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constraint conditions would lead to similar equations
relating several of the Hearn-Leader amplitudes.

The low-energy theorem gives the value Bs(s=stt',
t=0)= 2tts. In the forward direction, however, the Born
term of Iis vanishes (for all s) and the low-energy
theorem emerges from the continuum of 86, which is the
statement of the Drell-Hearn sum rule. However, the
roles of Born term and continuum interchange if we
write separate dispersion relation for A+ and A . The

contribution of A+ vanishes in the forward direction.
The continuum of A also vanishes in the low-energy
limit, because of odd crossing, and the low-energy
theorem for 86 emerges solely from the Born term of
A . The Drell-Hearn sum rule emerges from the
dispersion relation for A as a superconvergence
condition, showing that it is the decreasing high-energy
behavior which relates the Born term and continuum
of this amplitude.
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The occurrence in nature of very high-spin baryons leads to the suggestion that they can be described
as composites of high-spin baryons and mesons with low orbital angular momentum. As a consequence,
there appears to be no limit beyond which the baryon spectrum cannot extend. We implement these ideas
with a dynamical bootstrap model of positive-parity baryons employing SU(2)XO(3) symmetry. We
prove the consistency of this symmetry with our dynamics, and predict a spectrum in accord with
the latest phase-shift analysis of the pion-nucleon system. We indicate how our model is described in a
Regge theory of angular momentum trajectories, and we conclude with a comment on the negative-parity
baryon spectrum.

1. INTRODUCTION

HERE is now direct experimental evidence ex-

hibiting baryon resonance structure above 3 GeV
center-of-mass energy, ' and even indirect evidence that
resonance structure at 10 GeV may produce observable
polarization phenomena in scattering reactions. ' This
leads one to suspect that the baryon spectrum may con-

tinue indefinitely to states of arbitrarily high spin. Such
behavior may place fairly restrictive demands on the
possible form a theory of hadrons can have, and ac-

cordingly has been the subject of several interesting

papers. ' However, it appears that before any Grm con-

clusions can be reached, one must have a clear picture
of the excitation mechanism, i.e., of the physics of the
excited states.

The most interesting early work on this subject was

done by Carruthers, who used bootstrap arguments to
study excited states of the nucleon. He used an "I;
excitation" mechanism whereby an excited state is gen-

*Supported in part by the U. S. Atomic Energy Commission
and the National Science Foundation.

t Present address.
' A. Citron et a/. , Phys. Rev. 144, 1101 (1966);S. W. Kormanyos

et at. , Phys. Rev. Letters 16, 709 (1966).
s B. R. Desai et at. , Phys. Rev. Letters 18, 565 (1967).
'N. N. Khuri, Phys. Rev. Letters 18, 1094 (1967); C. E.

Jones and V. L. Teplitz, ibid 19, 135 (196/. ).
4 P. A. Carruthers, Lectgres iw Theoretical Physics (University

of Colorado Press, Boulder, Colo. , 1965), VoL VIIb.

crated by increasing the orbital angular momentum of
the ground-state constituents. For instance, if the
tV*(1236) s+ resonance is primarily coupled to a p-wave
sr' composite then its 6rst excited state, the-'~*'(1924)
is primarily coupled to an F-wave xN composite. The
most appealing aspect of this approach is its consistency
with the dynamics of long-range forces, in that the very
forces which bind the xN system to form a p wave
nucleon are also attractive in the F wave. 4 It is very
likely that this mechansim will play an important ro]e
in any realistic model of the lowest excited states. How-
ever, there are both experimental and theoretical reasons
for believing that this approach cannot account for the
over-all or global structure of the baryon spectrum, in
particular the striking linear relation between spin and
mass squared. On an empirical level, we may calculate
coupling constants g($'Bsr) from the observed decay
widths of the high-spin baryons 8' into low-spin baryons
B.%e then 6nd that as the di6erence in spin between3' and 8 becomes large, the coupling implied by the
reduced decay width becomes extremely small, perhaps
exponentially so. For instance, the F-wave decays of
1P(1688) and 1V*'(1924) into sill have coupling con-
stants ~1/100 those of EEsr and Jtf*En., respectively
(when expressed as pseudovector coupling). On a theo-
retical level, the "L-excitation" mechanism cannot ex-
plain the long chains of baryon excited states implied
by experiment since in such a scheme the singularities
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used as forces to bootstrap the high-spin, high-mass
states no longer lie "nearby" them, i.e., there is no real

justification for the dynamics used.
Ke feel that the high-spin excited states must be

described by con6gurations of virtual particles with low

values of the orbital angular momentum. ' Postponing
detailed discussions of models until Secs. 2 and 3, we
note here two properties which descriptions of these
high-spin baryons should contain; (i) The predicted
states should be consistent with the same type of dy-
namics which governs the ground states, i.e., we as-
sume that the most strongly attractive of the long-range
forces in two-body composites determine the quantum
numbers of the populated states. (ii) Since the gap in

spin between baryon excited states is apparently 6J= 2,
we expect that exchange forces are at least as important
as the direct potential given by meson exchange proces-
ses. Perhaps the most significant consequence of this
paper is that there appears to be no limit to the spin
and mass of the excited states we generate, for at any
given energy only the nearest singularities are being
used in the dynamics. This point has been stressed by
the author in a preliminary report of this work. '

