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A variational principle is formulated as a means for obtaining approximate solutions to the Faddeev
integral equations for the nonrelativistic three-body scattering problem. Bound states are described by the
homogeneous version of the Faddeev equations. In this case a minimum principle for the binding energies
is obtained in close analogy with the familiar Rayleigh-Ritz method. An eGective potential is de6ned as
the solution of a set of modified Faddeev equations. The variational principle therefore applies to the
effective potential. This is shown to be a minimum principle for the eigenphase shifts for energies below
the three-particle breakup threshold. Some formal applications of the variational principle are described.
These include derivations, within the Faddeev formalism, of a normalization condition for bound-state
wave functions, a distorted-wave theory, and a perturbation theory for discrete states.

1. INTRODUCTION
'
W~URING the past few years considerable interest

has been shown in the use of the Faddeev equa-
tions' to formulate the quantum-mechanical three-body
problem. Almost all of the numerical calculations, based
on the Faddeev formalism, which have been performed
up to now have made use of a separable approximation
to the two-body input amplitudes. ' This has the great
virtue of leading, after one has separated o6' the angular
variables, to a set of coupled one-dimensional integral
equations which can be solved numerically. In spite of
the obvious attendant computational dBBculties, it is
natural at this point to look for approximation tech-
niques which do not require separable input amplitudes.
Since variational methods have been quite useful in the
usual Hamiltonian approach to the few-body problem,
we have set out here to develop analogous methods for
treating linear integral equations of the Faddeev type.
Variational principles for the scattering amplitude and
for the eGective potential are derived in Sec. 2. They are
valid for all processes, inelastic as well as elastic. The
bound-state problem is discussed in Sec. 3, and a mini-
mum principle for calculating binding energies is de-
veloped. This result is used, in Sec. 4, to obtain a mini-
mum principle for the effective potential which leads to
lower bounds on the eigenphase shifts for energies below
the three-particle continuum threshold.

It is known from experience with the Schrodinger
equation that the variational approach can be quite
useful not only as a calculational device, but also as a
formal method for developing a variety of approxima-
tion techniques by suitable choice of trial functions.
This latter type of application is illustrated in Sec, 2,
where a distorted-wave theory, based on the integral
equations, is developed. Other forma1 applications of the
variational principle include the derivation of a normali-
sation condition for (bound-state) solutions of the

* Supported by the National Science Foundation.
'L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)

/English transl. : Soviet Phys. —JETP 12, 1014 (1961)j.' A. N. Mitra, Nucl. Phys. 32, 529 (1962);R. D. Amado, Phys.
Rev. 132, 485 (1963); L. Rosenberg, ibid. 135, B715 (1964); C.
Lovelace, ibid. 135, $1225 (1964).
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homogeneous Faddeev equations and the development
of a perturbation theory for discrete states.

A possible advantage of the present approach, in
contrast to methods based on the Schrodinger equation,
lies in the fact that the input to the equations consists
not of potentials, but rather of subsystem scattering
amplitudes. Therefore techniques discussed here can be
applied to a relativistic version of the Faddeev equa-
tions."Many-body generalizations are also possible. 4'
On the other hand, the operators which enter the theory
are relatively unfamiliar. Consequently, it will take
some experience before one learns how to choose accu-
rate trial functions in applications of the variational
principle. Furthermore, a precise specification of the
class of admissible trial functions is necessary with
regard both to practical applications and to questions of
mathematical rigor. We hope that the approach pre-
sented here will prove promising enough so that these
problems will eventually receive the attention they
require.

2. VARIATIONAL PRDTCIPLE FOR
SCATTERING

A. Three-Body Integral Equations

The three-body Faddeev equations can be written in
the equivalent' matrix-operator forms

T=Tg)+Tr GT,

T=To+TGTg).

(2.1a)

(2.1b)

The matrices are 3&(3. We suppress the dependence on
the total-energy variable E. The disconnected ampli-
tude T~ is diagonal, with diagonal elements given by the
two-body scattering operators. The Green's operator is

0 G G
G= G 0 G

G G 0
(2 2)

' L. Rosenberg, Phys. Rev. 147, 1016 (1966).
4 L. Rosenberg (to be published).' L. Rosenberg, Phys. Rev. 140, 3217 (1965).
e The equivalence of Eqs. (2.1a) and (2.1b) is easily demon-

strated with the aid of Eq. (2.24) below, with AT&= AG=0.
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where
G= (E+ig& K—) '. (2.3)

3 3

T= Q Q (g) T(g) (2.4)

Other elements of the T matrix, pertaining to those
cases where a pair of particles is bound in the initial or
6nal state, are obtained from T by application of a
"residue rule" described previously. ' A specidc applica-
tion of the rule appears below.

An integral equation for the connected amplitude To
is obtained from Eq. (2.1a) with the substitution

Here K is the total-kinetic-energy operator for the
three-body system. The scattering amplitude T which
describes the three-body —+ three-body process is given,
in terms of the elements (g) T(g) of T, by

a= rt. (2.16)

Here we make use of the fact that the distinction be-
tween E+ig& and E—ig) may be dropped for energies
below the continuum threshold, i.e., Tg& and G are self-
adjoint at these energies.

