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Dispersion relations for forward and backward MM and MB scattering amplitudes are considered,
where the M and B are hypothetical, separately degenerate sets of mesons and baryons. Self-consistency
conditions for the quantum numbers and three-particle interaction constants for the particles are obtained
from the hypothesis that the dispersion integrals are saturated with poles associated with the M and B
states in the s, 7, and # channels. The spin components are treated on the same footing as the internal
quantum numbers. If a subset of the mesons is connected with interactions antisymmetric in the exchange
of two mesons, this subset must correspond to the regular representation of a compact, simple Lie group, as
in Cutkosky’s model of vector mesons. On the other hand, mesons and baryons of both parities must be
present in this model. If all the helicity states of the odd-parity mesons have nonzero interactions, the
mesons must be vector and pseudoscalar mesons, and the Lie group must contain SU (2) as a noninvariant
subgroup applied to the spins according to the W-spin prescription. An SU (6)w-symmetric solution to
the model is discussed briefly. This solution is similar to that obtained previously from partial-wave dis-
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persion relations, and is in agreement with the experimental hadron spectrum.

I. INTRODUCTION

ENERALLY, the self-consistency relations of
bootstrap models have been formulated in terms
of approximate partial-wave dispersion relations.
Crossing is complicated in the partial-wave represen-
tation, since a pole in one channel is a branch cut in a
crossed channel, but this complication is compensated
by the simplicity of the unitarity condition. However,
if several different partial waves are present and con-
nected by crossing, the spherical wave representation
is far from simple. Therefore, it is not surprising that
fixed momentum-transfer and fixed-angle dispersion
relations have been used with increasing frequency in
recent years. Superconvergence relations are one
popular type of fixed-momentum-transfer equations.!
Several years ago, Cutkosky used partial-wave dis-
persion relations to derive self-consistency conditions
for a system of degenerate V (vector) mesons.? Later
Polkinghorne extended the model to include spin-}
baryons of one parity.? Consistency in this model im-
plies that if the particles cannot be divided into sub-
sets with no interactions between them, the ¥V mesons
correspond to the regular representation of a compact,
simple Lie group, and that the baryons correspond to
some irreducible representation of the group. The model
is not consistent with respect to external quantum
numbers since potentials in states of spins and parities
other than those corresponding to the V" and B particles
are neglected, even though some of them are as strong
as the potentials considered. Last spring, the author
extended this partial-wave model, and showed that the
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difficulty of neglected spins and parities can be remedied
if the interaction group is SU (6)w, and if certain meson
and baryon multiplets of both parities exist.* The
multiplets are classified with the group U(6)® U(6)
®0(3) in this SU(6)w model.

In the present paper, the consistency conditions of
this general model are reformulated in terms of fixed-
angle dispersion relations. The forward and backward
angles are chosen, because the crossing of helicity states
is particularly simple for collinear amplitudes. The
bootstrap assumptions are that the dispersion integrals
are saturated with pole terms that result from com-
posites, and that the set of composites is identical to
the set of external particles. This formulation is much
cleaner than the partial-wave formulation. In the
partial-wave formulation, there is a great deal of
ambiguity concerning the relation between the po-
tentials in different partial waves. On the other hand,
there is no such ambiguity concerning the analogous
quantities of the present formulation, the residues of
poles.

Using the fixed-angle treatment, we prove several
new results. These are summarized in Sec. VI. The
consistency condition for meson-meson scattering and
for forward meson-baryon scattering is derived in Sec.
II of the paper and applied to the meson-meson states
in Sec. ITI. The meson-baryon states are discussed in
Sec. IV. The implications of the model concering the
manner in which the spin-dependence of the interaction
corresponds to a Lie group is discussed in Sec. V.

II. FORWARD-ANGLE CONSISTENCY
CONDITION

We consider MB (meson-baryon) scattering in the
forward direction. The mesons and baryons are as-
sumed separately degenerate, with masses u and m,

¢ R. H. Capps, Phys. Rev. 161, 1538 (1967).
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respectively. The condition derived here may be applied
to MM scattering also, if one sets u equal to m. The
energy variable to be used is y=%(s—u), where s and
u are the Mandelstam variables. Along the forward
(t=0) curve, v is equal to s—m?—pu? so v is simply s
translated in order to be odd under s <> # crossing.

The crossing properties of helicity amplitudes are
derived in the literature.® Since we are concerned only
with collinear scattering, we define all spin components
with respect to the positive z axis (direction of the
incoming meson). Crossing the two mesons reverses
the signs of their spin components and the signs of
their additive, internal quantum numbers. Amplitudes
that vanish in the collinear directions, but whose
derivatives exist, are not considered here.