%e now summarize the contents. In Sec. 2 we study
a model of the N-N*(1236) excited states which is a
very simple extension of the Chew reciprocal bootstrap~
of the S-S~ system. Section 3 is devoted to a study of
a model containing SU(2)XO(3) symmetry. In Sec. 4,
we study properties of the SU(2) XO(3) model in greater
detail and in Sec. 5 discuss a consequence of this model
for the negative-parity baryons. A discussion of our
results concludes the paper in Sec. 6.

2. EXTENSION OF THE N-N* RECIPROCAL
BOOTSTRAP

One of the earliest successes of bootstrap theory was
Chew's calculation with the nucelon and the 3-3 res-
onance (hereafter referred to as N and 1P, respectively)
in which the EX7r coupling constant and E*Ex width
were shown to satisfy the consistency requirements of a
simple 5-matrix model. ' Later, Lin and Cutkosky used
the Bethe-Salpeter equation to generate bootstrap equa-
tions in a study of the X, Ã~, x system and found reason-
able agreement with experiment in their estimate of the
gEx and S*Sxcoupling constants and the S*-Emass
difference. ' Our 6rst model of baryon excited states
involves a very natural extension of the above ideas.
For simplicity we restrict our calculations to systems
having zero strangeness. (All of the following results
remain qualitatively the same upon the inclusion of
strange particles. ) Suppose that 1V and N* each have

' This approach has also been stressed by G. F. Chew (private
communication); S.Y. Chu and C. I.Tan, University of California
Radiation Laboratory Report No. UCRL 17511, 1967 (unpub-
lished).' E. Golowich, Phys. Rev. Letters 18, 633 (1967).' G. F. Chew, Phys. Rev. Letters 9, 233 (1962).' K. Y. Lin and R. E. Cutitosky, Phys. Rev. 140, 8205 (1965).

just a single lowest excited state, the s+ N'(1688) and
-,'+ N*'(1924) with isosPin s and ss, resPectively, which
form a reciprocal bootstrap analogous to the ground-
state particles. That is, E' and E*' are primarily P-wave
bound states in the E'm. , E*'x channels, and, with the
assumption of static kinematics, interact by means of
E' and E*' exchange forces. Consider the following set
of bootstrap equations implied by the Bethe-Salpeter
equation. As shown in Fig. 1, they are of two types,

vertex:

gab P gafgebgefDab
e,f

and normalization:
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and k= (tp' —1)'" is the pion momentum. Thereupon,
the bootstrap equations for the E', E*', x system take
the form

g p ———(31/105)gp'+ (40/21) gpgt'(1 —2X)

+ (64/63) gpgp(1 —x),
g.= t.(4/»)g"(1+x)+(5/~)g. g.+(1/63)g"

+ (4/21) gss(1 —x)7gt,

gs =(649/945) gs'+ (5/7) gt'gp(1+2X)+ (8/21) gtsgp(1+X),

In the above, 3f; is the mass of baryon i, the meson
mass is unity, A is a I'-wave cutoff, E,~ is a two-
particle Green's function, and C q'f is a factor propor-
tional to crossing matrix elements. The equations (1a)—
(2b) relate coupling constants and baryon mass differ-
ences, yielding for example 235 MeV for the Ã*-S mass
difference in the E, S*, x model. ' In our Ã', S*', x
model, there are three coupling constants f(N'N'pr),
f(N*'N*'7r), f(1V*'N'~), and one mass difference NP' N'. -

By expanding the equations (1a)-(2b) to ftrst order in
the baryon mass difference, we can express the bootstrap
equations in terms of the dimensionless variables

gp Ds'"f(N'N'7r)——, gt Dp'"f(N*'N'pr—)—,

gs =Ds'"f(1VP'NP'pr),

and X= ( D/Dp, )LM(N~') —M(N')), where
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and

(31/105)go +gts{(64/63)go t'1 (1+art)Xj+(32/63)go (1—rtX)+(8/189)gr'I 1—2(1+art)X)
+ (32/63) gs'I 1—2(1+z rl) X—qX)+ (80/21) gogsI 1—(1+z rt)X—rtXj}= (649/945) gs'+ gr'((4/21)gs'(1+ rtX)

+ (8/21)gssL1+ (1+-,'rt)x)+ (1/63)grsL1+2(1+-,'rt)x)+ (10/7)gogsI 1+(1+-',rt)X+rtXj