B. Some Useful Identities

holds. Equation (2.14) implies the well-known reci-
procity property

~aP ~Pa ) (2.15)

where gg and P are channel labels for the scattering ampli-
tude T gg. LTo go from Eq. (2.14) to Eq. (2.15), one
evaluates Eq. (2.14) in momentum space, sums over
rows and columns, and makes use of the residue rule. f
Similar considerations applied to the homogeneous
equations lead to the relation

we obtain

where

(2.5)

(2 6)

(2.7)

We wish to discuss variational approximations to
solutions of the integral equations (2.1). A convenient
starting point is the identity

0=0g+Ot 1—0 'Ogj, (2.17)

The bound-state problem is studied with the aid of the
homogeneous versions of Eqs. (2.1), which we write as

where 0 is any operator whose inverse is known, and
where 0& is some "trial" estimate of 0. If we write Eq.
(2.17) as

F=TnGF,

A.=A.GT&&.

(2.8a) 0=0g+Ogt 1—0 'Ogj+ (60)0 '(80), (2.18)

where 60—=0—0&, we see that the error term
(60)0 '(60) is of second order in 60. Therefore the
expression

0,=0g+Og(1 —0 'Og) (2.19)

(2.8b)

Here j. and A. are column and row vectors with ele-
ments &')I' and A.&", respectively. Bound states intro-
duce poles in the scattering amplitude. With E in the
neighborhood. of a bound-state energy Egg, Tz takes on
the factored form

provides a variational estimat of O. To make use of this
result in the problem at hand, we observe that the
integral equations can be written in the formTc= FPA. ,

P= (E Eg)

(2.9)
where (1+GT) (1—GTg&) =1. (2.20)

Then, with 0 replaced by (1+GT) and 0 ' replaced by
(1—GTg&) in Eq. (2.17), we obtain the identity

(1+GT)= (1+6,T,)+ (1+GT)
)& t

1—(1—GTg&)(1+GgTg)g. (2.21)

(2.10)

In the following, we will make use of the reality
properties of the scattering and bound-state functions;
we will therefore record these properties here. First, we
note the relations

Tg&"—& =Tg&,

Gt(—) —G

2.11
This simplifies to

(2.12) GT=G,T,+(1+GT)/GTg&GgTg+GTg& GgTg J —(2.22).
We now consider, for the choice of trial "function" T,,

the exact solution of the integral equation

Tg ——Ti& g+Tg& gG gT g. (2.23)

One is often led to approximations of this type by taking
the sum of a particular subset of multiple-scattering
terms; in Eq. (2.23) the terms to be summed are de-
termined by the choice of Tg&g and Gg. With the aid of
Eq. (2.23), and with the definitions AG=G —G, and
BTg&= Tg& —Tg&g, Eq. (2.22) can be written as

We conclude, by comparison with Eq. (2.1b), that the
relation

Here the dagger implies that rows and columns of the
matrix are to be interchanged and the operator adjoint
of each element is to be taken. The superscript (—)
indicates that the energy is to approach the real axis
from below rather than above. If we take the adjoint of
both sides of Eq. (2.1a), replace E+irj by E ill, and-
make use of Eqs. (2.11) and (2.12), we obtain

'f&(—)'—'f n+Tt( —)G'f n (2.13)

'f t(-)—'f (2.14) T=T,+ (1+TG)LTD(1+GgTg)+TAGTg. (2.24)
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This is a particularly useful identity, which appears
frequently, in a variety of forms, in discussions of linear
integral equations. As a simple example, we make the
choice Tn» ——Tn,. Eq. (2.24) then becomes

(2.25)

With the substitutions

factor (I+TG)Tn~. Now we define T~A as the solution
of

'fg»A='f ggg»+Tg»AGATDg». (2.36)

If we premultiply Eq. (2.36) by (1+T"G),we obtain an
integral equation for (1+TAG)T~A which is identical to
Eq. (2.35) for (I+TG)T&~. We conclude that the
equality

T,=Tg)(1+G»T»),

T= (I+TG)Tg»,

(2.26)

(2.27)

(I+TG)Tg»g»= (I+TAG)Tg»A

holds. This allows us to rewrite Eq. (2.31) as

(2.37)

Eq. (2.25) takes the form

T= T,+ (I+TG)AB(1+G»T») . (2.28)
Here

T=T"+ (1+T"G)T~A(1+GTA) (2.38'I

C. EBective-Potential Formalism
AB= Tg)EGTg) (2.29) The disconnected amplitude TD is dined as

corresponds to a subset of double-scattering terms which
contribute to the Born amplitude defined in Eq. (2.7).
(Recall that G is a matrix; G» may be chosen by setting
certain elements in G equal to zero. It should also be
borne in mind that equations of the above form are
valid for the X-body scattering problem and have a
relativistic extension. ') Consider now a physical colli-
sion process dominated by single-particle exchange from
one subsystem to another. With the appropriate choice
of G», these dominant terms will appear in AB. The sum
of the remaining terms, which gives rise to the ampli-
tude T», will be most significant in the determination of
corrections due to initial- and 6nal-state interactions. It
is then reasonable to replace TG by its trial value T»G»
in Eq. (2.28). This provides a variational expression
which is equivalent to the familiar distorted-wave Born
approximation.