MacDowell has shown that many meson-baryon
amplitudes contain a piece that is odd in W=s'2, so
that a branch cut occurs at zero if s is chosen as the
energy variable.® However, it has been shown that
forward MB amplitudes are even functions of W, so
no such branch cut occurs in the cases considered in
this section.”

The Lorentz-invariant MB— MB amplitude T is
related to the differential cross section for states of
definite helicities by the formula, do/dQ=|T|%/s. If
the high-energy behavior of T is dominated by the
leading Regge trajectory, this behavior is given by
T~s*®, In general, T is not sufficiently convergent to
enable one to write an unsubtracted dispersion relation.
Therefore, we define a subtracted amplitude U by the
equation

1

where the subtraction points (Z=2mu) are the s- and
u-channel thresholds, respectively. The denominator is
related to conventional s- or #-channel variables by the
equations

(2

where k; is the magnitude of the particle momentum
in the center-of-mass system in the ¢ channel.

We next make the pole-saturation assumption that
U is saturated with poles representing the s- and -
channel composites, and the poles resulting from the
subtractions. At this point it is convenient to write U
in the form U= Ugen+ Uoda, Where the real parts of
the terms are even and odd in » (in s<> # crossing).
The high-s (or high-%) behavior of U,qq is s*@-2, The
Pomeranchuk trajectory does not contribute to odd
amplitudes, so we are justified in assuming that
«a(0)<1. This implies that in the pole approximation,
the sum of the residues of the poles in U,qq must vanish.
The sum of the residues of Ueven vanishes automatically,
when summed over the positive and negative » range.

U=T/[v— 2mu)],

V2 (2mp)?= 4k 2s =4k, 2u

(1; T.) L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
64).

§S. W. MacDowell, Phys. Rev. 116, 774 (1959).

7 This result has been given by several authors, among them
Yasuo Hara, Phys. Rev. 136, B507 (1964).
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Thus, we need no longer make the separation into even
and odd parts; the self-consistency condition is the
condition that the sum of the residues of all the poles
in U vanish.

We consider the process ¢+b — ¢+d in the s channel,
where @ and ¢ are meson states with momenta in the
positive z direction, and 4 and d are either both meson
states or both baryon states. We want to relate the
residues to physically meaningful quantities. The resi-
due sum R may be written as R*4R¥, where the s-
channel part R* includes all the s-channel composite
poles and the s-threshold pole at »=2mu, and R*
includes the corresponding u-channel poles. Since R*
may be obtained from R® by crossing, we need consider
only R® at present. It is convenient to write this s-
channel part (R®).q,.» as a sum of parts that are even
and odd in the exchange of the momentum directions of
the two final particles. For meson-meson amplitudes,
these two parts are just [ (R®)eq,av(R%)ac,ap]- All
composites of odd orbital angular momenta occur only
in the odd part R®*, while all even-f composites and the
threshold term at v=2mu occur only in the even part
Ree,

We now focus attention on the odd-l residues. A
dimensionless coupling constant associated with the
vertex #— a-+b is denoted by Ggbr, where the mo-
mentum directions of the ¢ and b are positive and
negative . (along the z axis), respectively, in the r rest
system. The coupling constant for the opposite vertex
a+b— 7 is then Gqs,*, where the a-particle momentum
is again in the positive direction. All odd-/ amplitudes
vanish at least as rapidly as the momentum squared at
threshold, so the factor %2 may be removed and the
constants G defined so as to satisfy the equation

lim [(s—mAk 2T ea,a0]=—2r GoasGar®, (3)
8§>myr2

where . is the mass of the composite » and the sum is
included since more than one degenerate composite
may occur. The negative sign is required, since the
residue of an elastic amplitude must be negative. If a
composite exists in P states, the G are conventional
coupling constants (multiplied by appropriate Clebsch-
Gordan coefficients). If a composite corresponds to
higher I/, the G are conventional coupling constants
multiplied by some positive power of k,2/m,?, where
k. is the value of k, at s=m,>.

The relation of the residue sum R* to the G’s follows
immediately from the definition of U, Eq. (1), if use is
made of Eq. (2). The result is

(Rw)ﬂd,ab: _Zr Geerabr*/ (4mr2) .

We define dimensional coupling constants (y°) for
the odd-l states by the equation y°=G/(2m,). The
residue sum is simply related to the v’s, i.e.,

(Rw)cd,ab= - ZT 'chro'Yabro* . (4)



168

We now turn to the even-/ amplitudes. These are
not proportional to k* at threshold, so no threshold
factor may be removed. Dimensionless coupling con-
stants F for a set of even-/ composites of mass m, may
be defined so as to satisfy the equation

lim [(s—m2)Tea,a0]=—2r FearFar*m.  (5)

8>myr2

If a composite is an S-wave composite, the F are con-
ventional interaction constants. If a higher orbital-
angular momentum is involved, the F are conventional
constants multiplied by some positive power of (k,2/
m,?). It may be shown from the definition of U that
Rse is given by

I:"cdrl;‘a,br*J (m+ﬂ)
4,2

(Rse)cd,ub= _ZT

Aecd,an, (6)
dmu

where 4 is the scattering length.