+ (4/21)go'I:1+ 2(1+z si)X+ r}X1) (4)

In the above, rt=DsDe//Dss, and we choose h. to have
the same value as the cutoff in the Ã, S~, m model,
h.=5.4m . (There, it serves to pin down the scale of
the bootstrap model by giving the empirical numerical
value of the NNsr coupling constant. ) The only self-
consistent solution to Eqs. (4) is ge ——0.68, gt =0.39,
g2 ——1.2, and X= —0.4, the latter corresponding to a
mass difference M(N*') —M(N') = —250 MeV. Hence
this simple extension gives an N*' with mass substan-
tially /ess than N, in obvious disagreement with experi-
ment. The reason that the N, N*, m mode does not ex-
tend simply to N', N*', x can be understood by studying
several of the forees. For instance, the process contribut-
ing to NEz coupling in which a nucleon is exchanged
in elastic xS scattering has a positive crossing coef6-
cient (—1/3) && (—1/3) = 1/9 leading to a weak but
attractive force. The analogous process for the N'N'z

coupling, in which N' is exchanged in elastic S'm scat-
tering has a fairly large, negative crossing coeS.cient,
(—1/3) X (31/35) = —31/105, which gives a rather im-

portant repulsion. Hence, although the isospin proper-
ties of the N*, N, x and N*', N', x systems are alike,
the spin properties contain enough difference to destroy
what seems at 6rst to be a straightforward analogy. One
might argue that for consistency, the model should in-
clude not only the separate N, N*, m and N', N*',
systems described by P wave (static) -kinematics, but
also the coupling between these systems, via the E'-wave

vertex N'N*x. Although this greatly enlarges the boot-
strap system, we have looked into this problem and
have found no self-consistent solutions at all. There is
a very simple reason for this. The presence of N* leads
mainly to rather large repulsions for N', hence pushing
its mass even further above N*'. The mutual antagonism
between Nstg and N' is borne out empirically by the
small branching ratio of the Ih'-wave Ã' ~ N*x decay

relative to the F-wave N' —& Nx. ' Since, in terms of
number of particles, the model described in this section
contains the greatest degree of simplicity, it is apparent
that further effort must be accompanied by the inclusion
of more channels.

3. MODEL WITH SU(n)&& O(3) SYMMETRY

In a bootstrap model containing many particles, it
is useful to seek a group whose irreducible representa-
tions correspond to particle multiplets (at least in some
approximate manner) and which, at the same time, is
consistent with the dynamics used. Otherwise the boot-
strap machinery is too cumbersome to manipulate and
any calculation becomes a game of numbers. Now, in
both the current algebra and quark descriptions of the
baryon spectrum, excited states may appear according
to the group SU(rt) &(0(3).' (The value of n depends
upon the particular model one chooses. In the work
described below, we take e= 2 for simplicity, noting
however, that our conclusions generalize trivially to
rt= 3 and 6.) This group has also been used in the phe-
nomenological effort to classify the baryon ground state
by Gyuk and Tuan, "and the very interesting work of
Capps" who studies the dynamics of the baryon ground
state, particularly that of the negative-parity baryons.
(Also see Sec. 5 of this paper. )

Motivated by the above considerations, we investi-
gate the excitation spectrum expected for positive-par-
ity baryons whose coupling constants and masses are
classified according to SU(2) &&0(3), basing our study
on bootstrap dynamics as in Sec. 2. First, we describe
this symmetry, according to which the excited states
of N and N»' have spin J= 1/2+ K and J= 3/2+ K,
respectively, where E= 2, 4, ,

"and so the chain of
particles arising from the nucleon ground state has spin-
Parity (-',+), (-,'+, se+), (-,'+, s+), . . . We have used the

(a )

b,e, f

(b)

FIG. 1. The (a) vertex and (b) normalization equations.

' A. H. Rosenfeld et al., Rev. Mod. Phys. 39, 1 (1967)."For instance, see M. Gell-Mann, Phys. Rev. Letters 14, 77
(1963) and R. H. Dalitz, in Proceedings of the Thirteenth Inter
national Conference on High Energy Physics, Berkeley, 1966 (Uni-
versity of California Press, Berkeley, 1967), p. 2 15."I. P. Gyuk and S. F. Tuan, Phys. Rev. 151, 1233 (1966).

rs R. H. Capps, Phys. Rev. 158, 1343 (1967), and references
cited therein."Values of Itr' = j, 3, 5 ~ ~ .would lead to an obvious disagree-
ment with experiment. There are several possible reasons for dis-
missing odd values of E, the most promising being that in boot-
strap dynamics, states with even values of E' tend to repel those
with odd X, implying that it is possible to have a consistent model
with all E even or odd, but not both. The author is indebted to
Professor R. E. Cutkosky for several enlightening conversations
on this point and related subjects.
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notation (J~) and have put particles belonging to a
given multiplet within the same parentheses. Our SU(2)
XO(3) model contains only baryons with isospins
T= —'„—,', so for each value of E there are just three
independent I'-wave couplings, which we call go, g~, g&,

corresponding, respectively, to coupling two T= 2, one
T= —', and T=~, and two T=~ baryons at a vertex.
For instance, if E = 0, go= g(A'&ir), gi= gP *Ã7r),
g2

