antisymmetric in p; <> p_ and does
not contribute to symmetric pair production. The
Compton amplitude squared is not considered here. It
has been shown elsewhere to be small except when the
mass of the lepton pair is close to the p-meson mass.5:15

Applying the same argument to the radiative correc-
tions of Fig. 2, it is clear that the interference of the
two-photon-exchange diagrams (Figs. 2-15 to 2-18)
with the Bethe-Heitler diagrams does not contribute to
symmetric pair production. These diagrams squared
are of order «® and not considered here. Similarly, the
interference of diagrams Fig. 3-7 and Fig. 3-8 with the
remaining diagrams of Fig. 3 does not contribute to
symmetric pair production. Diagrams Fig. 3-7 and
Fig. 3-8 squared are included in the experimental form
factors as we will show below. Thus there is a complete
separability of electromagnetic and strong-interaction
effects for these radiative corrections to symmetric pair
production.’s In practice these arguments are not very
important because the terms which have been shown
rigorously not to contribute to symmetric pair produc-
tion are actually very small for any pair production
with small momentum transfer to the nucleus.?”

The strong-interaction effects are included in form
factors which for any given target must be measured
by performing electron scattering experiments with that
same target. Before the form factors can be extracted
from such an experiment, it is necessary to subtract
radiative corrections from the experimental cross
section. The diagrams for the basic scattering process
and its radiative corrections are given in Fig. 5. Suppose
the scattering experiment is performed both with
electrons and with positrons in otherwise identical
configurations and the relevant cross section defined
as the average of the two. Now notice in Fig. 5 that
diagram (1) changes sign depending on whether the
lepton is an electron or a positron but diagram (6) does
not. Then the interference between diagrams (1) and (6)
does not contribute to the average cross section.
Similarly, the interference between diagram (9) and
diagrams (7) and (8) does not contribute to the average

15 S. M. Berman and S. D. Drell, Phys. Rev. 133, B791 (1964).

16 More generally the arguments apply to experiments in any
configuration where symmetry is inforced by reversing magnet
currents halfway through the data taking.
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cross section. The form factors are found by comparing
the experimental cross section with the theoretical one
calculated from the diagrams of Fig. 5 nof including
diagrams (6) and (9). Diagram (9) squared then
contributes to the form factors. With this definition of
the experimental form factors and the above arguments,
we are justified rigorously in ignoring diagrams Fig. 2-15
to Fig. 2-18, Fig. 3-7, and Fig. 3-8 for symmetric pair
production. Again, we stress that the arguments here
have more theoretical than practical interest because
the ignored terms are small for pair production at small
momentum transfer. Similarly, the difference between
electron and positron nuclear scattering at small
momentum transfer is small.!

The conventions used in this paper are similar to
those used by Bjorken and Drell.® The units Z=¢=1
and e?*/4w=aq are used. The relativistic notation is such
that @-b=aebo—a-b, and vy, +7vv.=2¢s, where
goo=1, gn1=goo=gszs=—1.

I. BETHE-HEITLER CROSS SECTION

Before proceeding to calculate the radiative correc-
tions to the Bethe-Heitler cross section, it is necessary
to discuss the properties of the Bethe-Heitler cross
section itself. In particular we would like to discuss the
treatment of form factors, the deep dip at symmetry,
and a useful expansion of the cross section near sym-
metry. In Appendix A we discuss pair production from
polarized photons. The result here may be of interest in
the future to further test the Bethe-Heitler cross section.
Itis also important to know to what extent an accident-
ally polarized beam might change the cross section.

A. Cross Section and Definitions

Pair-production experiments have been performed by
detecting the leptons completely, that is to say detecting
both their angles and energies. If the mass of the nuclear
final state is known, the kinematics is completely deter-
mined and the incoming photon energy can be calcu-
lated. The five variables detected are E, and E_, the
energies of the two leptons, 6, and 6_, the angles made
with the forward direction, and ¢, the angle between
the (py,k) plane and the (p_,k) plane. Symbols used in
treating pair production are defined in Table I. Exact
symmetry is defined as E,=E_, ,=0_, and ¢=0.

The Feynman diagrams for Bethe-Heitler pair
production are shown in Fig. 1. The cross section in the
laboratory is

oL B S(k)M N wdE,dQ,dE_dS
1672 M; k'Pf woLV py O —CR—,

13 D. Yount and J. Pine, Phys. Rev. 128, 1842 (1962).
19 J. D. Bjorken and S. D. Drell, Relativistic Quantum M echanics
(McGraw-Hill Book Co., New York, 1964).

(1.1)
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F16. 5. Feynman diagrams for electron scattering
and its radiative corrections.

where
Muv= _ [(B+2+ﬁ—2+242Q2)gw
B+8-g*
+4q2(P+M?+v+P—#P-V>], (12)
and
. 2k-Py
o[ M—Ey(1—costy)— E_(1—cos0_)]
2k-Pr=M»2—M 24-2M (EL+E_)—Q2. (1.3)

S(k) is the incident photon spectrum. We have ignored
m? terms.