The bootstrap hypothesis that has been used already
is that U is dominated by poles corresponding to com-
posites and the scattering length terms. We now extend
this hypothesis and assume that the scattering length
terms either vanish or arise as corrections to S-waves
composite poles. The first (and less realistic) of these
possibilities, that all the 4 vanish, would occur if
S-wave-S-wave transitions were absent, for example.
In such a case one could rewrite Eq. (6) in a form
similar to Eq. (4), i.e,,

(Rse)cd.ab= Zr 'chre'Yabre*o (7)

The positive sign is present in this equation because
k,? is negative for bound states. Thus v4s.° is given by
Fove/(2|ks|). The second, and physically more real-
istic, possibility exists if the even-I residues are
dominated by amplitudes for which at least one of the
vertices is an S-wave vertex. (The vertices could be of
the types S-S, S-D, S-G, etc.) One assumes that the
scattering length is proportional to the S-S part of the
amplitude, so that Eq. (6) can be written

F cdrF a br*

(R*)ed,ap=—2r ———(141®ss) ,
4k
where ®gg is the projection operator of the S-S ampli-
tude, and 7 is a constant that does not change the sign
of R, i.e., (14+1)>0. One may again obtain Eq. (7),
by defining the S-wave coupling constants y¢ to be
equal to F(141)Y2/(2|k,|) and the higher-l coupling

constants to be equal to F(1+7)"12/(2|k,|).2
If mass differences were taken into account, the
scattering length correction terms would be important.

8 This assumption can lead to difficulty, because the classi-
fication of a vertex by the orbital angular momentum may depend
upon which of the three particles is regarded as the composite.
It is pointed out in Sec. VI that the saturation assumption is
likely to be most accurate when applied to MM and M B scat-
tering. For these amplitudes, there is no ambiguity concerning
which particle is regarded as the composite for the even-I vertices.
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The coefficient of 4 in Eq. (6) is such that if one varies
the mass of a hypothetical composite so that k,* ap-
proaches zero, the leading parts of the terms in the
equation cancel, and the result remains finite in the
limit. In this paper, we are interested only in Eq. (7),
and not in the magnitude of the » correction.

We take the mesons a¢ and ¢ to correspond to Her-
mitian fields so that s <> # crossing involves the simple
transposition @ <> ¢. Since » changes sign under the
interchange s <> u, the #-channel residues involve an
extra minus sign. The self-consistency condition,
R4 R*=0, is

RCd»a b= ZT (_ 7cdro'Yabro*+'chre'Yn bre*
+'Yadro')’cbra*'_'Yadre'chre*) =0. (8)

Frequently, it is useful to write this expression in a
form where no complex conjugations appear. Since the
v’s are proportional to the physical coupling constants
F and G, with real proportionality constants, we treat
the v’s as coupling constants here. Since the first index
of v° or ¢ refers to a Hermitian meson field, our
definition is such that v.s° or vas.° is proportional to
the matrix element

b(—k) [ Ma|r(0)=(r(0)| Ma|b(—F))*,

where M, is a Hermitian operator associated with a
and the quantities in parentheses are the momenta of
the » and & particles along the z axis. The vertices are
assumed invariant to Lorentz transformations along the
z axis; if & is taken into its rest system, the vertex is
(r(k)| M,|5(0))*. The quantity in brackets differs from
the vars vertex only in that the momenta of the final
particle 7 is positive. However, since v° and v¢ are odd
and even, respectively, in the exchange of the mo-
mentum directions of the final particles, one may write

(9a)
(9b)

These equations will be used in conjunction with Eq.
(8) in the next sections.

*
’Yabro= —"'Yarbo )

*
Yabr’=Yarp® -

III. MESON SYSTEM

The consistency condition will be applied now to a
finite system of degenerate mesons. Transposing the
two mesons in the final state is equivalent to trans-
forming from the forward to the backward direction.
Therefore, application of Eq. (8) to all a+b— c+d
combinations exhausts the collinear amplitudes. For
convenience, we take all the meson states to correspond
to Hermitian fields. Then v:° and v;;¢ are odd and
even, respectively, with respect to transposition of the
first two indices (which refer to the two external par-
ticles of opposite momenta). These conditions, when
combined with Egs. (9a) and (9b), imply that all the
v are real, and that v° and y¢ are completely antisym-
metric and completely symmetric, respectively. Since
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the state labels describe spin as well as internal-sym-
metry quantum numbers, the odd and even interactions
describe vertices in which the product of the intrinsic
parities are odd and even, respectively.