——g(&*&*~).Suppose for some value of E, we wish
to express the coupling of a specific baryon of spin J
to one of spin J' (together with a P wave -pion) in
terms of the g;, i=0, 1, 2. As derived in the Appendix,
the appropriate formula is given in terms of a 6j symbol

g (Js J) ( )i 2$ $'+K—+s—[(25+1)(2J'+1)]&/2

S' S
X g, (S',5), i=O, 1, 2, (5)E J J'

where S, S' are defined by J=S+I, J'= S'+I » an
examp]. e, for X=2, go relates the following couplings
involving two T= ~~ excited nucleon states: g(~, ~+pr)
= (7/15)"'g g(-'+ -'+ ~) = (8/15)'"g '

—(i)il&go, all of which follows simply from Kq. (5).
With the above description of SU(2) XO(3) in hand,

we are ready to construct a model of positive-parity
baryon excited states. We extend the model described
in Sec. 2 by allowing two SU(2) XO(3) multiplets of a
given E with isospins ~, ~ to form a reciprocal I'-wave
bootstrap. The question is then: Is the use of the SU(2)
XO(3) symmetry consistent with our P wave dyn-am-

ical model of interacting high-spin baryonsP That the
answer is evidently afhrmative follows from this re-
markable property of the SU(2) XO(3) [and in general

SU(e)XO(3)] model: The bootstraP equah'oms (la), (lb)
are independent of the parameter E. Before proving this
statement, we emphasize that it immediately implies
that when two SU(2)XO(3) multiplets of a given E
corresponding to excited E, S*states form a reciprocal
I'-wave bootstrap, the excited nucleon multiplet has a
mass lower than the excited A* multiplet by the same
amount as the ground state (E=0) E(938), cV*(1236)
mass difference. This provides the physically plausible
extension of the E-E*model we futilely sought in Sec.
2. Now onto the proof, which for reasons for space and
simplicity we limit to a vertex equation (1a). Consider
the situation depicted in Fig. 1(a), in which two baryons
of spin J and J' with the same value of E and a E-wave
meson combine to form a vertex. We show below that
the vertex equation defined by this diagram is actually
independent of E. Since this information is contained
in the coupling-constant structure of the process and in
particular the crossing coefficient, we make no mention
of the particle propagators. The triangle diagram in
Fig. 1(a) (right-hand side of the equation) then has the
form

where we sum over repeated symbols in (6) and here-
after. The vector relation J=K+S implies, in ket
notation,

j JM)= [Ss)[Ek)(EkSs [ JM), (7)
where the term in parentheses represents an SU(2)
Clebsch-Gordan coefficient. Putting this information
into (6) for each of the baryons, we have

(AM& [ E2k &5&$2) &Spsi [ir [ ss)(E2k2 [K(k)(Kkss [ JM)
X(AM, [E&k352$3)(sus3[ir [53$4)(E2k, [Eak4)
X (E3k4S3s4

I
J3M3)(J'M' IE'k'S's') &S's' [7r[53$&)
X (E'k'

j Eakg)(Eik553si j J3M3) . (8)
But

(Ek[Ek )=b«&»» (9)
so (8) becomes

(JQM2 [ Eksisq) &Sqsq [ m [ Ss)(EkSs [ JM) (J2M2 [ Ekisssa)
X &52$i l

ir
I 53$4)(Ek85is4

[ JSMI) (J'M'
[
Ek's's')

x(s"'j~jsssg)(Ek 53$5[J8M8). (10)

We reduce (10) by using the completeness property of
SU(2) Clebsch-Gordan coefficients, first multiplying by
(EkiSsi j JM) and (J'M'

j
EkiS'si'). Now, since

(EkSs [ JM) (EkiSsi [ JM) = 4&,8„»
(J'M'

j
Ekis'si') (J'M' [Ek'5's') = 4,i &..