B. Nuclear Form Factors

Ny, in Eq. (1.1) can be written in general in terms of
Drell-Walecka form factors’:

Nouw=4E{W1(¢%,90) [ gw—qug/¢*]
+Wa(g%q0)(1/M A[Piy— (Pi-q/9%)qu]
X[Pow—(P:i-q/9*) g1} dgo.

These form factors can be determined from electron-
nucleus scattering as discussed in the Introduction, but
at present such a program is difficult to carry out
experimentally. Therefore, it is convenient to take
advantage of the low momentum transfers involved in
elastic symmetric pair production to approximate N,.
For |¢*/M#|<1 and a nucleus of any spin, we may
write for the elastic and quasi-elastic part of N,

Nw=Gr*(g)R.R,, (1.5)

where M2=M;? and % is defined by 2k-P;
=2M(E;+E_)—Q% [See Eq. (1.3).] The inelastic
part of N, does not become significant until it is
kinematically possible to excite a nuclear resonance

(1.4)
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and then the 1/¢* factor in the cross section has effec-
tively cut off the contribution.

C. Dip and Expansion Around Symmetry

At symmetry By=pf_-=—Fk-g and 2p,-R=2p_-R
=k-R. In addition (%-¢)2R?*+¢%(k-R)?*=0. This latter
fact may be seen most easily by transforming to the
Lorentz frame in which the initial and final nuclear

states have the same energy. Near symmetry the cross
section is rapidly increasing due to the factor 1/¢% but
it is cut off at symmetry by (k-¢)2R?>4¢*(%k-R)*=0,
leaving, if we use Eq. (1.5) for N,

[M pvRuRv]sym= (_— 2/ /3+B—94) (292Q2R2) 3

where q?Q2R2/¢*(k-R)?*~ 62 Therefore there is a dip in
the cross section at symmetry which becomes deeper

(1.6)
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and narrower as 0 decreases. [ See Fig. 6(a) for a graph
of the cross section near symmetry. |

The existence of the dip has two consequences as far
as radiative corrections are concerned. First, since the
function 1/¢* is cut off at symmetry in the Bethe-
Heitler cross section, one may argue that if some terms
in the virtual radiative correction are not similarly cut
off, the correction may become very large at symmetry
even though it is small everywhere else. It can be
shown, however, that all virtual radiative corrections
to the Bethe-Heitler cross section involving a one-
photon exchange with the nucleus have a dip, thereby
settling any uneasiness on this point.!? Virtual correc-
tions involving two or more photons exchanged with
the nucleus pose no problem since they do not contain
the photon propagator squared, 1/¢* Secondly, the dip
is so narrow that it has not been resolved experimentally.
The pairs detected in an experiment come primarily
from the peak a little off symmetry. For this reason the
value of the cross section at symmetry has very little
to do with the cross section determined from experi-
ment. Similarly one may suspect that a calculation of
the radiative corrections limited to the exactly sym-
metric situation is unreliable.

In dealing with the Bethe-Heitler cross section and its
radiative corrections, it is often convenient to expand
around symmetry. In this we follow Ref. 1 and expand
in the variables a=(6,—6_)/(0,+6-), e=(E—E_)/
(E++E—); 9':%(0-}-—1_0—)) E‘_—%(E++E—)7 a'nd @ ThiS
approximation includes the approximation of no recoil
for the nucleus. We use Eq. (1.5) for N,.

The cross section becomes

[(at9+1¢+1604]
dopu=dopu(sym) ’
AL+ 10+ Eo7]
72 1 e
daBH(sym)— ot EEE;S(ZE)GE (q )

XAE dQdE_dQ_. (1.7)

If a, ¢, ¢, and 6 are all less than 1/10, then the above
expansion is good to better than 1%, not including the
error introduced by ignoring inelastic form factors. In
Eq. (1.7) the 16* term should strictly speaking be
ignored, but it has been included to show the behavior
of the cross section at exact symmetry.

II. VIRTUAL PHOTON CORRECTION

The Feynman diagrams involved in the virtual
photon correction to pair production are shown in
Fig. 2. The radiative correction to order o* is due to the
interference of these diagrams with the Bethe-Heitler
diagrams of Fig. 1. As pointed out in the Introduction,
however, to this order in «, diagrams Fig. 2-15 to
Fig. 2-18 do not contribute to symmetric pair produc-
tion since their interference with the Bethe-Heitler
diagrams is antisymmetric in p4 <> p_. In the remaining

SYMMETRIC PAIR PRODUCTION
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diagrams (Figs. 2-1 to 2-14) the virtual photon ex-
changes involve only the leptonic part leaving the
nuclear current unaffected. Thus the form factors
entering the virtual photon radiative correction are the
same as the ones entering the basic Bethe-Heitler
process.