A simple solution to Eq. (8) exists, in which a single
scalar meson state interacts with a symmetric cubic
interaction. In order to eliminate this trivial solution,
we impose the requirement that at least one antisym-
metric interaction must exist.

We next consider the possibility of a Cutkosky-type
solution, with only antisymmetric interactions. If one
sets all v¢ equal to zero, and sets ¢=b, and c=d, Eq.
(8) reduces to

Yacr™ car’= — (’Yacro)‘l: 0.

Thus, all coupling constants vanish; no completely
antisymmetric solution exists. The reason for this
phenomenon is simple. The consistency condition im-
plies that a solution must be an eigenfunction of s <> #
crossing. However, crossing mixes symmetric and anti-
symmetric states. In Ref. 2 the symmetric states were
neglected; a solution was possible because crossing
does not mix the antisymmetric regular-representation
state corresponding to a compact, simple Lie group
with other antisymmetric states.

Thus, interactions of both symmetries exist. We
may obtain a condition involving the 4° interactions
alone by carrying out the permutation sum > p (—1)%
on Eq. (8), where the sum is over all permutations of
abcd and the minus sign is included in all odd per-
mutations. If one uses the condition 7;;,°=—v;;° to
rearrange terms, the result may be written

Zr ('Yabro'chro"I"Yacra'Ydbro+7adr0')’ bc'ro) =0. (10)

This is just the Jacobi identity condition of Ref. 2, and
implies that the v are proportional to the structure
constants of a Lie group. In order to restrict the group
further, one considers the matrix Frs=2_ac Yacr™Ycas’
Since the y° are real and antisymmetric, I is a real
symmetric matrix. It is clear that F is nonpositive
definite. A zero eigenvalue of F would imply that at
least one eigenstate is not coupled to any of the or-
thogonal states by the antisymmetric interaction. If
no state is decoupled in this manner, F is negative
definite. This implies that the Lie group is compact
and semisimple.? If the set cannot be separated into
subsets with no interaction between them, the group
is simple. Thus, any subset of the meson states with
mutual-antisymmetric interactions connecting all states
of the subset is a Cutkosky set, and corresponds to the
regular representation of a compact, simple Lie group.
A mutually interacting set of odd-parity mesons must
be such a set, of course.

9 A lucid discussion of the classification of Lie groups according
to the properties of the matrix F is given by Morton Hamermesh,
Group Theory (Addison-Wesley Publishing Company, Inc.,
Reading, Mass., 1962), Chap. 8, particularly Sec. 10.
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We now consider the symmetric and antisymmetric
interactions together. Mesons of even and odd parity
must both be present; they are denoted by M and N,
respectively. We may apply the self-consistency equa-
tion to all two-meson scattering processes for which
the number of external N mesons is even but not to
those for which the number of & is odd. For the latter
processes, the product of the intrinsic parities is odd,
so that the amplitude is odd in %, and in k.. Therefore,
there are important branch cuts at thresholds even in
the Born approximation. This does not mean that no
self-consistency condition could be applied to these
amplitudes. However, it does mean that theoretical
consistency does not require us to consider these ampli-
tudes, and so we neglect them.

We will display a solution to the conditions for the
MM —MM,NN—NN,MN— MN,and MM — NN
processes. The question of the uniqueness of this solu-
tion has not been investigated as yet.

The solution involves the group SU (#), and includes
(#)M and (#*) N mesons, corresponding to the regular
and identity representations. If we denote the funda-
mental (quark) representation of SU(n) by Q, and the
conjugate (antiquark) representation by @, then the
transformation properties of the mesons are those of
linear combinations of quark-antiquark pairs. The
transformation properties of the meson 4 may be
expressed in the form Y_;; 4:;0:Q;. The meson may be
represented by the matrix 4,;. The trace of any product
of general M and N matrices transforms like a singlet.
In a Hermitian representation, we may regard the
meson-state 7 associated with the coupling constant
vabr @s being in the final state, along with the ¢ and b
meson states. Invariant antisymmetric and symmetric
couplings may be defined by the formulas

vaw'=f Tr[ (AB—BA)R], (11a)
vasr*=d Tr[ (AB+BA)R], (11b)

where the capital letters represent the matrices asso-
ciated with the mesons, and ¢ and j are interaction
constants. One could add the other permutations of the
three mesons to the expressions, but this would be
redundant, since a trace is invariant to cyclic permu-
tations. The singlet states do not participate in the
f-type interactions, but their total d-type couplings
(sums of squares of Clebsch-Gordan coefficients) are
greater than those of the regular representation states.