Eq. (10) becomes

(JiM2 [EkS2s2) &Si$2 j
ir [Ssi)(J~2 [Ek35~$3)

X(sgs3[7I [53$4)(Ek$53$4[J3M3)(5'si'jir [53$5)
X(Ek,'S,s, [J,M,). (12)

But

(J2M2 [ Ek35iss) (J2M2 [E'kS2s2) =b„„b»„
(Ek358$4[ JSM3)(EkiS3s5 [ J~8)= S„„b„,„

which leaves us with the final form of (12),

(5», [~[5»)&52$,[~[5,$,)(5's, '[~[S,s ). (14)

The left-hand side of Fig. 1(a) presents a much less for-
midable task of reduction. Starting with (J'M'

j ir j JM)
we have in the 5, E basis, using relations implied by (7),
&5"I~I»)«'k'IEk)(J'M'IK'k'5's')(KkSsj JM) (15)
and from (9), Eq. (15) becomes

&5'$'I ~ l»)(J'M' IEkS's') (EkSs [ JM) .
Since we mutliplied the triangle diagram part (i.e. right
hand side) of this equation by (E'kiSsi

j JM)
X(J'M'[Ekis'si'), we must do the same to (16),
which then becomes

(KkSs[ JM)(KkiSsi[ JM)(J'M' [Ekis'si')
X(J'M'[Eks's')(5's'[m [Ss), (17)

and from orthogonality, (17) immediately reduces to
the desired form,

(J2M2[ir[ JM)(J2M2[ir[ J3M3)&J M [il [ J3M3) (6) (S si lir lssi) (18)



168 POSITIVE —PARITY BARYON EXCITED STATES 1749

Equations (14) and (18) constitute the right- and left-
hand sides of an equation,

(S'si'
I
w

I
Ssi)= (S-„ss

I
w

I Ssi)(Sess I
w

I Sss4)

X (S'si'
I
w

I Sss4), (19)

which is just the vertex equation (1a), for E=O, and
this realization completes our proof.

4. ASPECTS OF THE 8U(2)XO(8) MODEL

Although we have been successful in showing that
the excited states of the nucleon will have a lower mass
than those of the E* in a model containing plausible
dynamical ingredients, we have no estimate for the
excitation energy. In addition, the correspondence be-
tween the model and existing data is not clear in that
we predict mutliplets of particles only parts of which
have apparently been verified experimentally" (for
more on this subject, see Sec. 6). Both of these situa-
tions can be clari6ed by allowing each excited state to
couple to a ground-state meson-baryon composite with
the appropriate orbital angular momentum. To carry
this program out in its entirety is beyond our capability
at present, particularly in the determination of the
momentum structure of the Bethe-Salpeter amplitude
for different partial waves. Therefore, we forego any
attempt to calculate the excitation energy, and limit
ourselves here to a qualitative discussion of how the
ground-excited state coupling is expected to affect the
SU(2)XO(3) symmetric results. For convenience, we
focus our attention on the E=O members of the Ã, Ã*
systems. With the notation (T,J~), we enumerate the
quantum numbers of the relevant states: E=0 (rs, —',+)'
and (ss, ss+); E= 2 (srPss+), (rsPss+) and (ss, sv+), (ssPss+), (ss, ss+),
(-s', is+). In Table I we give the signs of several long-
range forces occurring in Xx, E*xchannels which couple
to the above E=2 excited states L+ (—) stands for
attraction (repulsion) in Table I]. These forces give
us insight into the question of excited-state —+ ground-
state decay widths and perhaps also of the mass splitting
within an SU(2)XO(3) multiplet. The only states in
which the forces are clearly attractive are (sr, ss+) and
(-', ,—,'+), which we associate with the Ã'(1688) and
¹'(1924),whereas all other E=2 states have repulsions
of varying degrees. Therefore, we expect the decay
widths of E'(1688) and ¹'(1924)into Xw, the most
easily observed 6nal-state con6guration, to exceed those
of the other E=2 particles. This is apparently the pres-
ent empirical situation. " It is a much more difFicult
problem to estimate the mass splitting in an SU(2)
XO(3) multiplet because there may be important ef-
fects in addition to the ground-excited state coupling
we have been discussing. We have in mind processes

'4 However, see C. Lovelace LCERN Report TH. 837
(unpublished)j for a discussion of the latest xN phase-shift
analyses. Lovelace's analysis indicates several new resonances,
some of which would completely 611 the slots in the X=2 excited
states of E and E~, and with essentially the correct properties.

TABLE I. Signs of forces coupling ground and erst excited states. '
Our notation for the exchanged particles is as follows: N =nucleon,
N*= N*(1236), pr r= vector and tensor coupling of the p meson.
Plus and minus represent attraction and repulsion, respectively.

Reaction

N+x ~ S+m.

Exchanged
particle

S
pV
pT
E
S

3 3
2 25+ 7+
2 2

a We do not include the T ~p, J& =I+, particle because N~(1238) already
has these quantum numbers, and so eGectively acts as a repulsion.

similar to those which lead to the mass difference be-
tween the negative-parity baryons Ye*(1405) and
I's*(1520) which are evidently members of the same
SU(2) XO(3) multiplet. 's All we can say at this point
is that it is not likely that N'(1688), ¹'(1924)should
lie substantially above the average mass of their re-
spective multiplets.

