SU(3) Crossing Matrix

R. T. SHARP*

Department of Physics, University of Illinois, Urbana, Illinois (Received 17 April 1967)

The SU(3) crossing matrix is given in a simplified form and is related to the more symmetric 6pq symbol.

1. SU(3) CROSSING MATRIX

HE SU(3) crossing matrix is useful in relating the SU(3) parts of amplitudes in crossed channels of two-particle-in two-particle-out reactions. Its formulation and application have been discussed by several authors.¹⁻³ In this section, we derive a simplified formula for its actual calculation. We follow the notation and phase conventions of de Swart¹.

According to de Swart the crossing matrix from channel II to channel I is [his Eq. (6a)]

 $(\mu\beta\gamma|\beta_{11}(\mu_1,\mu_2,\mu_3,\mu_4)|\mu'\beta'\gamma')$

$$=\sum_{\nu_{1}\nu_{2}\nu_{3}\nu_{4}\nu'}(-1)^{\nu_{2}+\nu_{3}}\binom{\mu_{1}}{\nu_{1}}\frac{\mu_{2}}{\nu_{2}}\frac{\mu}{\nu}\gamma\binom{\mu_{3}}{\nu_{3}}\frac{\mu_{4}}{\nu_{4}}\frac{\mu}{\nu}\beta)$$
$$\times\binom{\mu_{1}}{\nu_{1}}\frac{\mu_{3}}{\nu_{4}}\frac{\mu'}{\nu'}\gamma'\binom{\mu_{2}}{\nu_{2}}\frac{\mu_{4}}{\nu_{4}}\frac{\mu'}{\nu'}\beta'$$
. (1.1)

The μ 's here label SU(3) representations and the ν 's are the "magnetic" quantum numbers T, M, Y which label the states of a representation. The β 's and γ 's are labels to distinguish the degenerate couplings of three representations. μ^* means the representation conjugate to μ and $-\nu$ means T, -M, -Y. Also,

$$v = \frac{2}{3}(q-p) + M + \frac{1}{2}Y \tag{1.2}$$

is the generalization of de Swart's (1) to an arbitrary representation; he considers the octet model where $\frac{1}{3}(q-p)$ is an integer.

We now give an equivalent definition of the crossing matrix in terms of the recoupling of three representations. For this purpose consider the state

$$\sum_{\nu\nu_{1}\nu_{3}\nu_{4}} \left| \frac{\mu^{*}}{-\nu} \right\rangle \left| \frac{\mu_{4}}{\nu_{4}} \right\rangle \left| \frac{\mu_{1}}{\nu_{1}} \right\rangle (-1)^{\nu+\nu_{3}} \times \left(\frac{\mu_{3}}{\nu_{3}} \frac{\mu_{4}}{\nu_{4}} \frac{\mu}{\nu} \beta \right) \left(\frac{\mu_{1}}{\nu_{1}} \frac{\mu_{3}^{*}}{-\nu_{3}} \frac{\mu'}{\nu'} \gamma' \right), \quad (1.3)$$

in which the representations $\mu^* \mu_4$ are combined to give μ_3^* and the result coupled to μ_1 to give a state which transforms as

$$\left| {}^{\mu'}_{\nu'} \right\rangle$$
.

We note parenthetically that

$$(-1)^{v+v_3} \begin{pmatrix} \mu_3 & \mu_4 & \mu \\ & & \beta \\ \nu_3 & \nu_4 & \nu \end{pmatrix}$$

is equal to

$$(N_{\mu}/N_{\mu_3})^{1/2} \begin{pmatrix} \mu^* & \mu_4 & \mu_3^* \\ & & \\ -\nu & \nu_4 & -\nu_3 \end{pmatrix}$$

within a phase which is independent of magnetic quantum numbers. The N's are the dimensionalities of the respective representations.

Now expand the state (1.3) in terms of the complete set

$$\sum_{\nu\nu_{1}\nu_{2}\nu_{4}} \left| \begin{array}{c} \mu^{*} \\ -\nu \end{array} \right\rangle \left| \begin{array}{c} \mu_{4} \\ \nu_{4} \end{array} \right\rangle \left| \begin{array}{c} \mu_{1} \\ \nu_{1} \end{array} \right\rangle (-1)^{\nu+\nu_{2}} \\ \times \left(\begin{array}{c} \mu_{1} & \mu_{2} & \mu \\ \nu_{1} & \nu_{2} & \nu \end{array} \right) \left(\begin{array}{c} \mu_{2}^{*} & \mu_{4} & \mu' \\ -\nu_{2} & \nu_{4} & \nu' \end{array} \right), \quad (1.4)$$