In a Hermitian representation of the mesons, the
meson matrices are Hermitian. From this it follows
that the traces in Eqgs. (11a) and (11b) are imaginary
and real, respectively. The requirement that the v be
real, established earlier, implies that f is imaginary and
d real. In our solution, the magnitudes of the antisym-
metric MMM and MNN couplings are equal and equal
to the magnitudes of the d-type MNN and NNN
couplings, i.e.,

(12)

Tuuu= funn=1dyun=1dynN,
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where d=d*. We may drop the subscripts of the d and .
We now consider MM — MM scattering, for definite-
ness. One more property of the mesons is useful. In the
matrix representation, the virtual mesons R of either
parity are a complete set and satisfy the closure
property
ZR RabRcd*=6acabdo (13)
If Egs. (11a) and (11b) are substituted into the con-
sistency condition of Eq. (8), and Egs. (12) and (13)
are used, the resulting expression may be written

Rea,av=d2T1[ (CD— DC) (4B— BA)+ (CD+DC)
X (AB+BA)— (AD—DA)(CB—BC)

— (AD+DA)(CB+BC)]. (14)

It follows immediately from the fact that the trace is
invariant to cyclic permutations that this expression
vanishes, so that our proposed coupling scheme is self-
consistent for the MM — MM processes.

The other processes to be considered are VN — NN,
MN — MN (with crossed process also MN — MN),
and MN — NM (with crossed process MM — NN).
However, the interaction constants of Eq. (12) are
such that the s- or #-channel residues for any of these
amplitudes is the same as for the MM — MM ampli-
tude with external particles of the same SU (n) char-
acter. For any (s or #) channel, the f- and d-type
interactions are associated with the intermediate
mesons of such parities that the products of the in-
trinsic parities in the vertices are odd and even, respec-
tively. The solution is completely consistent.

IV. BARYON SYSTEM

Many types of amplitudes of baryon number one
are possible in the model, so we will start by limiting
attention to the process M B — M B, where M are the
odd-parity mesons, and B represents a multiplet of
baryons of even parity. The meson and baryon masses
are p and m. Virtual mesons and baryons of both
parities are allowed, the odd-parity baryons being
denoted by the symbol D. Six types of composite pole
diagrams are possible, corresponding to virtual B or
D particles in the s and # channels, and to virtual M
or N particles in the ¢ channel.

The ¢-channel singularities do not contribute if one
applies the saturation assumption to the curve {=0.
For this curve, the consistency condition is Eq. (8),
with only the first indices of the v referring to the
mesons. The v° and v¢ refer to the MBB and M BR
interactions, respectively. In order to avoid confusion,
we use Greek subscripts to refer to baryon states now.
It is seen from Egs. (92) and (9b) that the v;° and v,
are anti-Hermitian and Hermitian matrices in the space
of the baryon states, respectively. We define Hermitian-
matrices I'; by the equations

Yia”=1Lja°5 Viap®=Tiap’

FIXED-ANGLE DISPERSION APPROACH
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Fic. 1. The back-scattering curve for the case u=3%m. The
dashed lines are the s- and »-channel baryon poles, and the MM
branch cut at t=4u?

If one uses Egs. (9a) and (9b) to remove the complex-
conjugation symbols in the consistency condition of
Eq. (8), this condition for the process a-+48 — ¢+6 may
be written in terms of the I'’s, i.e.,

(15)
(16)

— X+ X*=0,
where
Xi= Z P (Fc6pir‘a/zﬂi_ Fa&ﬂzpopﬁz) .

Because of the difference in the meson and baryon
masses, one cannot transform from forward to backward
MB scattering by transposing the two final particles.
On the other hand, if composites of both parities exist,
the forward-angle consistency condition is not sufficient
to determine the nature of the composites. A further
condition is needed. Clearly, it is reasonable to apply
the saturation assumption to some curve that is
parallel to, or asymptotic to, =0 in the limit s — .
One may then use the Regge argument, that the in-
variant amplitudes T behave as I'~s# (=0~} a5 s — o0,
where 8 is the leading baryon Regge trajectory.® How-
ever, it is not obvious which curve should be chosen.
We choose the backward scattering curve. This is the
branch of the hyperbola

su= (m*—p’)?, (17)
corresponding to positive s and #. This curve is shown
in Fig. 1, for the case u=3m.

This curve is chosen because the crossing of helicity
amplitudes is simple only for collinear processes. How-
ever, a partial justification of the choice may be made
by appealing to the static limit. In the static limit
(limit as the M mass, N mass, and D-B mass difference
become small compared to m), that part of the back-
scattering curve on which the virtual B and D singu-
larities lie approaches a straight line. Therefore, any
static model of M B states of only one parity that satis-
fies the forward-consistency condition will also satisfy

0V, N. Gribov, Zh. Experim. i Teor. Fiz. 43, 1529 (1963)
[English transl.: Soviet Phys.—JETP 16, 1080 (1963)].
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the backward condition, if {-channel singularities are
neglected.!