We now turn to another application of Eq. (2.24)
which will serve as preparation for the subsequent
derivation of an effective-potential formalism. We take
G» ——G, and for notational convenience rewrite Eq.
(2.23) as

'f A 'f A.+'f AG'f A

Equation (2.24) then becomes

(2.30)

T= TA+ (1+TG)Tg»~(1+GT"), (2.31)

where we have defined

Tng»= Tn —TnA (2.32)

where
1+TG=1+T"G+(I+TG)Tg) G", (2.33)

GA= G+G'f AG. (2.34)

When postmultiplied by T&~, Eq. (2.33) becomes

(1yTG)Tg) ——(1+T"G)TgP
+ (I+TG)Tg)g»GATgP, (2.35)

which may be viewed as an integral equation for the

It will be useful to have an alternative form for Eq.
(2.31).We first observe that Eq. (2.31) can be written as

(2.39)

where T(S ) is the scattering operator for the two-body
subsystem 5 . The sum runs over the three distinct
two-body subsystems. We now choose the amplitude
Tgg~, whose components appear in Eq. (2.36), as

(2.40)

where T~(S ) is taken to be of the separable form

T~(S )=I'(S.)G.I't(S.). (2.41)

G =(E K Eg» ) '——(2.42)

where E is the total energy, E is the sum of the kinetic
energy of the center of mass of the bound cluster plus
the kinetic energy of the third particle, and E& is the
eigenenergy of the bound cluster. The vertex functions
F and F~ give the correct residue at the pole; they can be
obtained, e.g. , from a knowledge of the bound-state
wave function. More complicated propagators and
vertex functions, which take into account continuum
e8ects, can be used to deine the separable approxima-
tion. ' )If a number of separable terms are required to
give a reasonable approximation to T(S ), we may take
T to be a sum of such terms. We may also take T =0
for a given pair. )

Suppose we are interested in elements T p of the
three-body scattering matrix corresponding to entrance
and exit channels in which pairs of particles are bound.
Suppose further that the poles in the two-body ampli-
tude due to these bound states are contained in T~~, so

' See, e.g., S. Weinberg, Phys. Rev. 130, 776 (1963).

In the simplest version of the separable approximation,
the "propagator" 6 will be a pole in the two-body
c.m. energy variable. Since we are interested in matrix
elements in the momentum space of three particles, we
would express 6 as
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that T~"=T~—T~ has vanishing residues at these
poles. According to the residue rule, 5 T p may be ob-
tained from T, as given by Kq. (2.38), by taking residues
at the poles in the terminal-state interactions of sub-
systems S and S~. Now T", by construction, has
vanishing residue at these poles. Furthermore, when the
residue rule is applied to the disconnected amplitude
T~~, we obtain a contribution to the S matrix, but not
to T p. Therefore we need only consider the amplitude

TUBA TI)A TnB

which according to Eq. (2.36) satisfies

'fo»= 'f
DggG"Tr)gg+'frigg"

G"'fngg.

Elements of the leading term are given by

(2.43)

(2.44)

V —Pt (S ) ( )[G q(P) P (S ) (2.46)

This suggests that we look for elements of Tc» in the
form

( '[Tos )(P'=I'(S )G.T pGpl't(Sp). (2.47)

If we substitute this expression into Eq. (2.44) and

apply the residue rule [in this case this amounts to
removing the factors I'(S )G and GpI't(Sp) which

appear in the Anal- and initial-state interactions, re-
spectivelyJ, we obtain the eRective two-body integral
equation'

T p=V p+Q„T „G,V~p. (2.48)

Once the eRective potential is determined, Eq. (2.48)
can be readily solved numerically. With T y known, the
amplitude for breakup of a bound pair can be deter-
mined directly; no additional integral equations need be
solved. Thus, if we are interested in a transition from
entrance channel P to exit channel f, in which all three
particles are free, we substitute the decomposition
T» =Tg)~+To» into Eq. (2.38) and apply the residue
rule to the initial state only. With the definition

V„=E2 (»[T 3()Gr(S,)yr(S,), (2.49)

we obtain the breakup amplitude in the form

( )[Tg) G~TD j »(=I'( S) G. VpGpl'(Sp), (2.45)

with the effective-potential matrix defined by

Finally, with the definition

Vrr=Zv VsvGVVvr (2.53)

we have, for three particles free in initial and 6nal states,

T= Tr—r=T +Q. Qp Vr.G.T pGpVpr+Vrr (2.54)

This may be put in the form

Trr= T"+gq TrpGpV pr (2.55)

with the aid of Eqs. (2.50) and (2.53).
We conclude this subsection with two general re-

marks. If we set Tz)~=0 in the above equations, we
reproduce the "separable-potential" model which has
been studied extensively in recent years. ' The present
formalism provides a convenient basis for systematic
improvements in this model due to the nonseparable
parts of the input amplitudes. One method for obtaining
such improvements, based on a minimum principle, is
described in Sec. 4.