In calculating the radiative corrections, only one
assumption will be made, namely, that m? is small
compared to other invariants or

m?/Q*K1; m¥/BiKLl; m¥ —q¢*K1. 2.1)

The cross section for the virtual photon radiative
correction is [see Eq. (1.1)]

&322 ELE_ S(k)

d‘TB Hvir=

XdE4dQUdE_dQ-. (2.2)

M v is given for the general case in Appendix B. In
calculating it we used the procedure of Brown and
Feynman.?® The divergences were handled in the usual
way by letting the photon have a small mass A and, in
addition, imposing a high-energy cutoff on the photon
propagator. After renormalization the result does not
depend on the high-energy cutoff. The general result,
Eq. (B1), is useful for finding the virtual photon correc-
tion not only to pair production but also to bremsstrah-
lung and trident production as discussed in the
Appendix.

M v is not in a form which can be applied easily to
an experimental situation, but there is no way to
simplify it without making further assumptions. These
assumptions must naturally be guided by the particular
experimental situation at issue. Here we specialize to
pair production near symmetry, where |¢%/Q?|<<1. The
result is

dopa¥t= (a/27){— 2H (0% — 2 In(\2/m?)
+3 In(84/m*)+35 In(B—/m?)+4% In(—q*/m?)
—65/9+ (In2)2+[4(In2)2—2 In2+2}dopr. (2.3)

Here we have set In(Q?/84)=2In2. The small term in
parentheses comes from all but the first term of Eq.
(B1), which is to say from terms where the Bethe-
Heitler matrix element cannot, in general, be factored
out. However, near symmetry, where the dip enforces
a certain uniformity on all terms, factorization is
possible. We discover this by help of the expansion
discussed in Sec. I C. Ho(Q?)+In(\2/m?) contains the
infrared divergence and will cancel against a similar
term in the soft-photon correction.

III. REAL PHOTON CORRECTION
A. Introduction and General Formulation

The Feynman diagrams involved in the real photon
correction are shown in Fig. 3. The radiated photon is

20 L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952).
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undetected. To find the radiative correction, we must
square the matrix element corresponding to the
diagrams of Fig. 3, sum over spins and polarizations,
and integrate over the final states of the radiated
photon. As pointed out in the Introduction, diagrams
Fig. 3-7 and Fig. 3-8 do not contribute to symmetric
pair production. In the remaining diagrams the photon is
radiated only from the leptonic part leaving the nuclear
current unaffected. Thus the form factors entering the
real photon corrections to symmetric pair production
are the same as the ones entering the basic Bethe-
Heitler process.
The cross section for the real photon correction is

a’Z? E+E asl S(k)
daBHteaI_ —_ ——‘—M,,,, ea.lN‘w
1672 M, 4wlo k- Py
XdEdQdE_dQ_, (3.1)
where
2k-Py=Mp—(Pi—py—p-—1)?,

2-Py=M2—M 2+ 2M (k— Ey— E_)+¢?,
lo= 21- Pf/ZI:Mi'I—k(l—COSsz)
—E(1—cosbip,)—E_(1—cosbip_)], (3.2)
and
cosb=1-p/|lllp|; p=ps,p-k. 3.3)

In general, one would perform the integral first over
the angles of | and then over the possible values of z up
to kmax- Zo depends on the direction of 1 as shown in
Eq. (3.2) and this complicated dependence makes the
exact performance of the integral extremely difficult
except by numerical methods.

For low ¢, the dependence of /, on the direction of 1
is slight. For such cases

IoM ;=21- P (3.4)

This is a particularly good approximation for the small
recoil situation of symmetric pair production off carbon.

B. Soft-Photon Correction

In order to extract the infrared divergent terms from
the real photon correction, we split the integration in
Eq. (3.1) into two parts, the soft-photon part with
0<7<4 and the hard-photon part with the possible
values of /o> 6, where § <<< m. In the soft-photon part
we ignore all terms in M ™! except the ones of order
{% and we ignore as well the kinematical dependence
on /. No approximation is involved here since at the end
of the complete calculation we will let 6 — 0. Then we
can write, letting the photon have a small mass A,3

d soft — / I l l ZdQ
o= [[af
4m?

8py-p— 4m
—"( * ‘-‘—‘——‘—>dO'BH (35)
Il L2 2
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or

2 62
daBHs"“:S[(lng— 1) In:
! m? E\E_
E+"‘E_) _’“.E+>
—3V(prp)—L ~L
3V (p1.p-) ( I ( E,

)\2

—%Wz—f'Ho(—Qz)-*-ln—z:]dGBH , (36)
m

h
here ' dx [ Eam|ps|  Eut|ps|
Y(prp) =08 / ——[
o Pl sl — |p2|
Eot|ps
+21n__'_1’_'],
2E,

pa=pyx+p_(1—x).