It has been shown that backward MB scattering
amplitudes of fixed helicities are odd in W=s!2, so a
branch point occurs at s=0.7 However, this branch
point occurs at infinity on the back-scattering curve,
where it does no damage.’? The curve is tangent to the
branch cut at ¢=4u?; however, neglecting this cut is an
approximation of the same nature as neglecting the
s- and u-channel threshold cuts on both the forward-
and back-scattering curves. The validity of the satu-
ration assumption for any curve must be tested by
experiment, eventually.

The variable »=3(s—#) will be used again as the
energy variable. Since we are concerned with systems
that may be consistent theoretically, rather than with
the known system of particles, we cannot appeal to
experiment to determine the intercept of the leading
baryon-Regge trajectory. However, it is safe to assume
that the back amplitude diverges no more rapidly than
the forward amplitude, so that sufficient convergence
will be obtained if we again use the amplitude U of
Eq. (1). The consistency condition is that the sum of
the residues of the poles of U along the back-scattering
curve must vanish. The spin components of the mesons
along the z axis again behave as do internal quantum
numbers under s <> % crossing.

The back-scattering consistency equation differs from
the forward equation in three respects. First, corre-
sponding odd-/ composite contributions to the two
curves are of opposite sign. Second, the magnitudes of
corresponding residues are different, because of the
different relation between s (or #) and » along the two
curves. The virtual baryon residues involve the X*
factors of Eq. (16), multiplied by positive constants Z.
It is easy to show that if a composite pole occurs at
s=m,?, the multiplicative factor is

2Lm - (m*— )]
mAt (m?— g+ 2m A ()

Z(m?)= (18)

The value Z(m?), that is associated with B poles, is
denoted by Zp. The even-/ composites involve the
factor Z (mp?), while the scattering-length contributions
involve Z[(m+u)*]=1. A simple solution can exist
only if these two Z factors are equal. This implies

11 Such a model is the strong-coupling model discussed by C. J.
Goebel, Phys. Rev. Letters 16, 1130 (1966). In this model, the
mesons are not bootstrapped, and an infinite number of baryon
states is necessary.

12 The Regge argument shows that the high-energy behavior
of the amplitude T or U is not that of an integral power of s
(unless the leading trajectory crosses the ¢{=0 or =0 axis at
just the right place), so that almost every amplitude has a branch
cut at infinity. This seems at odds with the pole-saturation tech-
nique, which leads to amplitudes with integral power behavior in
the high-energy limit. However, there is no contradiction; the
apparent paradox arises because the pole terms do not dominate

e high-energy behavior, even though they may dominate the
integrals of the sum rules.
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either that the scattering-length terms vanish, or that
mp is equal to one of the two values (m=u)?. It is
assumed here that the latter condition applies, so that
the Z factor for all even-/ poles is unity.

The third difference between the forward- and back-
scattering conditions is that the ¢-channel poles may
contribute to the latter. It is seen from Fig. 1 that an
unbound MM composite would not lead to a contri-
bution. In our model of degenerate mesons, all mesons
are bound, and the back-scattering curve crosses each
t-channel pole twice. In order to understand the effect
of the two intersections, we note the relation of » to
t-channel variables, v=2k,k., cosf;, where the k factors
are the momenta in the MM and BB states. It is seen
that a ¢-channel MM composite of even-orbital parity,
corresponding to a virtual N meson, can make no
contribution, because the two residues cancel. On the
other hand, the two residues corresponding to a virtual
M state add.

It follows from the above discussion that the back-
ward-scattering consistency condition for the process
a+B — c+4 is given by

ZBX°+X2—2K Zk Pksﬁn'chuo=0- (19)
The last term is the M-exchange contribution; « is a
real constant that depends on the mass ratio (u/m).
The ~° is the MMM interaction constant of Sec. II.
Elimination of the D-coupling term X* from Egs. (15)
and (19) yields
(Za+1)Xo=2k 3"k Thss™Vea®- (20)
This and Eq. (15) are the consistency conditions for
M B scattering.

It was pointed out in Sec. III that the M may
correspond to the regular or identity representation.
We first consider the case in which both ¢ and ¢ corre-
spond to the regular representation. The above equa-
tion, with X° given by Eq. (16), is of the form of a
matrix equation for I'® matrices associated with the
mesons in the vector space of the baryon states. Since
the yrcs® are proportional to the structure constants of
the group (See Sec. III), Eq. (20) is the usual com-
mutator condition on the generators, and so implies
that the B correspond to a representation of the group.
If the B set cannot be separated into subsets not con-
nected by the MBB interactions, the representation
is irreducible. This is the condition derived by
Polkinghorne in the vector-meson-even-parity baryon
model.?