The rest of this section is devoted to a qualitative
discussion of how our ideas graft onto a Regge-type
theory in which the basic entity is a trajectory. '5 %e
think of our static-model calculations as a 6rst approxi-
mation to a complete angular momentum analysis. To
be speci6c, consider 6rst, the X, E*reciprocal bootstrap
system. Let us study the nucleon trajectory, concentrat-
ing on its coupling to the Sx channel, where the nu-
cleon is apositive-signatureparticle lying on the J=L—

~

trajectory. In this model the most important attractive
force is due to ¹(1236)exchange. For fixed energy
above threshold, this force (constructed by performing
a direct-channel partial-wave analysis on an appro-
priate linear combination of the one-sided functions"
A+, 8+) decreases monotonically" for half-integer J) sr.

In Sec. 1 of this paper, we argued that meson-baryon
composites with large orbital angular momentum cannot
inde6nitely support a rising trajectory. We make this
thought manifest in Fig. 2(a) where we imply that the
T= s, J=I. spositive-signa—ture trajectory (trajectory
A) must eventually turn over (just where, is naturally
a delicate dynamical question). The ¹ trajectory,
driven by nucleon exchange, behaves in a similar man-
ner. The next step is to study the E=2 P-wave recip-
rocal bootstrap described in Sec. 3. We expect the
same qualitative behavior —trajectories rise to give posi-

' The author's knowledge of the matter discussed in this sec-
tion bene6ted greatly from a discussion with Professor G. F. Chew.

'6 The one-sided functions are necessary to treat the presence
of exchange forces in a manner consistent with angular momentum
analyticity. See G. F. Chew, The Arielyttr S Matrix (W. A. -
Benjamin, Inc. , New York, 196/). The amplitudes A, 8 are the
usual invariant amplitudes of xE scattering. See S. C. Frautschi
and J. D. Walecka LPhys. Rev. 120, 1486 (1960)j both for their
deanition and their relation to partial-wave amplitudes.

'7The angular momentum dependence of the force for half-
integer I is given by the functions Qr. (y), Qr+i(y), where I=I.+
and y&1.
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Re J

5/p-

3/p-

(a)

5
/p

3/ .

(b)

C'

FIG. 2. (a) Trajectories with isospin —, in the decoupled SU(2)
XO(3) model. Trajectory A corresponds to E=O; J3, C to K=2.
Crosses denote particles. (b) Trajectories with isospin —, in the
coupled E=O, 2 SU(2)XO(3) model. Trajectory A' contains the
particles 1V(938) and iV'(1688).

tive-parity baryons with quantum numbers T= 2, J= ~,

~ and T= —,', J=~, ~, ~, ~, but eventually the trajec-
tories fall. The isospi --„nE=2 trajectories (trajec-
tories 8, C) are shown in Fig. 2(a). Of course, there is
no way to determine the relative mass of the E=O, 2

baryons, since at this stage the models are decoupled.
What we are doing in Fig. 2(a) is setting the stage for
turning on the coupling between the isospin-2 E=0, 2

baryons, the result of which is shown in Fig. 2(b). There
we see that the highest-lying trajectory (trajectory A')
can continue to rise, fed by attractive forces of nearby
singularities. The nucleon and 1P(1688) lie on this tra-
jectory. The other E=2 baryon, with quantum num-

bers T= s, J~= as+ lies on trajectory Ij' (signature does
not allow trajectory 8' to have a particle at J=rs),
whose behavior is more diTicult to predict because of
the repulsions in the Ex, E*m channels. Conceivably 8'
can be linear in s if attractive forces exist in the E=4
link in the chain of excited states. This is the situation
depicted in Fig. 2(b) and is to be regarded as but a
conjecture. It is quite possible that only the highest-

lying trajectories exhibit the observed linear relation
between ReJ and s.

5. COMMENT ON THE NEGATIVE-PARITY
BARYON SPECTRUM

The occurrence of roughly equal numbers of positive-
and negative-parity baryon states implies the possi-
bility of a uni6ed description of both. We have seen
how an SU(n) XO(3) multiplet structure can arise from
a particular dynamical model of the positive-parity
baryon states. Capps, in several publications, " has

g' 3r M~
D3/2 + Sg/2'7t ]

4s. qs E+3f

D5/2 ~ D3/2m,

g~ ~~ Mg

4~ ~s &+~+(4/»)(Vs/~s)(&+2~)

(2o)

where 3f& is the resonance mass, g is the decay mornen-
tum in the center-of-mass system, M and E are the
mass and energy of the decay baryon, and F is the decay
width. The kinematics are remarkably similar for the
two decay processes, and we 6nd

g (Fr*(1765)~. Fs~(1520)v') 1'rrss
= 1.05—

g (Fr*(166 ) Fs*(1405)s') 1 tsss

"J. G. Rushbroolre, Phys. Rev. 143, 134S (1966).