Hy(Q) is given in Appendix B as an integral. By
performing the integral, it can be shown that Ho(—Q?)
=Hy(Q»)—3r? for m?/Q*<1. The difference of ir?
arises because Ho(Q?) has a pole in the integrand while
Ho(—Q?) does not. Notice that Eq. (3.5) is invariant
under p, — — p, and therefore independent of whether
the charged particles are incoming or outgoing. This is
not true for the virtual correction. Thus for pair produc-
tion the sum of the infrared terms Hoy+1n(A%/m?) in the
virtual- and soft-photon correction produces a 72 term,
while for bremsstrahlung the cancellation is complete.
L(x) is the Spence function and is defined in Appendix
B.2! For pair production near symmetry, ¥ (p4,p_)~?
and

. <E+;_E_)+L ( _E+ )+6 (wa-E2 -)? .

These terms can therefore be ignored.

C. Hard-Photon Correction

To calculate the hard-photon correction we must find
M2l Though the procedure is involved and inter-
mediate expressions are long, the final result combines
into a relatively simple form.

A computer was used to calculate the traces. The
program was written and executed by Parsons in con-
nection with another problem.?? The output, some 500
terms, was then manipulated by hand in search of a
useful expression.?® The result is

a2 ELE_a [l(max) il 1dQ S(k)
16x2 M; 1r,/3 *) 4x &P,

XM 7N, dE4dQ,dE_dQ._,

21 K. Mitchell, Phil. Mag. 40, 351 (1949).

22 R. G. Parsons, Phys. Rev. 150, 1165 (1966).

% Such a comphcated effort is not necessary. Equation (3.8) can
be proven in general and quite simply by using the Ward identity.
This will be discussed in a subsequent paper by the author.

hard —

dopu

3.7
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where
8pyp_ 2412
erea.le=[ P+ P /1 - + )
Lo\ 2 QHQMHLAL)
dm?  4m?
—Z——F MBH(P+ 0-")
8py-p-
. +P)——, (38)
with Ll gt

pi' o= prtpI,

l-p_
oo
b+ -

b-py )
prp)’
g2=(k—ps—p-—1)?,

and Mpa(py,p—)=q*M 4N u. [See Egs. (1.2) and (1.3).]

The function F(J) is complicated. We have not been
able to calculate it here, but instead have found that it
satisfies two conditions which in most cases are sufficient
to make the F(J) term negligible.

(1) F() is of order /,* and above. This means that
the F(I) term in Eq. (3.8) is of order 1 in /,, two order of
ly removed from the first term of order /2. Most
experiments are performed such that lo(max)/Ei<<1,
where /y(max) is the maximum allowed value of /,, thus
assuring that the F(J) term is small. For symmetric pair
production the relevant ratio lo/E, is determined not
by the value of ly(max) but by the shape of the strongly
peaked Bethe-Heitler cross section. The important ratio
for this case is Jo/ Ex~6. Thus for pair production at 5°
the consequence of ignoring F(I) introduces at most
only a 19, error in the correction. The second condition
on F(l) further reduces this error.

(2) F|lps)=0 and F(l|lp-)=0. This condition is
closely related to the peaking approximation discussed
in the next subsection. The factor p4- p_/l4_ is strongly
peaked when I||p; or 1||p_, corresponding to the fact that
photons are radiated mostly in the direction of motion
of highly relativistic charged particles. Thus, while the
first term of Eq. (3.8) becomes very large at l|p; or
1]|p—, the F(J) term remains always small. The result of
the condition is to reduce the F(!) term further with
respect to the first term of Eq. (3.8).

The above conditions on F(l) were determined by
combining terms to order /! and finding that to this
order the result fitted into Eq. (3.8) without the F(})
term. Then, for the remainder of the calculation, we
assumed l||p;+ and showed to all orders in /, that the
nonzero terms combined into Eq. (3.8) without the F(J)
term and where now l||p,. The calculation was repeated
for l||p— as a check.

dopg™™ may be integrated numerically, using the
kinematical relations given in Eq. (3.2). The error made
in ignoring F(!) would be less than 19, of the correction
for symmetric pair production. This is indeed com-
pletely negligible.

' —p-'= 1’+<
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D. Peaking Approximation

The peaking approximation is commonly used to
reduce the difficulty of calculating the hard-photon
correction.?*% It relies on the fact that the emitted
photon is given off dominantly in the direction of motion
of the highly relativistic radiating particle. This corre-
sponds to the strong peaking of p.-p_/L_ when l||p,
or l]|p—. Near these points

m2
l:*:= ZP:E I— Eilo[&piz—'-——jl .
E,?

(3.9)

Taking advantage of the peaking, one may approxi-
mate angular integrals as follows:

124 8- p_
/° vl ey

C/llps)+7Alp-)]

Bl 1249 8
% / 0 D+ P
471' l+l_
Q2
=[fllpH+ fAflp-)] ln—; ,
/lo2d9 4m? P
dr (Iy)? dr (I)?