In contrast to the Polkinghorne condition, our con-
ditions cannot be solved if baryons of only one parity
exist. This follows from Eq. (15) and the fact that the
t-channel contributions to Eq. (20) do not all vanish.
The consistency equation for the D multiplet, Eq. (15),
has been derived previously from a potential model,
and is the statement that the D and B columns of the
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matrix 1—C are proportional, with a positive propor-
tionality constant.* Here, C is the s <> % crossing matrix.
It has been shown that if the group is SU () and B is
represented by a rectangular Young tableau, all columns
of 1—C are proportional, and the proportionality con-
stant is positive for a wide choice of D representations.®
Thus, many SU (#)-symmetric solutions exist.

If one or both of the external M mesons is a singlet,
the t-channel terms vanish in Eq. (20), and the equation
becomes [T',°,I';°]=0, where I';° are matrices in the
space of the baryon states. The matrix representing
the singlet is the identity matrix, so the condition is
satisfied for any choice of the magnitude of the singlet
coupling. The T'¢ equation (15) also is satisfied auto-
matically if one of the external mesons is a singlet.
Thus, solutions exist, but the ratio of the singlet-M
and regular-representation-M couplings to the baryons
is not specified.

The solution may be extended to some processes
involving other sets of external particles. If B and D
correspond to the same rectangular representation, the
MD — MD conditions may be satisfied also. Further-
more, since the meson solution of Sec. IIT involves
proportional MMM and M NN interactions, the baryon
solution may be extended to include N B and N D elastic
processes.

V. IDENTIFICATION OF THE SPIN SUBGROUP
WITH MESON STATES

It was shown in Sec. IIT that if a subset of the
mesons is of odd intrinsic parity, and has trilinear
interactions (and cannot be separated into smaller,
noninteracting subsets), the subset must correspond
to the regular representation of a simple Lie group. In
order that antisymmetric interactions be present, the
mesons may not all be spinless. Furthermore, the spin
components are treated on the same footing as internal
quantum numbers, and thus must be described by the
group.

In this section we investigate the consequences of
the requirement that all spin components (along the
interaction axis) of the odd-parity mesons have non-
zero interactions. Other types of interactions that
couple all the particles are possible. An example is a
VVV interaction of the type

(Gz/m2)ea- (k‘b_kc)eb' (k?_ka)ec' (ka_kb) )

where the e are 4-polarization vectors, and the signs of
all 4-momenta are chosen as if the particle is coming
to the vertex. Only the zero-helicity components inter-
act in this example, so the Lie group can apply to the
internal symmetry alone. On the other hand, this
interaction is artificial because it implies that f-wave
VV states are as important as P-wave states. Our
requirement that all spin components of the odd-parity

13 R. H. Capps, Ann. Phys. (N. Y.) 43, 428 (1967).
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meson set interact is a natural one, although not
necessary for consistency.

The spin component S, is the single additive, con-
served quantum number describing the spin, and so
the spin must be described by an SU(2) subgroup of
the total Lie group. Since the over-all group is simple,
it cannot be a direct product of this SU(2) group and
an internal symmetry group. Rather, a group of the
type of SU (6) is required, although it is clear that some
other groups [such as SU(4)] would do just as well.
The generators and Casimir operator of the SU(2),
spin group are denoted by ©.,S,, ©., and ©2. We must
investigate the possible physical meaning of these
operators. Since the M correspond to the regular rep-
resentation of the over-all group, the states involved
are of the types M, My, M1_1, and Mo, where the
subscripts are the ©-spin and &, respectively. We may
identify &, with the conserved physical-spin component
S,. The mesons must be V and P mesons, and the My
states may be identified with V' states.

The assignment of the V, and P states may be made
by considering the behavior of these particles under the
particle-antiparticle conjugation operation C. The anti-
symmetry of the MMM interaction implies that the
interactions of the states corresponding to Hermitian
fields are odd under the group-conjugation operation
that reverses both internal symmetry quantum num-
bers and the spin component. The spin states Mo and
My are even and odd under &-spin reflection, and
thus must be odd and even under C. On the other hand,
P mesons with self-conjugate internal quantum
numbers are even under C, while the corresponding
zero-helicity states of V mesons are odd under C. Thus,
P and V, states must be identified with M1, and Moo
states. Furthermore, just as the C behavior of the
Vo=V, states is opposite to that required by the
identification of this state with an ©-spin triplet, so
also the C behaviors of the V, and V, states are of this
wrong sign. This requires a negative phase in the
identification of V_; with My, states. In summary,
if the phase relations between the up and down V and
M states are defined in the same way, the identification
is as follows:

Mu=Vi, My=P, Mii1=—V_1, Mop="Vo.
This is the I¥-spin assignment; in fact, this assignment
is a complete definition of W spin for the V and P
mesons.* Therefore, the SU(2) subgroup that applies
to the spins must be assigned by the SU(2)w scheme.
We now turn our attention briefly to the even-! MM
and M B composites, i.e., to the N and D multiplets.
It has been shown in previous references that the
assumption that the even-/ states are dominated by S
waves and S-D transitions implies that the N and D

may be classified according to the group U(6)XU (6)

14 ¥-spin is defined and discussed by H. J. Lipkin and S.
Meshkov, Phys. Rev. 143, 1269 (1966).