(21)

developed an interesting model of negative-parity bar-
yons as follows. He has shown how the ground state of
these particles may correspond to a 70 X1 structure,
the content of the SU(6) multiplet 70 being (8,2)+ (1,2)
+(8,4)+(10,2) while 70X1 contains (8,2)s, (8,4)s (1,2)
(1,4) (8,2) 4, (8,4) 4, (8,6)4, (10,2), (10,4). The subscripts
indicate which submultiplet of 70 is used, e.g., (8,2)4,
(8,4) 4, (8,6) 4 all come from (8,4) X1, and the entries in
parentheses give the SU(3), SU(2) multiplicities, re-
spectively. The particles in 70X1 are generated as S-
and D-wave bound states and resonances of baryons
(56) and mesons (35) which are mutually attracted by
meson exchange forces. Appealing features of this model
are the natural explanation of the Fs*(1520) unitary
singlet and the agreement in scale between the experi-
mental and predicted coupling constants. "However,
it also provides some unobserved states, particularly
with quantum numbers (8,4) and (10,4).The complexity
of the baryon spectrum between 1.5 and 2.5 Gev is
such that it may take some time and a great deal of
effort to correctly unravel the data and hence accept
or reject the Capps model on this basis (however, see
Ref. 14).

We wish to point out here the existence of a piece of
data which directly involves tentative members of the
70Xl multiplet, namely, the P-wave decay processes
F'r (1765) —+ Fe*(1520)v- and Ft*(1660)~ Fs~(1405)v-.

The obvious 70X1 assignments are Ft*(1761)g(8,6),
Fs*(1520)g(1,4) and Fsa(1405)g(1,2). The Fr~(1660)
particle could belong to either (8,4)4 or (8,4)s or to some
linear combination thereof. An additional and particu-
larly attractive feature about these decays is that the
strangeness quantum number does not change, i.e.,
SU(3) is not needed in obtaining theoretical values for
the rates so SU(3) breaking egeots do not vitiate the

strength of the predictions made. Let us 6rst extract
phenomenological coupling constants from the observed
decay widths. We use the following formulas" for the
decays J~ —+ J'~x.
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i.e., the ratios of widths and squared couplings are
nearly equal. Currently available numbers' for the total
widths and branching ratios (B.R.) are I'i*(1765):
I'. =89 MeV; B.R. (I's*(1520))=0.2 and I'&*(1660):
I'i,i= 50 MeV; B.R. (I"~*(1660))= large. Inserting these
values into (21), we have

g (F'],*(1765)~ F'p*(1520)ir)expi

g'(F'&*(1660) —+ Fo*(1405)m ). ,(

50XB.R.(1660~ 1405)

0.36
(22)

B.R.(1660-+ 1405)

If B.R.(1660~ 1405))0.36, then the above ratio of
couplings is less than unity. Ke now proceed to study

alternative theoretical descriptions of these modes. All
that is really involved is a ratio of squares of appro-
priate 70' 1 Clebsch-Gordan coefficients. However,
there are two complicating factors present: (i) As men-
tioned above, the 70X1 assignment of I'i*(1660) is not
unambiguous. (ii) The vertex 70-+ 70X35 involves an
F/D ratio which is not known a priori. First, we calcu-
late the simple case, I'r*(1765) —+ I's*(1520)ir. In 70X1
terminology, I'&*(1765)Q(8,6) 4 and &o*(1520)E(1,4).
The relevant 70X1 Clebsch-Gordan coeKcient is 0.147
cos8+0.67 sin8, the angle 8 representing the F/D ambi-
guity in the 70 —+ 70X35 vertex (8=0 implies pure D).
The apparent F&e(1660) ambiguity arising from the
possibility of configuration mixing is probably not se-
rious, because the mixing is evidently quite small. "
Further, the spin part of the couplings (8,4)4-+ (1,2)
and (8,4)s ~ (1,2) are 5'/s/3 and 2/3, respectively, and
are nearly equal. Hence we feel the only important
alternatives are to put F'r*(1660) into (8,4)4 or (8,4)s.
The predictions are shown below.

g'(I'r*(1765) ~ I'o*(1520)m )
gs(F'r*(1660) ~ Fs~(1405)ir)

F'r~(1660)g (8,4) 4 Vy*(1660)g (8,4) s

(0.147 cos8+0.16 sin8) s

(0.18 cos8+0.16 sin8)'

The assignment I i*(1660)g(8,4)4 predicts a ratio in-
dependent of the F/D parameter 8, and probably in
disagreement with experiment (see statement following
(22)j.The assignment I'r*(1660)g(8,4)s, which is the
one Capps chooses" on the basis of a semiempirical
mass formula, involves directly the parameter 8. For
~8~ (~~ir, a range of 8 consistent with the inequality
g'(1765 —+ 1520ir) (g'(1660 ~ 1405'.) is almost the en-
tire span. of 8. Only when the I &~(1660) —+ I's*(1405)ir
branching ratio has been accurately measured can we
get an estimate of tY.