As noted by Feshbach, ' " an effective-potential for-
malism has the important feature of providing a model
for resonances. Pole terms in the effective potential lead
to resonance contributions to the solution of Eq. (2.48)
for the T matrix. In the present formalism, poles appear
in the effective potential at energies for which the
homogeneous version of Eq. (2.30) has solutions. These
bound-state solutions will be discussed at greater length
in Secs. 3 and 4. In the Feshbach theory the effective
potential is de6ned in terms of projection operators
which are difficult to construct in practice. It is an
advantage of the present version of the theory that such
projection operators are not required. The removal of
the pole contributions to the two-body scattering ampli-
tudes in the de6nition of T&~ plays the role analogous to
that played by the projection operators in the Feshbach
theory.

D. Variational Prim, ciyle of the Schwinger Tyye

If we set Gg ——G in Eq. (2.22), the identity becomes

T=Tg+ (I+TG) (Tg)+Tg)GTg —T,) . (2.56)

As shown by Eq. (2.18), the identity leads directly to a
variational principle. Thus, if we replace T by T,+ET
(T, and Tg may, in general, be distinct) on the right-
hand side of Eq. (2.56), we obtain T in the form

Trp= Vrp+P, Vr,G„T,p

In a similar way we And that T J is given by

(2.50)

where
T= T„+error, (2.57)

where
T r=V r+Zv T ~GvVvr (2.51)

V =P P I'g(S )G")[T"j' )+I't(S ). (2.52)

T„—TD=—To„——Tg)GTg+T, GTD
—T, (G—GTDG) T, . (2.58)

An effective-potential formalism based on the Faddeev equa-
tions has been obtained reviously for the case of three identical
particles; see Eq. {3.22 of Ref. j.s. The formalism has been
developed independently by E. O. Alt, P. Grassberger, and W.
Sandhas, NucL Phys. B2, 181 (1967).

The formal expression for the error is found to be

T—T„=nT'G(Tg)+Tg)GTg —Tg). (2.59)

' H. Feshbach, Ann. Phys. (N. Y.) S, 337 (1958);19, 287 (1962).
'0 M. L. Goldberger and K. M. Watson, Collision Theory {John

Kiiey ik Sons, Inc. , New York, 1964), Chap. 11.
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A more useful form is obtained if we replace T& by
T—DT in Eq. (2.59) and use the integral equation
satisfied by T. This gives the error term as

T—T„=aT'(6 —GTnG)aT. (2.60)

The variational nature of the approximation given in
Eq. (2.58) is now evident since hT and b,T' are each
assumed to be first-order errors. This variational ex-
pression is of the type proposed by Schwinger for the
nonrelativistic potential-scattering problem.

Note that the choice

T,=Tit~—
& (2.61)

guarantees that the variational expression satisfies the
correct reality property

(2.62)

Here we have used Eqs. (2.11) and (2.12).
The variational approximation to the physical ampli-

tude is obtained by evaluating Eq. (2.58) in momentum
space, sutxuaing over rows and columns, and applying
the residue rule to pick out the desired elements of the
scattering matrix. In numerical applications the trial
amplitude will generally be expressed as a linear combi-
nation of some conveniently chosen basis functions:

and
(1")-'=r'(6 —GTD'6) r. (2.69)

lim (E—E,)[FPrt+FPrt —FPrtprprt],

where we have defined

9=6—GTi)6, (2.70)

and have used Eqs. (2.8), which are valid at the pole.
We now expand rtpr in a Taylor series about E=Eii,
keeping the first nonvanishing term. The correct residue
is obtained provided

(2.71)

The perturbed energy is found at the zero in (P') '.
We mention another application of the variational

principle to the bound-state problem. The statement,
contained in Eq. (2.9), that the residue at the pole in
To is given by the dyad rrt obviously implies a par-
ticular normalization of F.The normalization condition
can be deduced as follows. We observe that the trial
functions given in Eqs. (2.64) and (2.65), with u =a= 1,
are exact for E=EI3. Therefore, if these trial functions
are inserted in Eq. (2.58), the resultant variational ex-
pression must have the correct residue I Ft at the pole.
The residue is given by

T,= P ciTi. (2.63)

T,=nrPrt,

T,=arPF~,

(2.64)

(2.65)

with I' '=E—E~, will be appropriate for E near the
perturbed energy E&'. The linear paraIneters n and cx are
to be determined variationally, as discussed above.
The resultant variational expression is

The condition that the variational expression LEq.
(2.58)g be stationary with respect to variation of each of
the linear parameters cI, leads to a set of linear equations
which can be solved for the unknown parameters. One
possible choice of basis functions Ti, is the set obtained
from the multiple-scattering expansion of the integral
equations, i.e., Ti——Tii, Ts——TiiGTD, etc.

We now show how a perturbation theory for discrete
states can be deduced from the variational principle for
scattering. Suppose that Eqs. (2.8) have solutions at
E=E~, the unperturbed binding energy. The discon-
nected amplitude in the perturbed problem is taken as
Tn'= Tii+8Tii. If the shift in pole position is small
enough, the trial amplitudes

which is the desired normalization condition. Note the
similarity between this condition and the normalization
condition for Bethe-Salpeter wave functions. "

The normalization condition is equivalent to the
statement that the relation

P-i=rt(6 GT 6)r— (2.72)

is valid to first order in E—E~. Now, in deriving Eq.
(2.69) as the expression whose root determines the
perturbed energy, we assumed that the level shift is
small. It is therefore consistent to combine Eqs. (2.69)
and (2.72). This leads to the Dyson-like equation

(P')-i= P-i—rtG&ToGF. (2.73)

R(Z)r=o (3.1)

3. GENERALIZED RAYLEIGH-RITZ
PRINCIPLE

The bound-state problem may be defined by the re-
quirement that an energy E and vertex function I must
be found so that the homogeneous integral equations

with
To,——F'P'r't,

r'= Tn'Gr,

r't= rtGT~',

(2.66)

(2.67)

(2.68)

are satisfied. We have indicated explicitly the energy
dependence of the operator Q defined by Eq. (2.70).