1738

®0(3), and correspond to the triplet of O(3).15:1¢ This
is the quark-model classification scheme. The N and
D states that participate in the interaction vertices are
superpositions of states with different spins and the
same z component. The S-S and S-D amplitudes are
distinguished by the spin exchange of the collinear
amplitudes.

VI. CONCLUDING REMARKS

Some of the consistency conditions given here have
been derived in Refs. 4 and 16 on the basis of partial-
wave dispersion relations. It is shown in these references
that assignment of the particles to U (6)QU (6)X0(3)
multiplets according to the scheme M= (6,6,1),
N=(6,6,3), B=(56,1,1), D= (70,1,3), with interaction
constants consistent with SU(6)yw, leads to a solution
to the conditions (except for the conditions with
external D particles, discussed below). This solution is
in accord with the experimental hadron spectrum.
The present derivation contains fewer parameters than
the partial-wave derivation, and so leads to some new
results. Chief among these are the following: (1) If the
mutual interactions of a subset of the mesons are anti-
symmetric, they must correspond to the regular repre-
sentation of a compact semisimple Lie group; (2)
mesons and baryons of both parities must be present;
(3) if all the spin components of the odd-parity mesons
have nonzero interactions, they must be pseudoscalar
and vector mesons, with spin components interacting
according to the SU(2)y scheme; (4) consistency is
obtained for all meson-meson scattering amplitudes for
which the condition may be applied.

Physically, the odd-parity mesons are more promi-
nent than the even-parity mesons. They are also more
prominent in the model given here. This results from
the fact that the consistency condition involves ampli-

15 R. H. Capps, Phys. Rev. 158, 1433 (1967); 165, 1899 (1968).

16 P, Freund, R. Oehme, and P. Rotelli, Nuovo Cimento 51A,
217 (1967) have considered sets of mesons classifiable by this
group, and have discussed solutions to a set of {=0 supercon-
vergence relations. The solution they obtain by considering non-
superconvergent as well as superconvergent amplitudes is basically
the same as that of Sec. ITI of the present paper, although the two
approaches are quite different.
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tudes odd under s<>u channel crossing, and these
amplitudes transform in the ¢ channel as the odd-parity
mesons. For this reason, the meson-exchange term in
the baryon consistency conditions of Sec. IV involve
the M mesons. For this reason also we were able to
obtain a consistency condition involving the M alone
carrying out the permutation sum Y p (—1)? on the
basic condition of Eq. (8). [Had we omitted the
(—1)P factor from this sum, all the terms would have
cancelled. ]

The baryon condition of Sec. IV implies one of the
mass relations, mp=m-+pu or mp=m—pu. Physically,
the mass splittings of the multiplets are large. However,
since the odd-parity baryon resonances are stable for
many M B decays, and unstable for many others, the
condition mp=m-p is a reasonable approximation to
reality when mass-splitting is neglected. The physical
assignment of the D to the multiplet 70 of SU(6)w
prevents satisfaction of the conditions for MD scat-
tering, although the MB— MB conditions may be
satisfied. This follows because the D representation is
not rectangular (see Sec. IV). Physically, it is reasonable
that the saturation assumption should be particularly
accurate for MM — MM and MB— MB processes,
since there are no two-particle branch cuts below
threshold for these two processes in the degeneracy
approximation.

It may be shown that if baryon-antibaryon scattering
is considered, and saturation with M and N poles is
assumed, there is no solution when the baryons corre-
spond to the SU (6) w representation 56, and the mesons
to the representations 1 and 35. The basic reason for
this is that the singlet-exchange forces in the 405 and
2695 BB states are not proportional to the 35-exchange
forces, so that all crossed-channel poles in both these
BB states cannot be cancelled. This is no more serious
than the failure of the condition for the MD— MD
processes. Our basic point of view is not that a simple
pole-saturation approximation is applicable always,
but rather that it is a good approximation for scattering
states without branch cuts below threshold, and this
fact may be one of the reasons that a symmetry of the
type SU (6)w is observed to apply to MMM and M BB
interactions.