= f(lllp+) , (3.10)

where f(I) is any function which varies reasonably
slowly over the region of integration. The condition
02/m®>1 must hold. The factor In(Q%/m?)—1 is not
unique due to the fact that when the two peaks in
pi- /Ll overlap for small 6 the proper limits of
integration in the approximation are uncertain. We
choose the above form so that the hard-photon cross
section reduces to the correct limit as lob— 0 (soft-
photon limit). Unless this is done, the soft- and hard-
photon parts of the radiative correction do not combine
properly into a divergence-free result as § — 0.

Applying the peaking approximation to Egs. (3.7)
and (3.8) we get

lg(max+) dl E
dopghoric— / ——daBH(E++zo,E_)
Eitl

(4 mmm) ]

totmas=) gy E
+- f ‘_"dU'BH(E+,E—+ lo)

r— 0
1 l 2 1
x[(1+— ’ )mQ
2E(E+1L)) m

24y, S. Tsai, Phys. Rev. 120, 269 (1960).

% A. S. Krass, Phys. Rev. 125 2172 (1962).

26 N. T. Meister and T. A. Gnﬁy Phys. Rev. 133, B1032 (1964).
B 2 R. Atkinson III, thesis, Stanford Umverslty, 1965 (un-
published).

1] . (341)
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The designations Jlo(max=) indicate that /y(max)
depends on the angle of 1, which has been taken to be
predominantly parallel to p; and p_.

The peaking approximation is extremely useful be-
cause it allows us to write a formula like Eq. (3.11) for
any scattering problem. We will discuss this fact in
detail in a subsequent paper.

The remaining integral in Eq. (3.11) can be performed
analytically, provided we use the expansion of the
Bethe-Heitler cross section near symmetry given in
Eq. (1.7). The result is given in Appendix C. The main
error in this result lies in making the peaking approxi-
mation and it goes like In(1/6%)/In(Q?%/m?).

1IV. DISCUSSION

The total radiative correction to order a* can now be
written as follows for symmetric pair production:

dopu+dopa™?

— dO.BH_'_da.BHvir_l_%inol[da.B Hsoft+ do.BHhard]

i B- —¢*
= {1+i[% 1n—12+g In—-+4 ln—i—65/9

27 m m m

—I—S(ln2)2-—21n2+2—1r2:”doBH+d&BH‘eal, (4.1)

where
ays Q?
depu™l= hm[ ——(ln—— 1)
8->0) T mZ

E
Xln:

62

+dO'BHha'd] : (42)

doprh®? is given by Egs. (3.7) and (3.8), ignoring the
F(I) term. The error in the result is negligible (~19%, of
the correction). The correction to higher orders in «
may be estimated by exponentiation. For practical
purposes it is sufficient to set §/E<30 for use in a
numerical integration of dogg"®.

In Fig. 6 we have plotted dépu™*! and doput®d/dly
for some typical configurations. For comparison we
have also plotted the results using the approximate
expressions Eq. (C1) for dopu™? and Eq. (3.11) for
dopu?®*d/dl,. Note in particular in Fig. 6(b) that the
real photon correction at the peak of the Bethe-Heitler
cross section is virtually independent of AE. The reason
is that the radiation of a high-energy photon forces the
modified cross section [see Eq. (3.11)] far away from
the peak and therefore the event does not contribute
significantly. This differs from the result of Lomon?'2
based on an inadequate approximation of the Bethe-
Heitler cross section.

In comparing our result with the result of Bjorken,
Drell, and Frautschi [Eq. (1)], we must compare
dogr™i—dpu™! with the first term of Eq. (1) and
dépr™*! with the second term. |dépn™*!| is about three
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times larger than the comparable term in Eq. (1). The
difference in these results is due, of course, to the
different treatment of dopg*d. [See Eq. (4.2).] The
rapid variation of the Bethe-Heitler cross section near
symmetry makes it imperative that such variation be
considered when calculating dopg"d. This was not
done by Bjorken, Drell, and Frautschi who used the
soft-photon approximation in calculating their real
photon correction. dopp™i—dapu™! also differs from
the comparable result of Eq. (1). Notice in particular
that the constant term 65/94x? contributes signifi-
cantly to the correction. As we have seen in Sec. ITI B,
the 72 term arises rather simply from a consideration of
the infrared-divergent terms. The 65/9 term, however,
as well as other constant terms of Eq. (4.1), can only be
obtained from a detailed calculation of the diagrams of
Fig. 2. dopu™i—dopr™! is about +49, of the Bethe-
Heitler cross section for E;=FE_=35 BeV, 6,=6_=0.1,
and is fairly constant for all points near symmetry.
[Compare with dépr™! given for the same points in
Figs. 6(a) and 6(b).]