"R. E. Cutkosky and M. Leon, Phys. Rev. 135, B1445 (1964);
D. Lurie, A. J. Macfarlane, and Y. Takahashi, ibid. 140, B1091
(1965).
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~(E)=~'(E), (3.2)

Since E is below the continuum threshold, we have According to Eqs. (3.11) and (3.13), the variational
estimate of E is just E„which is determined by

and the adjoint of Eq. (3.1) holds in the form detL(E&) =0, (3.14)

Fthm(E) =0. (3.3)

Fthm(E)r=O (3 4)

holds when Eqs. (3.1) and (3.3) are satisfied. With
F=r~+Ar, where r~ is some trial vertex function,
Eq. (3.4) reads

(3.5)

Let E& be some (real-valued) estimate of E, and suppose
that E—E~ and I —j. & can be considered as small errors.
The first term in Eq. (3.5) can be expanded as

r tp(E)r, =r tp(E,)r,
+(E E,)(aiaE—)(r,tB(E)F,) = „(3.6)

where terms of higher order in (E—E~) have been
dropped. Now the normalization condition [Eq. (2.71))
holds for the correct solution, so that the coe%cient of
(E—E&) in Eq. (3.6) differs from unity by a first-order
quantity. To first order, then, we have

rgtQ(E) F,= r,tB(E,)Fg+E—Eg. (3.7)

When Eqs. (3.5) and (3.7) are combined, and the
second-order term in Eq. (3.5) is neglected, we obtain

It is a simple matter to obtain a variational principle for
the bound-state energies. Evidently, the scalar equation

subject to Eq. (3.12).Of course, a change in normaliza-
tion of c will not affect the variational calculation of the
energy. Equation (3.12) may be replaced by

B
(ctL(E)c)s ~,&0.

BE
(3.15)

[g(E)—Xe(E)]r=0 (3.16)

This inequality places a restriction on the choice of trial
functions. This is a natural restriction, since it defines a
class of allowed trial functions which contains the true
function F.

The roots of Eq. (3.14) yield a set of energies Ei&"i,
E2&"', , E~&"). The superscript (I) denotes the
dimension of L, and the subscript implies an ordering
such that E,(")&E;+l&"). We assume that the true
energies are bounded from below and that the bottom
portion of the spectrum consists of a finite set of isolated
points at energies E;, with E;&E;+,y.

We have seen that the energies E,("~ provide varia-
tional estimates of the E;. It is natural to enquire
whether these estimates are in fact upper bounds, in
analogy with the familiar Rayleigh-Ritz property en-
countered in the Hamiltonian formulation of the bound-
state problem. To investigate this point, we introduce
an associated eigenvalue problem in which solutions of

E„=Et,—r)tQ(Eg)r) (3.8)

as the variational principle for E.
Let F& be represented as a superposition of linearly

independent basis functions, i.e.,

(3.9)

are sought, with E below the continuum threshold. Here
y is defined such that I'~yj." is positive for any F.
[Equation (3.16) may be thought of physically as
arising from Eq. (3.1) by the replacement Tn~ TD
+XTn', then p= GTii'G. g With the strength parameter
X fixed at some real value, Eq. (3.16) delnes an energy-
eigenvalue problem. The inequality

and let c represent a column vector with elements cj,.
Then, with the e&(e matrix L(E) defined as [rt(S—xq) r j&o (3.17)

L„;(E)=r; B(E)r, , (3.10)

the variational principle becomes

E,=E,—c"L(Eg)c. (3.11)

The trial parameters are determined by the requirement
that the right-hand side of Eq. (3.11)must be stationary
with respect to independent variations of E~ and the
components of c. This requirement leads directly to the
conditions

is expected to hold for solutions to Eq. (3.16), just as for
the case X=o. Alternatively, with E fixed, Eq. (3.16)
may be used to determine a set of real eigenvalues X,(E).
If this is done for a range of values of E, a set of curves
in the ) -E plane is generated; a given point on one of the
curves gives a pair of values (X,E) for which Eq. (3.16)
is satisfied. The slope of these curves may be determined
to be positive by the following argument. Let

(3.12) Q(x,E)= rt(Q —
& &)r (3.18)

Lc= 0. (3.13)
be defined for values of X and E lying on one of the
curves. pince Q vanishes for each point, we have, for
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If the trial function is suKciently accurate, the
inequality

variations in E and X along the curve,

0=dQ(X, E)
(3.28)t ct(L—X„r)cg)0

BEl9 8
dE+ dX.

BE BA.