6. CONCLUSIONS

In conclusion we stress the following points:
(1) The most important idea introduced in this paper

is that the occurrence in nature of very-high-spin bar-
yons forces one to describe these particles as composites

of high spin baryonsa-nd mesons wi.th low orbital angiilar
m.omeetum. Consequently, there appears to be no limit
on the extent to which the baryon spectrum may con-
tinue. Previous attempts to explain the baryon spec-
trum have truncated the problem to one of a 6nite set
of channels, an outlook which in many essentials is
equivalent to potential theory. Our approach manifestly
requires infinitely many channels to describe the entire
baryon spectrum, and so certain results of potential
models, such as trajectories necessarily turning over,
need not hold here.

(2) We implement the basic idea mentioned above
with dynamical models. A class of models, exhibiting

SU(n)XO(3) symmetry, has a natural description in
bootstrap theory. According to the latest phase-shift
analysis, "the positive-parity baryons predicted by our
SU(2) XO(3) model described in Secs. 3 and 4 have been
found and with roughly the correct properties, e.g., the
T=

~ baryons have average mass greater than the T= 2
baryons, and the decay widths of /V'(1688) and
/V*'(1924) into m/V exceed those of the other states in
the SU(2) XO(3) multiplets. "

Our results generalize trivially to SU(3) XO(3) and
SU(6) XO(3), each introducing more particles into the
model at the expense of treating their masses and cou-
plings more approximately. Because of the unclear ex-
perimental situation with the meson spectrum, we have
restricted our efforts to studying only the baryons. It is
not clear how well the SU(e) XO(3) model per se will
describe nature for arbitrarily high-spin objects, since
we do not include arbitrarily high-spin mesons in the
calculation. However, for moderately low-spin baryons,
say E=O, 2, and perhaps 4, our model, with pseudo-
scalar and vector mesons, should be realistic, as is ap-
parently the case. '

"Due to the enormous difhculty of doing more detailed vrork
both in our theoretical model and in the phase-shift analyses,
a precise confrontation of the results of each is not immediately
forthcoming. However, the approximate features of the positive-
parity baryon spectrum are in accord. In response to a remark
made in Ref. 14, a bootstrap model of the PII "Roper" resonance
is given by E. Golowich, Phys. Rev. 153, 1466 (196/). An ad-
ditional PI1 resonance vrith mass 1700 MeV is predicted in the
same reference.
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(3) It is possible that the excited states of negative-
parity baryons behave in an entirely analogous manner
to the positive-parity systems described here. Capps
already has made plausible in a dynamical model that
the negative-parity baryon ground state corresponds to
a 70X j. multiplet structure. "Conceivably a unified dy-
namical description of positive- and negative-parity
baryons is at hand, at least at energies where it makes
empirical sense to study the properties of single-particle
states.
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where we have used

(K'k'iKk)=8KK bshe, .

But, by the Wigner-Eckart theorem,

(J'M'i~i JM)=(1u'M'i JM)g;(J',J),
(SYi~iSs)=(USY iSS)g;(S',S),

(A3)

where i =0, j., 2 exhibits the isospin nature of the cou-
pling, and the "1"in the Clebsch-Gordan coefficient is
provided by the presence of a P-wave pion. From
(A2)—(A4),

&&(SSEkiJM)(—) '+ +s+K '
~g, (S',S), (A5)

where we have permuted certain of the Clebsch-Gordan
labels. Multiplying by (—)'+'( —)~ ~ (i.e., by unity),
we haveAPPENDIX

ln this Appendix we derive an expression describing
the coupling of a baryon of spin J to a composite of a
baryon of spin J' and a E-wave pion. The two baryons
occur in the chains of excited states generatedbyground-
state baryons of spin S and S' according to J= 8+K,
J'= S'+K. We begin with the formulas inferred by the
vector addition just mentioned;

i
JM)= iEk) iss)(Ekssi JM),

i
J'M') =

i Ek)
i
S's')(Eks's'i J'M'),

where the quantities in parentheses denote ordinary
SU(2) Clebsch-Gordan coefficients. Upon forming the
vertex, we have

(J'M'i rr
i JM) = (5's'

i
2r

i
Ss)(EkS's'

i
J'M')

X(Ekssi JM),

(1/J'M'
i
JM)g,(J',J)

= Q (11S's'
i Ss)(S's'Kk

i JM) (SSKk i JM)
e, s'

)( ( ) I+s'+K+7( )1—2J—j'+K+sg, (S&S) (A6)

and upon noting the expansion of a 6j symbol in terms
of SU(2) Clebsch-Gordan coefficients, " we finally

(A1) 5' J
( )1—2Z—J'+K+S

E J J'g'(J', J)=

&& L(2S+1)(2J'+ 1))'Isg, (S',S) . (A7)

'0 A. R. Edmonds, Angular iVomentum in Quantum Mechanics
{Princeton University Press, Princeton, N. J., 1960), p. 95.
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