The peaking approximation is seen to duplicate the
behavior of the exact result rather well. The deviation
is about 109, at the peak and somewhat larger away
from the peak.
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APPENDIX A: PAIR PRODUCTION
FROM POLARIZED PHOTONS

In calculating the Bethe-Heitler cross section in
Sec. I, we assumed that the incident photon beam was
unpolarized. In this Appendix we drop that assumption
and calculate the cross section if the photons are
polarized with polarization vector e,. It is important to
know if one polarization contributes dominantly in any
given experimental situation. If such is the case, an
accidentally polarized beam might affect the result
expected.

The Bethe-Heitler cross section for photons of
polarization e, is

o*Z* ELE_ S(k)
— M *N ydF4dQdE_d
167 M; k-P;
—4

dopn®=

M=

b £20%k ikt 3 (B1+B-) 8wt 3648-4°( )-"gw
+ —

FLO+kutO-, 0O+ ()-A, 136848~

+28B-eue,— 2B B-e[ ()+ku+()-2,]}, (A1)
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where

2[).{.'6 ZP._'C
( >i=( + ) ,
B+ B-

and the remaining symbols are defined in Table I. At
symmetry e- R=();=0 and the result reduces to

M R.R=—(2/¢)( )-2R2. (A2)

If we choose the two states of polarization to be
perpendicular and parallel to the p,,p_ plane, then only
the parallel polarization contributes at symmetry. Be-
cause of the dip, however, it is not experimentally
relevant what the result is at symmetry but rather what
the result is slightly off symmetry. To determine this
we use the expansion method described in Sec. I C. Let
us define the polarization vector with respect to a plane
containing k and making an angle $¢ with the (py,k)
plane and so also with the (p_,k) plane. Now

pi-en=—FE; sinf, sinj o,
p_-ex=—FE_sinf_sinj o, (A3)

where e, (er) is the polarization vector perpendicular
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(parallel) to the defined plane. Expanding around
symmetry

dopgp®= daBH(sym)
X (a9 2L (a+ 9+ 10+ 1¢7],
dopu®'=dopu(sym)

X (Ge*+10%/2[(a+e)*+i07+1e%]. (A4)

Clearly, if we average over the two polarizations, we
retrieve the result Eq. (1.7).

A consequence of the above result is that pair produc-
tion near symmetry can be used as an analyzer of
polarization. The term 6* can be ignored. Then, if the
experimental acceptance is taken to be a slit with
¢80, only photons polarized perpendicular to the slit
will contribute to pair production.

APPENDIX B: GENERAL VIRTUAL
PHOTON CORRECTION

Here we give the general result for the virtual photon
correction to pair production (see Sec. IT). Symbols are
defined in Table I.

w' = (a/Am)[Fit+Fi 1M ot (o/ 2) (4/B1B-g ) F L (piut p—i) (p—B-— p1:B+) +1(B+*— B-) g ]
+ (Fet—Fy )= p+uBt(p—B——+8+) — P+ (p—— 1) + 308+ (B-+¢*) gr ]
+ (Fi—F5)[p4uQ%(p-B—— p1sB+)+ 4uq*(p-B—— p—B4+) ]
FFe [ (p—up-B-2— psup 1B+ + (Pt p—p) (psB—— p1:B8+) +3(B——B4)B18-gw ]
+ (Bt — Fa ) [P+ uBtB-p—B-— p:B4) — D1ub 2> (28: 8-+ ¢*B-) — P+up—q*Q?B-]

+ (Fst— F107)[p+uB1B—(p—B-—p-1:B4+) + DD +54°Q*B+ P up—q*(28+8-+¢°81) J+same with p <> p_}.

(B1)

In writing this result we have used the fact that ¢,N,,=0 and N,,=N,,. The functions F,* are given below.

— A2 B ¢?| 65 3¢ B+
Frt=| —2Ho(0?)—2 In—+27o"+3 In|—|+4 In —l - n|— ]

L m? m? m?l 9 Bit¢* g

- 2 2 2¢? 211
PO DU L R SR s —-—*——J00+:|,

Q% 184l Q*B4+B8-) Ig?l By B-

— 2._',_2 = 2 2 2+3 | 2+2 - 2 _l,_2 .
e _B+Q B+5 n Q_ K (8+0*+36-02+2848 )1n Q_ +B+ B J00+:|,

L BQ*B++4¢%) 1B+ B-Q*(B+tB)(B+t¢) ¢ B-2

—2 _+ 2 2 2 2 _+ 2 2 ( +2 _+ 2
Fit= B-+0 1n!9 + ¢28-10Y In g_ _u_q_]00+],

L Q8- 1B+ 0B-(B+t+6-) lg? B-*

"'2 | _l_ 2 + 2()2 ____B__I__ 2 2 1
Fote B+8-(B++¢%)+¢*Q%(B+ ‘1)an_+

L Q%B_(8++4¢%)? Byl Bitg?