(3.19}

(3.21)

by virtue of Eq. (3.16) and its adjoint, we find that

will be satisfied along with Eq. (3.2'7), since Eq. (3.1'7) is

If we differentiate Fq (3 18) with respect go ) and satisfied for the exact solution. Just as in the case X=0

reco nize that discussed above, we reject trial functions for which

Br Eq. (3.28) is violated. It follows from Eqs. (3.27) and
rt(g —xq) =o, (3.20) (3.28) that curves in the X„Eplane-will have positive

BA, slope; the argument is the same as the one given above
for the exact problem.

(9—Xy)F=O, According to the maximum-minimum property, the
variationally determined eigenvalues, now denoted as
X "' and ordered so that X,&")&X;+~&"&, lie below the
corresponding eigenvalues A. ;, i.e., for a given energy

(3.22)

The expression for the slope is then

(3.23)

r,t(Q —x„q)r,=o. (3.24)

which is positive, since Eq. (3.17) holds for any point
on the curve and I"~pF is positive for any I . We have
assumed that there is an energy Eo below which there
are only a finite number of energy eigenvalues. This,
combined with the fact that the X-versus-E curve has
positive slope, implies that for any energy Axed below
Eo there are only a finite number of positive eigenvalues
X associated with the Hermitian operator B. We there-
fore assume that these eigenvalues can be characterized
by the maximum-minimum property. ' It is this prop-
erty which leads to the desired minimum principle for
the bound-state energy, as will now be shown.

A variational expression for the eigenvalue X is given
by

(3.29)

For each curve C;&") in the X-E plane determined by
Eq. (3.27) there will be a curve C;, determined by the
exact-eigenvalue problem, which lies above it. Therefore
the intersection of C; with the energy axis lies to the left
of the intersection of C "&. These points of intersection
give the energy eigenvalues E; and E;&"), respectively.
Furthermore, since each curve has positive slope at
X=0, it crosses the E axis no more than once. We con-
clude that for each variational energy eigenvalue there
is an exact eigenvalue which lies below it. The inequality

E.(E.(~) (3.30)

where
g =GVQ,

G= (E E)'—(3.31)

(3.32)

for the ordered eigenvalues then follows.
As a simple test of the above analysis, we show that

well-known results can be recovered when it is applied
to the more familiar Hamiltonian theory. Thus we take
as our eigenvalue equation

With F& chosen as in Eq. (3.9), the variational expres- and p' is the potent&al With f—Gr Fq (3 31) becomes
sion becomes

ct(L—X„r)c=0,

where L is given by Eq. (3.10), and

(3.25) p(z)r=o,

P.=—G—GVG.

(3.33)
with

(3.34)

(3.35)
(3.27)(L—X„r)c=0.

~ij= +s Pj j. (3.26)
When Eq. (3.33) is satisfied, we can verify directly that

The requirement that Eq. (3.25) be stationary with re-
spect to variations of c leads to the set of equations

"R.Courant and D. Hilbert, Methods of Mathematica/ Physics
(Interscience Publishers, Inc. , New York, 1953), Vol. I, Chap. 1;
E. C. Kemble, The tiunda7nenta/ Princip/es of Quantum Mechanics
(McGraw-Hill Book Company, Inc. , New York, 1937), Sec. 51.
A general rigorous proof of the maximum-minimum property, even
for the more familiar energy-eigenvalue problem in the Hamil-
tonian theory, is apparently lacking. (See remarks in Kemble's
text, at the bottom of p. 408.)

detL(E) =0,

I.v= (r*Pr~)

(3.36)

(3.37)

Variational estimates of the energy eigenvalues can be
obtained from the roots of
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is equivalent to
(~,~)=1.

4. MINIMUM PRINCIPLE FOR
EFFECTIVE POTENTIALS

(3.39)

(3.40)

Minimum principles in scattering theory, based on
the nonrelativistic Schrodinger equation, have been
known for some time. ""In this section, we show that
these previously developed ideas can be applied, with
appropriate modifications, to establish a minimum
principle for scattering parameters, for reactions of the
type A+8 -+ C+D, based on the integral equations of
Sec. 2 and the generalized Rayleigh-Ritz property of
Sec. 3.

In order to obtain bounds on scattering parameters,
they must be real. We therefore work. with the reaction
matrix rather than the T matrix. "The Green's function
G, defined by Eq. (2.41), is written as'r

where

and

Ga= Ga(+'=G p+—G.r,

G p —r (G (+)+G (—))

G r —& (G (+) G (—))

(4.1)

(4.2)

(4.3)

The reaction matrix is defined as the solution of the
eRective two-body integral equation

If we express the basis functions as I',=G 'f;, we have

(3.38)

with H=E+V. To prove that the roots of Eq. (3.36)
give upper bounds on the energy eigenvalues, we intro-
duce an associated eigenvalue problem by replacing V
with V+XV' in Eqs. (3.33) and (3.34), with V' a
positive operator. The proof then proceeds as described
above. The minimum principle obtained is, in view of
Eqs. (3.36) and (3.38), precisely the Rayleigh-Ritz
principle in its usual form. "We note, incidentally, that
the normalization

tions can therefore be compared with the aid of Eq.
(2.24); this yields the Heitler equation