in which $\mu^*\mu_1$ are coupled to give μ_2^* and the result coupled to μ_4 to give μ' ; specifically we write

$$\sum_{\nu\nu_{1}\nu_{3}\nu_{4}} \left| \frac{\mu^{*}}{-\nu} \right\rangle \left| \frac{\mu_{4}}{\nu_{4}} \right\rangle \left| \frac{\mu_{1}}{\nu_{1}} \right\rangle (-1)^{\nu+\nu_{3}} \left(\frac{\mu_{3}}{\nu_{3}} \frac{\mu_{4}}{\nu_{4}} \mu \right) \left(\frac{\mu_{1}}{\nu_{1}} \frac{\mu_{3}^{*}}{-\nu_{3}} \frac{\mu'}{\nu'} \gamma' \right) \\ = \sum_{\mu_{2}\beta'\gamma} \frac{N_{\mu_{2}}}{N_{\mu'}} \sum_{\nu\nu_{1}\nu_{2}\nu_{4}} \left| \frac{\mu^{*}}{-\nu} \right\rangle \left| \frac{\mu_{4}}{\nu_{4}} \right\rangle \left| \frac{\mu_{1}}{\nu_{1}} \right\rangle (-1)^{\nu+\nu_{2}} \left(\frac{\mu_{1}}{\mu_{2}} \frac{\mu_{2}}{\mu} \gamma \right) \left(\frac{\mu_{2}^{*}}{-\nu_{2}} \frac{\mu_{4}}{\nu_{4}} \frac{\mu'}{\rho'} \beta' \right) Z_{\mu_{2}\beta'\gamma}.$$
(1.5)

Taking the scalar product of both sides of Eq. (1.5)with the state (1.4) identifies the coefficient $Z_{\mu_2\beta'\gamma}$ as being just the crossing matrix element (1.1).

But we can evaluate $Z_{\mu_2\beta'\gamma}$ more simply, following

* Present address: McGill University, Montreal, Canada.
¹ J. J. de Swart, Nuovo Cimento 3I, 420 (1964).
² M. M. Nieto, Phys. Rev. 140, B434 (1965).
³ H. Mani, G. Mohan, L. Pande, and V. Singh, Ann Phys. (N. Y.) 36, 285 (1966); D. B. Fairlie, J. Math. Phys. 7, 811 (1966).

168 1753

the approach used by Jucys and Bandzaitis⁴ to evaluate SU(2) 6j and 9j symbols. Equate coefficients of

$$\frac{\mu^{*}}{-\nu} \Big\rangle \Big|_{\nu_{4}}^{\mu_{4}} \Big\rangle \Big|_{\nu_{1}}^{\mu_{1}} \Big\rangle$$

⁴ A. Jucys and A. Bandzaitis, Lithuanian S.S.R. Science Academy, Institute of Physics and Mathematics Publication No. 6, in Russian, 1965 (unpublished).

on the two sides of Eq. (1.5); the ν_2 (ν_3) sum is over re T_2 (T_3) only. The result is

$$\sum_{\mu_{2}\beta'\gamma} \frac{N_{\mu_{2}}}{N_{\mu'}} \sum_{T_{2}} \binom{\mu_{1} \quad \mu_{2} \quad \mu}{\nu_{1} \quad \nu_{2} \quad \nu} \gamma \binom{\mu_{2}^{*} \quad \mu_{4} \quad \mu'}{-\nu_{2} \quad \nu_{4} \quad \nu'} \beta' Z_{\mu_{2}\beta'\gamma}$$

$$= (-1)^{\nu+\nu_{3}} \sum_{T_{3}} \binom{\mu_{3} \quad \mu_{4} \quad \mu}{\nu_{3} \quad \nu_{4} \quad \nu} \beta$$

$$\times \binom{\mu_{1} \quad \mu_{3}^{*} \quad \mu'}{\nu_{1} \quad -\nu_{3} \quad \nu'} \gamma' . \quad (1.6)$$

Multiply Eq. (1.6) by

$$\begin{pmatrix} \mu_1 & \mu_2 & \mu & \\ & & \gamma \\ \nu_1 & \nu_2 & \nu & \end{pmatrix}$$

and sum over ν_1 , T with ν_2 , ν_4 , ν' fixed. From the orthogonality of the Clebsch-Gordan coefficients, there

$$\sum_{\beta'} \begin{pmatrix} \mu_2^* & \mu_4 & \mu' \\ -\nu_2 & \nu_4 & \nu' \end{pmatrix}^2 Z_{\beta'} \\ = N_{\mu'} / N_{\mu} \sum_{\nu_1 T T_3} (-1)^{\nu + \nu_3} \begin{pmatrix} \mu_1 & \mu_2 & \mu \\ \nu_1 & \nu_2 & \nu \end{pmatrix}^2 \\ \times \begin{pmatrix} \mu_3 & \mu_4 & \mu \\ \nu_3 & \nu_3 & \nu \end{pmatrix} \begin{pmatrix} \mu_1 & \mu_3^* & \mu' \\ \nu_1 & -\nu_3 & \nu' \end{pmatrix}^2.$$
(1.7)