2 28_2_’_2[8 _ 2+ﬁ + 2 _+_ 4,2 .2 6~_ 2
+ 0 <;6+(5Q><ﬁ++ 92;2 ol m alt
_(B++B2) B+ q -~
1 2 2 2 2

F6+=[— In Q— E— I In “Q— -‘—Q“-Joo+} 5 '

B- 1B+l B_(B4+B-) g2 B2

210 (01 BN QB A2 (0
F7+=|:— Inj—/+ + 00— 111—]’
0B-2 B+l B-(B++B-) B-3 B-20*(B++B-)* ¢
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2 2 1
F8+=[___q___ 1| _____,_],
B+(B++B)2  1g* B(B++B-)
2 2 . 2
O . O
Q%6-(B++4¢%) 184l B4(B4+B-) B2

¢ q*

2¢%(Q*+8+)

; )elal)
+B44+B-)* B+8(B4Fq7) QB+(B++B-)B++¢)/ g

2
2q o

¢

n

¢*—B-

¢

2(3_— 28, — 202
F10+=|:9 (B——284—2¢ )1
PECwTY
F,~=F n+(17+‘-’17—) )

B+

where
2

Jogt=3% In?

g= |:ln

f+=[-—ln

+
Q2_q2
Q2
q2

Q2
g Q
' B++¢*

2
+L<—Z—)
B+ B+ +

(g—0as ¢*/Q*— 0 and f+—0 as ¢2/B+— 0),

In

+1 In2

In

—Joo T T
B3 B-(B++B-)(B++4¢)

QZ_q2

2
.+.

<q2(26+—6«+2q2) 92(,.2{3++36-)> .
B-(B4++¢%? B-2(B4+B-)?

]

n
q2

3m0(— Q") —3m0(—B4)+e+ fF,

272 2
q
._%,".20 _g_q__ — L —'1—12‘11'2 ,
QZ_q2 Q2,_,q2

1z

L(x)=Re{ fl "ty )dy} ,

y

x3
L(x)= ~%§7r2+(x—2—+-—— - ) :

x<1
33

L(x)=%In?|x| —3r2%0(—x)—L(1/x), x>1

(see Ref. 21),

a4

L(=)=—}n?

__'Q2
10—
0(x)=1, x>0
=0, x<0.

Ho+In(\2/m?) contains the infrared divergence. The
term cancels identically against a similar term in the
soft-photon correction (see Sec. IIIB). Most of the
virtual photon correction is contained in the “multi-
plicative” term of Eq. (B1), namely, the first term
where the radiative correction is proportional to the
Bethe-Heitler matrix element.

1. Bremsstrahlung

Bremsstrahlung is connected to pair production by
the transformation £ — —#’, py— — pin, and p_— pout,
where i, is the incoming electron in bremsstrahlung,
Pous is the scattered electron, and k' is the emitted
photon. Specializing to low momentum transfers and to
the experimental situation where pou and &’ are emitted

BN (B42p4- D) (B—2p_1)

nearly symmetrically (defined as 2pin: Pout=22pin" &’
pous- k), the result is

a A2 2K pin
dO’BRVir—: _['— 2Ho(— Zﬁin . Pout,) -2 1n——+3 ln
2! m? m?
¢ 65
+4% In|—| ——+372+$ In24%(In2)?
m?l 9

172 17 1
(=S ) fim. 2

52 10 5
The term in parentheses comes from the nonmulti-
plicative terms of Eq. (B1) which becomes multiplica-
tive near symmetry because of the dip. However, we
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have ignored one term which even near symmetry is
nonmultiplicative. It is less than (18/5)(e/2m)dogr.
The infrared divergent terms cancel against the soft-
photon correction which, together with the hard-photon
correction, may be calculated by applying the above
transformation to the results for pair production.

2. Trident Production

The radiative correction to trident production con-
tains diagrams like the ones in Fig. 2, except that the
incoming photon is virtual. Equation (B1) is still useful,
however, because we may make the transformation
k<> —g and interpret the result as the radiative correc-
tion to pair production by virtual photons but at low

a/ Q? 82
dopgherdt— —(ln—— 1>[ln
T\ m? (AE)?

(A4-v)*Hw? &’
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momentum transfers (¢?=0). The errors inherent in
calculating radiative corrections to trident production
would seem to justify ignoring all but the first term
of Eq. (B1).

APPENDIX C: APPROXIMATE HARD-PHOTON
CORRECTION

Here we give an approximate expression for the
hard-photon correction to symmetric pair production.
The peaking approximation Eq. (3.11) is used as well
as the expansion of dogx given in Eq. (1.7). We set

S(2E+10)=S(2E)2E/(2E+1,)
and ignore the dependence of Gg*(¢g?) on . The result is

dUBH+I(P+,p—JAE):| ’

(A—I—‘v)z—i—w2

In

I(ps,p-,AE)= dUBB[% In F1ln

.U2+w2

L

1 (” v?
(o mals
(’u—}-A)L}—w2 v*+w?/L 8 '1)2—|—wz\w2

24 p?/4 v

2E+AE
] dopu(sym): { 131

S 0% 13 13 62
Yo ]
1—e 8w? S 2 4

vi+w?