T p=~ p+Z& T «G&r&&p, (4.6)

which can be solved to give the T matrix once the R
matrix is known. If the total energy lies below the three-
body continuum threshold (this assumption is main-
tained throughout this section), then the effective-
potentia, l matrix, defined by Eq. (2.46), is Hermitian.
This important property follows from the fact that G",
in Eq. (2.46), has vanishing discontinuity across the
branch cut on the real-energy axis below the three-body
continuum threshold. The discontinuity which exists for
the complete resolvent operator has its origin in the
bound-state poles in the two-body scattering amplitudes
which appear in T~. Such poles have been removed in
the definition of T~~. Therefore the effect of these poles
is missing in the amplitude T" Lsee Eq. (2.30)j and in
the Green's function G" Lsee Eq. (2.34)j. Since G„p in
Eq. (4.5) is Hermitian, it follows immediately [e.g. ,
with the aid of Eq. (2.24)$ that the reaction matrix is
Hermitian. The form

atRa= P P p a *R pap, (4.7)

with a arbitrary, is therefore real.
Our next step is to establish a monotonicity theorem

relating changes in the diagonal E-matrix elements
induced by increments of definite sign in the eRective
potential. We consider two versions of Eq. (4.4) in the
matrix form

R= V+RGpV,

R'= V'+ V'6 pR',

(4 8)

(4 9)

R—R'= ~t~V~. (4.11)

where (Gp) p=G pb p. Then, from Eq. (2.24), we find
that

R—R'= (I+RGp) (V—V') (I+6pR'). (4.10)

To first order in AV—=V—V', we can replace R' by R on
the right-hand side of Eq. (4.10). With Q—= I+GpR,
Eq. (4.10) leads to

E p=V p+Q, R „G,pV, p,

or, equivalently,

(4 4) Suppose that hV is negative, i.e., diagonal matrix
elements in any representation are negative. Equation
(4.11) then implies the inequality

R.p ——V p+Q„V,G,pR.p. (4.5) atRa( atR'a, (4.12)
Equations (2.48) and (4.5) are linear integral equations
which diRer in the choice of Green s function. The solu-

"Y.Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 134,
S9&S (m64).

'~ R. Sugar and R. Blankenbecler, Phys. Rev. 136, B472 (1964)."L.Rosenberg, Phys. Rev. 138, 81343 (1965).
"M. L. Goldberger and K. M. Watson (Ref. 10), Sec. 7.3.
"We allow for the possibility that G is given not by Eq. (2.42),

but by more elaborate forms which take into account virtual
transitions into continuum states (see Ref. 7). The reaction-
matrix formalism discussed here is therefore a slight generalization
of the standard version discussed in Ref. 16. Ep= —s.(y, l'r )'"R p(p'pkp)'", (4.13)

where a is arbitrary, and R' is obtained from the solution
of Eq. (4.9).

The above inequality will break down if R changes
discontinuously with changes in V. It is therefore pref-
erable to express the inequality in terms of the eigen-
phase shifts, which do vary smoothly. We work in a
representation in which the total angular momentum is
fixed and define the matrix"
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where p, and k are the reduced mass and relative
momentum, respectively, in the two-body channel 0..
The eigenphase shifts are dered by

Kx;= tanb;x;,

K'x =tan(), 'x .

(4.14)

(4 1S)

In addition to the inequality x,tKx~&x;tK x; which is
valid when Eq. (4.12) holds, we also have x;tKx;)x,'tK'x, provided x; and x are both normalized to
unity, since x,"tK'x changes by a second-order quantity
when x is varied, subject to x ~x =1. We conclude
that tanb;& tanb and, finally,

(4.16)

This last inequality remains valid even when tan8;
becomes infinite. We can then build hV up to a finite
negative operator, with Eq. (4.16) preserved. In the
following, we will show how to obtain a variational ap-
proximation to the effective potential whose error is
negative. The variationally determined eigenphase shifts
then represent lower bounds on the true eigenphases.

To derive a variational principle for the effective
potential, we make use of the definition of V p obtained
by combining Eqs. (2.34) and (2.46). We find that

v p=l't(s )Gl'(sp)(1 —s p)

+g P c»(s.)(»LT )()c(sp), (4.17)

negative diagonal matrix elements if XtQ"X is negative,
with X=+ a X . To study the circumstances under
which this will be true, we turn to the eigenvalue
equation

(4.22)[9"(E)-l(y(E)Jr =0,

QAI 0 (4.23)

below the level E. Here we use the fact that the X;(E)-
versus-E curves have positive slope. H there were an
energy eigenvalue below E, there would be a positive A.

eigenvalue at the energy E. We conclude that if Eq.
(4.23) has no solutions for energies below E, then the
variationally determined effective potential gives rise to
a reaction matrix whose eigenphases lie below the true
eigenphases at energy E.