We have suppressed all but the β' dependence of the crossing matrix element $Z_{\beta'}$. It is advantageous to factor each SU(3) Clebsch-Gordan coefficient in Eq. (1.7) into an isoscalar factor and an SU(2) Clebsch-Gordan coefficient⁵:

$$\begin{pmatrix} \mu_1 & \mu_2 & \mu \\ \nu_1 & \nu_2 & \nu \end{pmatrix} = \begin{pmatrix} \mu_1 & \mu_2 \\ T_1 Y_1 & T_2 Y_2 \\ \end{pmatrix} \begin{bmatrix} \mu \\ TY & \gamma \end{pmatrix} \\ \times \begin{pmatrix} T_1 & T_2 \\ M_1 & M_2 \\ \end{bmatrix} \begin{pmatrix} T \\ M \end{pmatrix} .$$
(1.8)

Nieto² has pointed out that the SU(2) factors in the crossing matrix yield a 6j symbol. In fact, by Jucys and Bandzaitis's Eq. (22.2), we see⁴

$$\begin{pmatrix} T_{2} & T_{4} \\ -M_{2} & M_{4} \end{pmatrix} \begin{pmatrix} T' \\ M' \end{pmatrix}^{-1} \sum_{M_{1}} (-1)^{T_{2}+M_{2}+T_{3}+M_{3}} \begin{pmatrix} T_{1} & T_{2} \\ M_{1} & M_{2} \end{pmatrix} \begin{pmatrix} T_{3} & T_{4} \\ M_{3} & M_{4} \end{pmatrix} \begin{pmatrix} T_{1} & T_{3} \\ M_{1} & -M_{3} \end{pmatrix} \begin{pmatrix} T' \\ M_{1} & -M_{3} \end{pmatrix} \begin{pmatrix} T' \\ M' \end{pmatrix}$$

$$= (-1)^{T+T_{2}+T'-T_{3}} (2T+1) \begin{cases} T_{1} & T & T_{2} \\ T_{4} & T' & T_{3} \end{cases} , \quad (1.9)$$

with M_2M_4M' fixed. From Eqs. (1.7)-(1.9) we get

$$\sum_{\beta'} \begin{pmatrix} \mu_2^* & \mu_4 \\ T_2 - Y_2 & T_4 Y_4 \end{pmatrix} \begin{pmatrix} \mu' \\ T' Y' \end{pmatrix} Z_{\beta'} = N_{\mu'} / N_{\mu} \sum_{Y_1 T_1 T T_3} (-1)^{*2' + *3' + T + T_2 + T' - T_3} (2T+1) \begin{pmatrix} \mu_1 & \mu_2 \\ T_1 Y_1 & T_2 Y_2 \end{pmatrix} \begin{pmatrix} \mu \\ T Y \end{pmatrix} \times \begin{pmatrix} \mu_3 & \mu_4 \\ T_3 Y_3 & T_4 Y_4 \end{pmatrix} \begin{pmatrix} \mu \\ T Y \end{pmatrix} \beta \begin{pmatrix} \mu_1 & \mu_3^* \\ T_1 Y_1 & T_3 - Y_3 \end{pmatrix} \begin{pmatrix} T_1 & T & T_2 \\ T_4 & T' & T_3 \end{pmatrix}, \quad (1.10)$$

where

$$v' = \frac{2}{3}(q-p) - T + \frac{1}{2}Y.$$
 (1.11)

We pick D sets of values of the free variables $T_2Y_2T_4Y_4T'Y'$, where D is the degeneracy of the coupling β' , in order to have D equations to solve for the D crossing matrix elements $Z_{\beta'}$. The values of the free variables used should be chosen judiciously to facilitate evaluation of the isoscalar factors and 6j symbol in Eq. (1.10). In practice D is very small (1 or 2); by using the symmetries of the crossing matrix we can let the β or γ with the smallest D play the role of β' [see Eq. (2.5)].

Finally we get for the crossing matrix

$$Z_{\beta'} = \sum_{F} A_{\beta' F} B_{F}. \qquad (1.12)$$

Here $A_{\beta'F}$ is the reciprocal of the matrix

$$(A^{-1})_{F\beta'} = \begin{pmatrix} \mu_2^* & \mu_4 \\ T_2 - Y_2 & T_4 Y_4 \\ T'Y' & \beta' \end{pmatrix},$$

whose columns are labeled by β' and whose rows are labeled by the judiciously chosen free variables F; B_F is the right-hand side of Eq. (1.10).