At v 02 1
+(tan—1——— tan—1>

A r02 1 v 5 6

(A+‘v)2+'w2|_ 8 12422 @ 1—e 8w?
v=(a+}¢);

where

A:

(1—¢);
2E+AE

See Fig. 6 for some graphs of this result.

APPENDIX D: THIN-TARGET CORRECTION

After the photon beam has interacted with the nuclei
in the target to produce lepton pairs, it is possible for
the real leptons to radiate on the way out of the target.
Thus, for example, the experimental apparatus would
accept the pair produced with momenta p4 and p_41
followed, at another point in the target, by the radiation
from the electron of a photon of momentum /. The
correction due to this effect is called the target correc-
tion and should not be confused with the real photon
correction which results from the radiation of a photon
at the interaction point. By a thin target we mean a
target in which the probability of a lepton radiating
twice is negligible. Thick-target corrections have been
considered recently by Tsai and Whitis.?®

2Y. S. Tsai and Van Whitis, Phys. Rev. 149, 1248 (1966).

w3 8 1)2—1—202 (1)2+w2)2w 1—e\2

(7]

3
4 (l-l——v)]—l-(same withv— —9, A—> A/, e— —-e)} , (C1)

wi=etHie,

A=

(14¢).
2E+AE

Consider a lepton of energy E, interacting with a
nucleus and radiating a photon of energy /. The
probability of this happening in the target is in the
Born approximation.?® (See diagrams Fig. 5-7 and
Fig. 5-8.)

dp(Eo,F) dl°E[r 1‘)+1 l°2r] (D1)
PEE) = (Tt 2n )

0 0 0

where Eo= E-1,. T'; and I'y are functions characteristic
of the target. They involve integrals over nuclear form
factors including, in particular, the effect of screening.
For ease of notation, we have also included here macro-
scopic effects such as the shape of the target and its
density distribution. For the case of complete screening,
EoE/mlg>1371Z713) Ty and I'; are independent of E,
and E.

29 A, Sorenssen, Nuovo Cimento 38, 745 (1965).
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It is convenient to relate the functions I'y and T's to
the effective length of the target in radiation lengths.
For the case of complete screening,

Eo

ldp(Eo, ) =3(T1—T)+3T1.

eff —

trad (D2)

0J0

To derive Eq. (D1) the angles of the photon and of
the outgoing lepton have been integrated over. None-
theless, we know that at high energies the photon is
radiated dominantly in the direction of motion of either
the incoming or the outgoing lepton. Furthermore, we
know that bremsstrahlung is dominated by low
momentum transfer events (|¢?|~m?). We therefore
make the high-energy approximation that the result of
radiating in the target is to change the energy of the
radiating particle but not its direction of motion. The
cross section for producing a pair of leptons, one of
which subsequently radiates, is then

lo (max+)
doptrect= / dopu(Estlo, B )dp(Estlo,Ey)
8

lo(max—)
+ / dopu(By,E_+1o)dp(E_~+1o,E_)
&

lo(max+) dl E
= / l—dUBH(E++l0, E)
F)

0 ++

le?
l:(Fl_ 2)+“ —— 7T ]
2 Ey(Ei+1)

totmax=) g, E
+ / '—dUBH(E+,lL+l0)

— 0

:I . (D3)

The integral diverges at /,=0, but the divergence is
cancelled by the contribution from the virtual correction

o2
I:(I‘l— 2)+— —
2 E_(E_+)
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to lepton-nuclear scattering without radiation. From
our work in the body of this paper the result is clearly

62

da—BHtarget: (Pl_ 112) In +do.BHtarget .

(D4)

The remainder of the soft-photon correction is negligible
because the scattering is dominated by small momentum
transfer events.

Equation (D4) is similar to Eq. (3.11). Thus one
may think of the real photon correction in the peaking
approximation as pair production followed by brems-
strahlung characterized by certain values of I'; and T's.
The result is similar to the result of Lomon!? but good
in our formulation to all orders in /.

For symmetric pair production we can ignore the
300%/EoE term in (D1). Using Heitler’s® result that
I'y=3T;, we may rewrite Eq. (D4) as

62
d&BHtarget= %trade“ {ln
E\E_
AE d], E,
+ / —daBH(E++ Il
Ey+lo
AZ dl, E_
+/ ‘—“dO'BH(E_hE_—i—lo) (DS)
0 lO E_ 0
where AE=kmax— Ey— E_
For a uniform, rectangular target
trade” = %l‘rad y (D 6)

where /r.q is the thickness of the target in radiation
lengths. The real photon correction to symmetric pair
production may be thought of simply as a target
correction with

2
trade“— — _(hl..Q____ 1)
47\ m?

30W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, London, 1954), Chap. V, p. 25

(D7)