The result can be generalized to the case where there
is a finite number M of positive eigenvalues l(;(E)
defined by Eq. (4.22), or, equivalently, where there are
M energy eigenvalues below E. Consider, erst, the case
M= 1.According to a previously derived theorem, "we
can assert that

which is of the type considered in Sec. 3. (Note that, as
required, Q~ is Hermitian, since E lies below the three-
particle continuum threshold. ) By virtue of the Rayleigh-
Ritz principle for the eigenvalues l(;(E) of Eq. (4.22),
XtQ~X will be negative, provided the )(;(E) are all
negative. "This is equivalent to the condition that there
are no bound-state energy eigenvalues, de6ned by the
eigenvalue equation

where T" is the solution of Eq. (2.30), and where
C (Sp) is defined as

is negative, where

N—=X'Q"X—X'SX

c(s,)=Gr(s,). (4.18) S=—0"r, (r,tQ"r,)-'r,t9" (4.25)
In momentum space, C (Sp) reduces, on the energy shell,
to the bound-state wave function for subsystem Sp. A
variational expression for T~, with a formal expression
for the error, is provided by Eqs. (2.58) and (2.60),
respectively; we need only replace TD by Ti)".Since T"
is Hermitian, the choice of an Hermitian trial function
Ti" will guarantee that the variational expression T„~,
as well as the error term, will be Hermitian. LSee the
discussion leading to Eq. (2.62).$ With T" replaced by
T„ in Eq. (4.17), we obtain a variational expression for
the e8ective potential, with an error of the form

and I'i is an approximation to the solution of Eq. (4.22)
which is suiliciently accurate, so that F,tg"F( is posi-
tive. To apply this result, we observe that Eq. (4.19)
implies

a'Va =a'V„a+ X'9~X, (4.26)

with X=+„u„X„.According to Eq. (4.24), the second
term on the right-hand side of Eq. (4.26) can be re-
placed by XtSX with negative error, i.e., the matrix

(V p)„+X tSXp

V,p
—(V p)„=X,tQ"Xp.

We have defined

Q"= Q—GTD"Q.

(4.19)

(4.20)

will provide a variational approximation to the effective
potential so that the error is a negative matrix. Now, Xp
is unknown, since it involves the unknown matrix T"
Lsee Eq. (4.21)$. Nevertheless, X tSXp is known, in

Xp is a 3&& 1 matrix operator with elements

(v)gp —g (v)L/T&$(&)lglp
5&p

(4.21)

where hT" =T~—T~"
According to Eq. (4.19), the error in the variational

estimate of the effective-potential matrix will have

' Here we assume that X is an admissible trial function in the
X-eigenvalue problem. This is quite reasonable, since the eigen-
value problem is essentially a bound-state problem, and X is a
linear combination of (connected) scattering amplitudes appro-
priate to the energy region below the continuum threshold. The
situation is entirely analogous to the one which arises in the
Hamiltonian formulation of the minimum principle discussed in
Refs. 13—15."L.Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev. 118,
184 (1960).
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S Q QAz (D
—i) . .p. ted. (4.28)

where the matrix D, with elements

D;;=F;g F;g, (4.29)

is positive. This is to be achieved by appropriate choice
of the trial functions F;~.

As a simple application of the formalism, we take the
trial function T&" to be zero. The variational expression
for the effective potential then becomes

(V.,)„=r'(S.)Gr(S,) (1—S.,)
+C'(S.) 2 &"(Sv)@(SP), (43o)

y&a, P

where the amplitudes 2'"(S„)are the diagonal elements
of Tn~. Now the complete two-body scattering operator
for subsystem p can be written as

&(Sv)= l'(Sv)+ I'(Sv)G(Sv) I'(Sv) (4 31)

where V(S~) is the potential-energy operator, and G(S~)
is the resolvent operator for S~. According to the
eigenfunction expansion of the resolvent operator, we
have

G(S )=G"(S,)+G (S ), (4.32)

where G~(S„) contains the bound-state pole contribu-
tions, and G"(S~) represents a sum over continuum
states. We remark that G"(S~) is a negative operator,

terms of T~ and Tn". This can be verified from the
definitions, Eqs. (4.21) and (4.25), and the relation

Q"T&=GTi)" (4.27)

which follows from the integral equation satisfied by T".
The general case M & 1 is treated in a similar manner,

with Eq. (4.25) replaced by

since the total energy E lies below the continuum
threshold. Our separable approximation for the two-
body scattering amplitude is taken as

&'(S.)= l'(S.)G'(S.)I'(S ) (4 33)
so that

T"(Sv) = l'(Sv)+l'(Sv)G'(Sv)~(SV) (4 34)

Equation (4.30) then becomes

V.=V.+V, , (4.35)
where

(I'-p).= 2 4'(S.) l'(S.)G"(S.)I'(S.)C'(St) (437)
y&a, P

Now diagonal matrix elements of V„can be put in the
folTQ

where
atV,a=g„q„tG"(S„)g„,

e,= ~(S,)r„(I-~,.) .~(S,).

(4.38)

(4.39)

Since G"(S„) is negative, we see that atV, a is negative
for arbitrary a.

Let us assume that there are no bound-state solutions
of Eq. (4.23), so that the error in V, is negative. The
previous discussion then shows that the error made in
replacing V by V, is negative. The use of V, as the
eBective potential is equivalent to the well-known
resonating-group (or static) approximation. We have
shown that this approximation gives rise to lower bounds
on the eigenphase shifts under the above assumption. "

' The analog of this theorem in the Hamiltonian formulation
of the minimum principle is given in Ref. 13.

(&-~).=1'(S-)Gl (S~)(I-~-~)

+ Q 4' (S )V(S~)C'(Sp) (436)
yea, P