The crossing matrix connecting other pairs of channels, e.g., de Swart's¹ Eq. (6b), can be treated in a similar manner.

This method of evaluating the crossing matrix is not special to the group SU(3).

⁵ J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

1754

appears as

2. RELATION TO 6µ SYMBOL

The 3μ or SU(3) Wigner coefficient and its relation to the SU(3) Clebsch-Gordan coefficient are discussed by Ponzano⁶ and by Chew and Sharp.⁷ Briefly, it is defined by

$$S_{\gamma}(123) = \sum_{\nu_1 \nu_2 \nu_3} \begin{vmatrix} \mu_1 & \mu_2 & \mu_3 \\ \nu_1 & \nu_2 & \nu_3 \end{vmatrix} \begin{pmatrix} \mu_1 & \mu_2 & \mu_3 \\ \nu_1 & \nu_2 & \nu_3 \end{vmatrix}; \gamma \left(2.1 \right)$$

Here $S_{\gamma}(123)$ is a certain normalized invariant constructed from the representations $\mu_1\mu_2\mu_3$. On interchange of two of the three representations, the invariant and hence the Wigner coefficient are multiplied by $(-1)^s$, where

$$s = \frac{1}{3} \left| \sum_{i} (p_i - q_i) \right|.$$
 (2.2)

The Wigner coefficient is invariant under the "reversal" $\mu \rightarrow \mu^*$, $\nu \rightarrow -\nu$ applied to all three spaces. It factors into a symmetric isoscalar factor and an SU(2) Wigner coefficient.

The asymmetric SU(3) Clebsch-Gordan coefficient is related to the symmetric Wigner coefficient by⁷

$$\begin{pmatrix} \mu_1 & \mu_2 & \mu_3 \\ \nu_1 & \nu_2 & \nu_3 \end{pmatrix} = (-1)^{\nu_3} \epsilon_{123\gamma} N_3^{1/2} \begin{pmatrix} \mu_1 & \mu_2 & \mu_3^* \\ \nu_1 & \nu_2 & -\nu_3 \end{pmatrix} .$$

Here $\epsilon_{123\gamma}$ is a phase factor independent of magnetic quantum numbers chosen to make positive the particular asymmetric isoscalar factor in which M_3 , M_1 have the largest values in their respective representations and T_2 the largest value consistent with that; in practice ϵ can be determined only after carrying out the orthogonalization of degenerate product states.⁸

We define the 6μ , or 6pq, symbol as

$$\langle S_{\gamma_1}(124^*)S_{\gamma_2}(436^*)S_{\gamma_3}(1^*3^*5)S_{\gamma_4}(5^*2^*6)\rangle.$$
 (2.3)

⁶ G. Ponzano, Nuovo Cimento 41A, 142 (1966).

⁷C.-K. Chew and R. T. Sharp (unpublished).

To evaluate the expression (2.3) it is understood that when one substitutes for the S's from Eq. (2.1), a starred state

 $|\mu^*\rangle$

with all bras on the left, kets on the right. Thus the 6μ symbol appears as a sum over a product of four SU(3) Wigner coefficients [if the Wigner coefficients are factored, the *M* sums over SU(2) coefficients yield a 6i symbol].

The symmetries of the 6μ symbol are apparent from formula (2.3): It is multiplied by the appropriate $(-1)^s$ on interchange of two representations in the same invariant S and is unaffected when all representations are replaced by their conjugates. A much simpler but less symmetric expression for the 6μ symbol can be obtained by methods similar to those used in Sec. 1 and is implicit in Eqs. (2.5) and (1.12).

Let $|\mu_1\mu_2(\mu_4\gamma_1)\mu_3(\mu_6\gamma_2)\rangle$ be the state formed by coupling $\mu_1\mu_2$ to give μ_4 , and μ_3 with the result to give μ_6 . Then it turns out that the recoupling coefficient is given in terms of the more symmetric 6μ symbol by

Similarly the crossing matrix element (1.1) can be expressed in terms of the 6μ symbol:

ACKNOWLEDGMENT

The author wishes to thank Professor H. W. Wyld for interesting him in the SU(3) crossing matrix.

⁸ It would seem more convenient to define $\epsilon_{123\gamma}=1$, thus achieving a simpler relation between Clebsch-Gordan and Wigner coefficients; the old convention (choosing a certain Clebsch-Gordan coefficient positive) has no special advantage anyway.